| BM Advanced I nteractive Executive
for the Personal System 2

(Al X PS/ 2)

Interface Library Reference
Version 1.1

Docunment Nunber SC23-2051-0

Copyright IBM Corp. 1985, 1989

| BM Advanced I nteractive Executive
for the Personal System 2

(Al X PS/ 2)

Interface Library Reference
Version 1.1

Docunment Nunber SC23-2051-0

Copyright IBM Corp. 1985, 1989

VS/AIX Interface Library
Edition Notice

Editi on Notice
First Edition (March 1989)

The information in this manual applies to I BM Al X VS Pascal (Program
Nurber 5713- AEZ) and | BM Al X VS FORTRAN (Program Nunber 5713- AFA) for
use with Version 1.1 of the IBM Al X PS/ 2 Operating System (Program
Nunmber 5713-AEQ, and it applies to all releases and nodifications
until otherw se indicated in new editions or Technical Newsletters.
Changes are nmade periodically to the information herein; these changes
will be incorporated in new editions of this publication.

Ref erences in this publication to | BM products, programs, or services
do not inply that IBMintends to make these available in all countries
in which IBMoperates. Any reference to an | BM program product in
this publication is not intended to state or inply that only IBMs
program product may be used. Any functionally equival ent program nmay
be used i nstead.

I nternational Business Machi nes Corporation provides this nmanual "as
is," without warranty of any kind, either express or inplied,
including, but not limted to, the inplied warranties of
nmerchantability and fitness for a particul ar purpose. |BM may nake
i mprovenents and/ or changes in the product(s) and/or the progran(s)
described in this nmanual at any tine.

Products are not stocked at the address given bel ow. Requests for
copies of this product and for technical infornmation about the system
shoul d be nade to your authorized |IBM deal er or your |BM nmarketing
representative.

A reader's comment formis provided at the back of this publication.

If the form has been renoved, address comrents to | BM Corporation,
Departnent 35RB, 36 Apple Ri dge Road, Danbury, Connecticut 06810. |BM
may use or distribute, in any way it believes appropriate and w t hout
incurring any obligation to the sender, whatever information it
receives in this manner

IBMis a registered trademark of International Business Machi nes
Cor por ati on.

Al X is a trademark of International Business Machi nes Corporation.

Personal System 2 and PS/2 are registered trademarks of |BM
Cor por ati on.

| Copyright International Business Machi nes Corporation 1985, 1989.
Al'l rights reserved.

| Copyright AT&T Technol ogi es 1984

Note to U. S. Government Users -- Docunentation related to restricted
rights -- Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedul e Contract with | BM Corp.

! Copyright IBM Corp. 1985, 1989
EDITION - 1

VS/AIX Interface Library
About this Book
About this Book
This reference book contains information about the library of systemcalls

available with I BM Al X VS Pascal and | BM Al X VS FORTRAN as i npl emented for
use with the I1BM Al X PS/2 Qperating System

Subt opi cs
Who Shoul d Read this Book
How t o Use Thi s Book
H ghl i ghting
Rel at ed Publications

| Copyright IBM Corp. 1985, 1989
PREFACE - 1

VS/AIX Interface Library
Who Should Read this Book

Wio Shoul d Read this Book

This book is intended for programers w shing to use Al X system
subroutines in their own VS Pascal or VS FORTRAN application programs. It
assunes famliarity with Pascal or FORTRAN and with either Al X or UNIX ()
System V commands and systemcalls. For Al X PS/ 2 publications that deal
with VS Pascal, VS FORTRAN, and Al X, see "Related Publications” on page
PREFACE. 4.

Not e: Neither VS FORTRAN nor VS Pascal supports nultibyte characters.
Prograns witten in these | anguages can only process single-byte
characters |ike ASCII.

It is recormended that such prograns not be used with Al X system
Rel ease 1. 3.

() UNNX is a registered trademark of UN X System Laboratori es,
Inc. inthe U S A and other countries.

| Copyright IBM Corp. 1985, 1989
PREFACE.1-1

VS/AIX Interface Library
How to Use This Book

How to Use Thi s Book

The information in this reference is divided into two sections and six
appendi xes. For an overview of the book and of the major functions

avail able through the interface library, read the first
section--Introduction to the Interface Library--which begins on page 1.0.
This section also contains additional information of interest to
progranmers using the library.

The second section--System Cal | s--which begins on page 2.0, contains the
bul k of the reference material in this book. Mst of the systemcalls in
the interface library are described individually in separate subsections.
In some instances, however, two or nore related systemcalls are described
in a single subsection. Subsections are al phabetically ordered by
systemcall name. Al systemcalls are listed in the Table of Contents
(individually or grouped) and in the Index. |In addition, each descriptive
subsection carries as a running title the name(s) of the systemcall (s)

di scussed in that section

The appendi xes contain information about error codes and nessages, Pasca
definitions and declarations, and two inportant system subroutines: ftok
and perror.

| Copyright IBM Corp. 1985, 1989
PREFACE.2 - 1

VS/AIX Interface Library
Highlighting

Hi ghl i ghting

Thi s book uses several typographic conventions in its descriptions of the
vari ous system calls.

O

System call nanes appear in the descriptive text in UPPERCASE
BOLDFACE.

Program vari abl es appear in the descriptive text in |owercase italics.
Constants appear in the descriptive text in UPPERCASE LETTERS

The syntax descriptions near the beginning of each subsection appea
in a nonospace typeface that suggests a conputer printout.

The sane "exanple" typeface is used to present the exanple prograns at
the end of each subsection

In the brief descriptions preceding each exanple program doub
guot ati on marks around one or nore characters (for exanple, "s1")
identifies a variable nanme arbitrarily picked for purposes of the
particul ar exanpl e.

In the few direct references to an Al X system subroutine, the nane o
the subroutine appears in | owercase bol df ace.

| Copyright IBM Corp. 1985, 1989
PREFACE.3-1

VS/AIX Interface Library
Related Publications

Rel at ed Publications
You may want to refer to the followi ng I BM Al X publications for additional

i nformation:

O

Al X Qperating System Commands Reference, SC23-2025, lists and
descri bes the Al X Operating System comrands.

Al X Operating System Progranmi ng Tools and Interfaces, SC23-2029,
descri bes the programm ng environment of the Al X Operating System and
i ncludes i nformation about the use of operating systemtools to

devel op, conpile, and debug prograns.

Al X Operating System Techni cal Reference, Volumes 1 and 2 (SC23-2032
and SC23-2033) describes the systemcalls and subroutines a programer
woul d use to wite application prograns. This book al so provides

i nformati on about the Al X Qperating Systemfile system special files,
m scel | aneous files, and the witing of device drivers.

VS Pascal User's Quide, SC23-2053, describes how to devel op and
execute VS Pascal progranms. This book al so describes the procedures
for conmpiling and executing prograns that contain sections of code
witten in VS FORTRAN and C.

VS Pascal Reference, SC23-2054, describes the statenments, data
structures, and other features of the Pascal progranm ng

VS FORTRAN User's Cuide, SC23-2049, describes how to devel op and
execute VS FORTRAN prograns. This book al so describes the procedures
for conmpiling and executing prograns that contain sections of code
witten in VS Pascal and C.

VS FORTRAN Ref erence, SC23-2050, describes the statenents, data
structures, and other features of the FORTRAN 77 progranm ng | anguage.

| Copyright IBM Corp. 1985, 1989
PREFACE.4 -1

VS/AIX Interface Library
Table of Contents

Tabl e of Contents

TI TLE Titl e Page

COVER Book Cover

EDI TI ON Edition Notice

PREFACE About this Book

PREFACE. 1 Who Shoul d Read this Book

PREFACE. 2 How to Use This Book

PREFACE. 3 Hi ghl i ghting

PREFACE. 4 Rel at ed Publications

CONTENTS Tabl e of Contents

1.0 Introduction to the Interface Library

1.1 What It Is

1.2 What You Need

1.3 What It Does

1.4 How Thi s Manual is O ganized

1.4.1 Process Control

1.4.2 Process Identification

1.4.3 Process Tracking

1.4.4 I nput - Qut put

1.4.5 Fi |l e Mai nt enance

1.4.6 Si gnal s

1.4.7 Semaphor es

1.4.8 Messages

1.4.9 Shared Menory

1.4.10 Socket s

1.4.11 System Utilities

1.5 The ftok System Subroutine

1.6 Using the Interface Library with VS Pasca
1.6.1 Decl arati ons

1.6.2 Li nkage

1.7 Using the Interface Library with VS FORTRAN
1.7.1 Decl arati ons

1.7.2 Li nkage

1.8 Return Val ues, Error Codes, and Error Messages
2.0 System Cal | s

2.1 ACCEPT accept a connection to a socket
2.2 ACCESS check file accessibility

2.3 ACCT turn process accounting on or off
2.4 ADJTI ME synchroni ze the system cl ock

2.5 ALARM schedul e an al arm si gnha

2.6 BIND bind a nanme to a socket

2.7 BRK, SBRK change dat a-segnent space all ocation
2.8 CHDI R change the current directory

2.9 CHHI DDEN convert a hidden or normal directory
2.10 CHMOD change fil e-access perm ssions

2.11 CHOWN, CHOWNX change ownership of a file
2.12 CHROOT change the root directory

2.13 CLCSE close a file

2.14 CONNECT initiate a connection to a socket
2.15 CREAT create a new file

2.16 DI SCLAI M "di sclainf the contents of an area of nenory
2.17 DUP, DUP2 return a second file-descriptor
2.18 EXECL, EXECLE, EXECLP execute a program
2.19 EXECV, EXECVE, EXECVP execute a program
2.20 EXIT, _EXIT term nate a process

2.21 FABORT abort the changes to a file

2.22 FCLEAR cl ear space in a file

2.23 FCNTL control an open-file descriptor
2.24 FORK create a process

2.25 FSYNC, FCOWM T wite to permanent storage

! Copyright IBM Corp. 1985, 1989
CONTENTS - 1

NNPNNNONPNNONPNPNDNNDNPNPNONNNDNDNPNONDNPNONNDNONNDNNDNNDNNPNODNNDNNONNDNPNODNPNONNDNONNNONNDNNDNPNONNPNONNDNPNONDNNONNDNNDNNDNNDDNDN

. 26
.27
. 28
.29
.30
.31
.32
.33
.34
.35
. 36
.37
. 38
.39
. 40
.41
.42
.43
.44
. 45
. 46
.47
.48
.49
. 50
.51
.52
.53
.54
. 55
. 56
. 57
.58
.59
. 60
.61
.62
.63
. 64
. 65
. 66
. 67
. 68
. 69
.70
.71
.72
.73
.74
.75
.76
N
.78
.79
. 80
.81
.82
. 83
. 84
. 85

VS/AIX Interface Library
Table of Contents

FTRUNCATE truncate a file

GETDTABLESI ZE get the size of a process-descriptor table

GETGROUPS get a group access |ist
GETHOSTI D get a host 1D
GETHOSTNAME get a | ocal host nane
GETI TI MER get the current val ue of
GETLOCAL get the alias for <LOCAL>

an internal tiner

GETPEERNAME get the nane of a "peer" socket

GETPGRP, CETPI D, GETPPID get a process-group or process ident

GETSOCKNAME get a socket nane
GETSOCKOPT get socket options
GETTI MECFDAY get the current tine

GETU D, GETEU D, GETG D, GETEG D get a user or group identif

GETXVERS get the UNI X version string

| OCTL control the input and out put

of a device

KILL, KILLPG send a signal to a process or a process group

LINK ink to a file

LI STEN "listen" for a connection to a socket
LOCKF [ock or unlock a region of a file

LSEEK set a read or wite pointer
MKDI R create a directory
MKNOD create a directory or special

file

MOUNT, UMOUNT rmount or unnount a file system
MBSGCTL i nvoke nessage-control operations
MSGGET get or create a nessage queue

MBGRCV, MSGXRCV read and store a nessage

MSGSND send a nessage to a queue
NI CE set a process priority

OPEN open a file for reading or witing

PAUSE wait for a signa
Pl PE create an interprocess channe

PLOCK | ock or unlock a process, text, or data
PRCFI L generate an execution-tinme profile

PTRACE trace the execution of a ch
READ, READX read froma file
READLI NK read the val ue of a synbo

I d process

ic link

READV read input into nultiple buffers

REBOOT reinitialize or halt system

operation

RECV, RECVMSG RECVFROM receive a nessage from a socket

RENAME rename a directory
RVDI R renove a directory

SELECT check the status of file descriptors and nessage queue

SEMCTL i nvoke semaphore-control operations
SEMGET get or create a senmaphore-set |ID

SEMOP perform semaphore operations

SEND, SENDVSG, SENDTO send a nessage from a socket

SETGROUPS set a group access |ist

SETHOSTI D set an identifier for the host nachine
SETHOSTNAME set the nane of the current host
SETI TI MER set the value of an internal tiner

SETLOCAL set the alias for <LOCAL>

SETPGRP, SETPA D set a process group ID

SETSOCKOPT set options on sockets
SETTI MECFDAY set the current tine

SETUI D, SETA D set user or group identifiers
SETXVERS set the UNI X version string
SHVMAT attach a shared-nmenory segnment or nmapped file

SHMCTL i nvoke shar ed- nenory-contro

oper ati ons

SHMDT detach a shared-nmenory or mapped file segment

SHMGET get a shared- nmenory- segment

| Copyright IBM Corp. 1985, 1989
CONTENTS - 2

identifier

“TTIMOOTBENNONNNONNNONNNNNNNRNOMNNNNONNNMNNNOMNNONNNNNNNN

. 86
. 87
. 88
. 89
.90
.91
.92
.93
.94
.95
. 96
.97
. 98
.99
. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108

VS/AIX Interface Library
Table of Contents

SHUTDOWN shut down part or all of a full-duplex connection
SI GACTI ON specify the action to be taken upon receipt of a si
SI GBLOCK bl ock one or nore signals

SI GNAL specify the process response to a signha

SI GPAUSE rel ease a bl ocked signal and wait for an interrupt
S| GPROCVASK set the current signal mask

SI GSETMASK set the signal mask of the current process

SI GSTACK set and get a signal -stack context

S| GSUSPEND reset the signal mask and wait for an interrupt
SI GVEC sel ect signal-handling facilities

SOCKET create an endpoint for conmunication

SOCKETPAI R create a pair of connected sockets

STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT returr
STI ME set the system cl ock

SYMLINK create a synbolic link to a file

SYNC update a file system

TIME get the systemtine

TI MES get the process tines

ULIMT get and set process limts

UVASK get and set a file-creation-node mask

UNAME, UNAMEX get the nanme of the current operating system
UNLI NK delete a directory entry

USRI NFO get and set user infornmation

USTAT get file-systeminformtion

UTI ME set the file tines

UTI MES set the file tines

WAIT, WAIT3 wait for a child process to term nate

WRITE, WRITEX wite to a file

WRITEV wite output fromnmultiple buffers

Appendi x A. Error Codes and Error Messages

Appendi x B. Pascal Constants

Appendi x C. Pascal Type Decl arati ons

Appendi x D. Pascal Procedure and Function Decl arations
Appendi x E. The ftok System Subroutine

Appendi x F. The perror System Subroutine

I ndex

| Copyright IBM Corp. 1985, 1989
CONTENTS - 3

VS/AIX Interface Library
Introduction to the Interface Library

1.0 Introduction to the Interface Library

Subt opi cs

1.1 What It Is

1.2 What You Need

1.3 What It Does

1.4 How This Manual is Organized

1.5 The ftok System Subroutine

1.6 Using the Interface Library with VS Pascal

1.7 Using the Interface Library with VS FORTRAN
1.8 Return Values, Error Codes, and Error Messages

| Copyright IBM Corp. 1985, 1989
1.0-1

VS/AIX Interface Library
What It Is

1.1 What It Is

The VS Language/ Operating SystemInterface Library is an
application-programinterface that provides access to the systemcalls of
the Al X Operating Systemfromprograns witten either in A X VS Pascal or
in Al X VS FORTRAN. These systemcalls, which are a part of the Al X
Operating System invoke a variety of systemroutines whose functions
include file maintenance, input and output, and interprocess (1)
conmuni cati on

Not e: Neither VS FORTRAN nor VS Pascal supports nultibyte characters.
Prograns witten in these | anguages can only process single-byte
characters |ike ASCII
It is recormended that such prograns not be used with Al X Rel ease
1.3. Nevertheless, this manual can provide valuable information on
Al X systens calls for soneone who wants to use themin C prograns.
Information on using systemcalls in a C program can be found in:

0 Al X Techni cal Reference
O A X Programmi ng Tools and Interfaces
(1) As used in this manual, the term process refers to a program

runni ng under the Al X Operating System together with the
environment it runs in.

| Copyright IBM Corp. 1985, 1989
1.1-1

VS/AIX Interface Library
What You Need

1.2 What You Need
0 The Al X Operating Systeminstalled on your PS/

O AXPS/ 2 VS Pascal or Al X PS/2 VS FORTRAN installed according to th

directions given in the Program Directory that accomnpani ed the
| anguage.

| Copyright IBM Corp. 1985, 1989
1.2-1

VS/AIX Interface Library
What It Does

1.3 What It Does

The VS Language/ Qperating System Interface Library nmakes it easy to use
the Al X systemcalls directly fromprograns witten in VS Pascal or VS
FORTRAN by changing the calls's associated data structures, nam ng
conventions, and data types to conformto those required by the system
The Interface Library takes care of many of the details of interfacing to
the actual systemcalls without the need for C-|anguage or

assenbl y-| anguage "w appers."”

| Copyright IBM Corp. 1985, 1989
13-1

VS/AIX Interface Library
How This Manual is Organized

1.4 How This Manual is Organized

The systemcall descriptions are |isted al phabetically by systemcal

nane, beginning on page 2.1. Information on a particular call can be
found by |l ooking for the call nanme in the Table of Contents. (Because
some sections describe nore than one systemcall, the listing in the Table

of Contents is not perfectly al phabetical, though all of the calls are
listed.) Individual calls can also be found by consulting the Index,

ei ther under the name of the individual systemcall or under one of the
foll owi ng functional categories.

process contro
process identificatio
process trackin
i nput and out pu
file maintenanc
si gnal
semaphor e
nessage

shared nenor
socket
systemutilitie

OoOooooooogodg

The calls are grouped by functional category as foll ows:

Subt opi cs

1.4.1 Process Contro
1.4.2 Process ldentification
1. 4.3 Process Tracking
1.4.4 | nput-CQut put
1.4.5 File Mintenance
1.4.6 Signals

1. 4.7 Senmaphores

1.4.8 Messages

1.4.9 Shared Menory
1.4.10 Sockets

1.4.11 System Utilities

| Copyright IBM Corp. 1985, 1989
14-1

VS/AIX Interface Library
Process Control

1.4.1 Process Control
BRK, SBRK (change dat a-segnent space all ocation)
EXECL, EXECLE, EXECLP (execute a progran)
EXECV, EXECVE, EXECVP (execute a progran)
EXIT, _EXIT (term nate a process)
FORK (create a new process)
NICE (set a process priority)
PLOCK (lock or unlock a process, text, or data)

WAIT, WAIT3 (wait for a child process to term nate)

| Copyright IBM Corp. 1985, 1989
141-1

VS/AIX Interface Library
Process Identification

1.4.2 Process ldentification
CETDTABLESI ZE (get size of process-descriptor table)
CGETGROUPS (get a group access |ist)
CGETHOSTID (get the host-nachine identifier)
GETHOSTNAME (get the host-nachi ne nane)
CGETLOCAL (get the alias for <LOCAL>)

GETPGRP, GETPID, GETPPID (get a process-group or process
identifier)

CETU D, GETA D, GETEU D, GETEG D (get a user or a group
identifier)

SETGROUPS (set a group access |ist)

SETHOSTID (set the host-nmachine identifier)
SETHOSTNAME (set the host-nachi ne nane)
SETLOCAL (set the alias for <LOCAL>)

SETPGRP, SETPA D (set a process group |D)

SETU D, SETA D (set user or group identifiers)
ULIMT (get and set process limts)

USRI NFO (get and set user information)

| Copyright IBM Corp. 1985, 1989
142-1

VS/AIX Interface Library
Process Tracking

1. 4.3 Process Tracking
ACCT (turn accounting process on or off)
PROFIL (generate a tinme profile)
PTRACE (trace the execution of a child process)

TIMES (get the processing timnes)

| Copyright IBM Corp. 1985, 1989
143-1

VS/AIX Interface Library
Input-Output
1.4.4 | nput-CQutput
ACCESS (check fil e-access perni ssions)
CLOSE (close a file)
CREAT (create a new file)
DUP, DUP2 (generate a second file-descriptor)
FABORT (cancel changes to a file)
FCLEAR (clear space in a file)
FSYNC, FCOWM T (wite to permanent storage)
FTRUNCATE (truncate a file)
| CCTL (control the input and output of a device)
LOCKF (lock or unlock a region of a file)
LSEEK (set a read or wite pointer)
OPEN (open a file for reading or witing)
PIPE (create an interprocess channel)
READ, READX (read froma file)
READV (read output into nultiple buffers)
SELECT (check I/O status of descriptors and nessage queues)
WRITE, WRITEX (wite to a file)
WRITEV (wite input frommultiple buffers)

Not e: READV and WRI TEV are not avail able in FORTAN.

| Copyright IBM Corp. 1985, 1989
1.4.4-1

VS/AIX Interface Library
File Maintenance

1.4.5 Fil e Maintenance
CHDIR (change the default directory)
CHHI DDEN (convert a directory)
CHMOD (change fil e-access perm ssions)
CHOMWN, CHOWNX (change fil e ownership)
CHROOT (change a root directory)
FCNTL (control an open-file descriptor)
FABORT (cancel a change to a file)
LINK (link to a file)
MKDI R (create a directory)
MKNOD (create a directory or a special file)
MOUNT, UMOUNT (rmount or unnmount a file system
READLINK (read the value of a symbolic |ink)
RENAME (renane a directory or file)
RVDIR (renove a directory)

STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT (return the
status of a file)

SYMLINK (create a synbolic link to a file)
SYNC (update a file system

UVASK (set and get a file-creation-node nmask)
UNLINK (delete a directory entry)

USTAT (get file-systeminformation)

UTIME (set the file tines)

UTIMES (set the file tines)

| Copyright IBM Corp. 1985, 1989
145-1

VS/AIX Interface Library
Signals

1.4.6 Signals
ALARM (schedul e an al arm si gnal)
KILL, KILLPG (send a signal to a process or process group)
PAUSE (wait for a signal)
SIGACTION (specify a response to a signal)
SIGBLOCK (bl ock one or nore signals)
SIGNAL (specify the process response to a signal)
SI GPAUSE (rel ease a bl ocked signal and wait for an interrupt)
SI GPROCVASK (set the signal nask of the current process)
SI GSETMASK (set the signal mask of the current process)
SI GSTACK (define an alternate stack)
SI GSUSPEND (reset the signal mask and wait for an interrupt)
SIGVEC (select signal-handling facilities)

Not e: SI GACTI ON, SI GSTACK, and SI GVEC are not avail abl e i n FORTRAN.

| Copyright IBM Corp. 1985, 1989
146-1

VS/AIX Interface Library
Semaphores

1. 4.7 Senaphores
SEMCTL (i nvoke semaphore-control operations)
SEMGET (get or create a semaphore-set identifier)

SEMOP (perform semaphore operations)

| Copyright IBM Corp. 1985, 1989
1.47-1

VS/AIX Interface Library
Messages

1.4.8 Messages
MSGCTL (i nvoke nessage-control operations)
MSGGET (get or create a nessage queue)
MSGRCV, MSGXRCV (read and store a nessage)
MSGSND (send a nessage to a queue)
RECV, RECVMSG RECVFROM (receive a nessage from a socket)

SEND, SENDTO, SENDMSG (send a nessage from a socket)

| Copyright IBM Corp. 1985, 1989
148-1

VS/AIX Interface Library
Shared Memory

1.4.9 Shared Menory
SHVAT (attach a shared-nmenory segment or mapped file)
SHMCTL (i nvoke shared-nmenory-control operations)
SHMDT (detach a shared-nenory or mapped-file segnment)

SHMGET (get a shared-nenory-segment identifier)

| Copyright IBM Corp. 1985, 1989
149-1

VS/AIX Interface Library
Sockets

1.4.10 Sockets
ACCEPT (accept a connection to a socket)
BIND (assign a name to a socket)
CONNECT (make a connection between two sockets)
CGETPEERNAME (get the nane of a connected socket)
CGETSOCKNAME (get the nanme of a connected socket)
CGETSOCKOPT (get the socket options)
LISTEN ("listen" for a connection to a socket)
SETSOCKOPT (set a socket's options)
SHUTDOWN (di sabl e sending or receiving functions)
SOCKET (create a socket)

SOCKETPAIR (create a pair of connected sockets)

| Copyright IBM Corp. 1985, 1989
1.4.10-1

VS/AIX Interface Library
System Utilities

1.4.11 System Utilities
ADJTI ME (synchroni ze the system cl ock)
DI SCLAIM ("disclaint the content of an area of nenory)
GETITIMER (get the value of an internal tiner)
CETTI MECOFDAY (get the current tine)
GETXVERS (return the UNI X version string)
REBOOT (restart the operating systen)
SETI TIMER (set the value of an internal tiner)
SETTI MEOFDAY (set the current tine)
SETXVERS (set the UN X version string)
STIME (set the system cl ock)
TIME (get the systemtine)

UNAME, UNAMEX (get the name of the current operating system

| Copyright IBM Corp. 1985, 1989
14.11-1

VS/AIX Interface Library
The ftok System Subroutine

1.5 The ftok System Subroutine

The Interface Library gives the programmer access to Al X Operating System
calls fromVS Pascal or VS FORTRAN. An exception is ftok, an Al X
Operating System subroutine that is often used by Pascal procedures and
FORTRAN subroutines of the kind shown in the program exanpl es el sewhere in
this manual. For your convenience, therefore, a description of the ftok
subroutine is given in Appendi x E

| Copyright IBM Corp. 1985, 1989
15-1

VS/AIX Interface Library
Using the Interface Library with VS Pascal

1.6 Using the Interface Library with VS Pasca

Before you can use the Interface Library with a VS Pascal program you
nmust do two things:

1

2.

Decl are the constants, data types, and external functions that will be
used by the program

For your conveni ence, these declarations are provided in include files
(see Appendixes B, C, D). The type declarations include those for the
paraneters and return val ues that appear in the descriptions of the
calls. For purposes of illustration, predefined constants, types, and
functions listed in the include files are also used in the progranm ng
exanpl es.

Link the Interface Library to the program using the cc utility.

Once these requirenents are satisfied, you can use any number of Al X
systemcalls in your program For information concerning these calls, see
"Rel ated Publications" on page PREFACE. 4.

Subt opi cs
1.6.1 Declarations
1. 6.2 Linkage

| Copyright IBM Corp. 1985, 1989
16-1

VS/AIX Interface Library
Declarations

1.6.1 Decl arati ons

The Interface Library provides three files that can be used for making
Pascal decl arations:

1. constants:

{fusr/includel/ail pconsts.inc
2. data types:

/usr/include/ailtypes.inc
3. external functions:

fusr/include/aildefs.inc
To include any of these files in a VS Pascal program use the % ncl ude
conpi ler directive (see VS Pascal User's @uide). For the contents of the
include files, see Appendixes B, C, and D. The foll ow ng program
illustrates how these files are used.

program ai | deno;

const
% ncl ude /usr/include/ail pconsts.inc

type
% ncl ude /usr/include/ailtypes.inc
usrary packed array[1..|NFSIZ] of char;
usrptr @usrary;

% ncl ude /usr/include/aildefs.inc

function p_usrinf (cnd : integer; buf : usrptr;
count : integer) : integer; external;

procedure calll

var
red : unam
blue : integer;
begin
blue := p_uname (red);
witeln (red. sysnane)
end;

procedure call 2;

var
blue, red : integer;
yell ow : usrptr

begin
new (yell ow);
blue := p_usrinf (GETINF, yellow, INFSIZ);
for red := 1 to blue do
wite (yellow@red]);
witeln
end,

| Copyright IBM Corp. 1985, 1989
161-1

VS/AIX Interface Library
Declarations
begin
call 1;
call 2
end.

| Copyright IBM Corp. 1985, 1989
16.1-2

VS/AIX Interface Library
Linkage

1. 6.2 Linkage

You nust link the Interface Library (/lib/libvspil.a) to your program
For exanple, to conpile the aildeno program (assune the file name is
ai l deno. p), you would type the foll ow ng command:

cc -o aildenp aildeno.p -Im-Ilvspil -lvssys -lc

| Copyright IBM Corp. 1985, 1989
16.2-1

VS/AIX Interface Library
Using the Interface Library with VS FORTRAN

1.7 Using the Interface Library with VS FORTRAN

Before you can use the Interface Library with a VS FORTRAN program you
nmust do two things:

1. First, declare the constants that will be used by the program so that
it can be conpil ed.

2. Second, link the Interface Library to the program using the cc
utility.

Once these requirenents are satisfied, you can use any number of Al X
systemcalls in your program For information concerning these calls, see
"Rel ated Publications" on page PREFACE. 4.

Subt opi cs
1.7.1 Declarations
1.7.2 Linkage

| Copyright IBM Corp. 1985, 1989
1.7-1

VS/AIX Interface Library
Declarations

1.7.1 Decl arati ons

The Interface Library provides one file that can be used for making
FORTRAN decl arati ons:

(/usr/include/ailfconsts.inc)

To include this file in your program use the I NCLUDE conpiler directive
(see VS FORTRAN User's Quide). For a description of the contents of the
file, see

Appendi x B.

The programon the next page illustrates howthis file is used.

PROGRAM Al LDEMO
CALL FI RST

CALL SECOND

END

SUBROUTI NE FI RST
CHARACTER*9 RED(5)

| NTEGER BLUE, UNANME
BLUE = UNAME (RED)
PRINT *, RED(1)

END

SUBROUTI NE SECOND

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER RED, BLUE, USRI NF

CHARACTER* | NFSI Z YELLOW

BLUE = USRI NFO (GETINF, YELLOW | NFSI zZ)
WRI TE *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
1.71-1

VS/AIX Interface Library
Linkage

1.7.2 Linkage

You nust link the Interface Library (/lib/libvsfil.a) to your program
For exanple, to conpile the Al LDEMO program (assune the file name is
aildeno. f), you would type the foll ow ng command:

cc -o aildenp aildeno.f -Im-Ilvsfil -lvsfor -lvssys -lc

| Copyright IBM Corp. 1985, 1989
1.72-1

VS/AIX Interface Library
Return Values, Error Codes, and Error Messages

1.8 Return Values, Error Codes, and Error Messages

Most of the Al X systemcalls from Pascal and FORTRAN return a val ue. See
the individual systemcall descriptions for details regarding these
val ues.

A return value of -1 indicates that an error has occurred. Wen a system
call generates an error, an error code is set in the external variable
errno. Two routines are available for retrieving this val ue:

1. Awcall to the p_ercode function in Pascal or the ERCODE subroutine in
FORTRAN returns the value of the external variable errno.

2. Acall to the perror systemsubroutine prints out an error nessage
(for a description of perror, see Appendix F).

| Copyright IBM Corp. 1985, 1989
18-1

VS/AIX Interface Library
System Calls

2.0 System Cal | s

Each systemcall description in this section sunmarizes the function of

the systemroutine being called, the syntax of the call, its paraneters,
and any return values. It also contains exanples of a call rmade from both
VS Pascal and VS FORTRAN prograrns.

Each description contains the first five subsections |isted bel ow, and
occasional ly the sixth.

Description

Synt ax

Par anmet ers

Ret ur n Val ues

Exampl es

Not es

S
2
2
2
2
2
2
2
2
2
2
2
2.
2.
2
2
2
2
2
2
2
2
2
2
2
2
2
2

ubt opi cs

briefly describes the function of the systemroutine that is
bei ng call ed.

shows the correct coding required for nmaking a given system
call from Pascal and FORTRAN prograns.

briefly defines the function and type (for exanple, integer)
of any paraneters required by a given system call

briefly describes the value returned by a given system cal
when it has been successfully conpleted and when it has
fail ed.

cont ai ns short exanples of Pascal and FORTRAN codi ng t hat
i nvoke the systemcall or calls described in the section

provi des, where it is appropriate, additional information of
i nportance to the programmer. (" Notes" al so appear
occasionally in other parts of a descriptive section, but
they are not then displayed as subsection headi ngs, though
they are printed in bold-faced type.

ACCEPT accept a connection to a socket

ACCESS check file accessibility

ACCT turn process accounting on or off

ADJTI ME synchroni ze the system cl ock

ALARM schedul e an al arm si gna

BIND bind a nane to a socket

BRK, SBRK change dat a-segnent space all ocation
CHDI R change the current directory

CHHI DDEN convert a hidden or normal directory
CHMOD change fil e-access perm ssions

CHOWN, CHOMNX change ownership of a file
CHROOT change the root directory

CLCSE close a file

CONNECT initiate a connection to a socket
CREAT create a new file
DI SCLAI M "di sclainf the contents of an area of nenory
DUP, DUP2 return a second file-descriptor
EXECL, EXECLE, EXECLP execute a program
EXECV, EXECVE, EXECVP execute a program

EXIT,

_EXIT term nate a process

FABORT abort the changes to a file

FCLEAR cl ear space in a file

FCNTL control an open-file descriptor

FORK create a process

FSYNC, FCOWM T wite to permanent storage

FTRUNCATE truncate a file

CETDTABLESI ZE get the size of a process-descriptor table

| Copyright IBM Corp. 1985, 1989
20-1

NNPNNRNNPNNONPNPNDNNDNDNPNONNNODNDNPNONDNPNONNDNONNNDNNDNNDNDNPNONNDNNDNNONDNDNPNONPNONNNDNONNDNONNDNNDNPNONDNPNONNDNNONDNNONNDNNDNNDNNDDNDDN

. 28
.29
.30
.31
.32
.33
.34
.35
. 36
.37
. 38
.39
. 40
.41
.42
.43
.44
. 45
. 46
.47
.48
. 49
. 50
.51
.52
.53
.54
. 55
. 56
. 57
. 58
.59
. 60
.61
.62
.63
. 64
. 65
. 66
. 67
. 68
. 69
.70
.71
.72
.73
.74
.75
.76
.
.78
.79
. 80
.81
.82
. 83
. 84
. 85
. 86
. 87

VS/AIX Interface Library
System Calls

CGETGROUPS get a group access |ist

CETHOSTI D get a host 1D

CETHOSTNAME get a | ocal host nane

GETI TI MER get the current value of an internal tiner
CETLOCAL get the alias for <LOCAL>

GETPEERNAME get the nane of a "peer" socket

CETPGRP, CETPI D, CGETPPID get a process-group or process identifier
CGETSOCKNAME get a socket nane

CGETSOCKOPT get socket options

CETTI MEOFDAY get the current tine

GETUI D, GETEUI D, GETGA D, GETEG D get a user or group identifier
GETXVERS get the UNI X version string

| OCTL control the input and output of a device

KILL, KILLPG send a signal to a process or a process group
LINK Iink to a file

LI STEN "listen" for a connection to a socket

LOCKF | ock or unlock a region of a file

LSEEK set a read or wite pointer

MKDI R create a directory

MKNOD create a directory or special file

MOUNT, UMOUNT nount or unmount a file system

MBGCTL i nvoke nessage-control operations

MSGGET get or create a nessage queue

MBGRCV, MSGXRCV read and store a message

MSGSND send a nmessage to a queue

NI CE set a process priority

OPEN open a file for reading or witing

PAUSE wait for a signal

Pl PE create an interprocess channe

PLOCK | ock or unlock a process, text, or data

PRCFI L generate an execution-tinme profile

PTRACE trace the execution of a child process

READ, READX read froma file

READLI NK read the value of a synbolic |ink

READV read input into nmultiple buffers

REBOOT reinitialize or halt system operation

RECV, RECVMSG RECVFROM receive a nessage from a socket
RENAME renane a directory

RVDI R renmove a directory

SELECT check the status of file descriptors and nessage queues
SEMCTL i nvoke senmaphore-control operations

SEMCGET get or create a semaphore-set ID

SEMOP perform senaphore operations

SEND, SENDVSG, SENDTO send a nessage from a socket
SETGROUPS set a group access |ist

SETHOSTI D set an identifier for the host machine
SETHOSTNAME set the nane of the current host

SETI TI MER set the value of an internal tiner

SETLOCAL set the alias for <LOCAL>

SETPGRP, SETPA D set a process group ID

SETSOCKOPT set options on sockets

SETTI MECFDAY set the current tine

SETU D, SETG D set user or group identifiers

SETXVERS set the UNI X version string

SHVAT attach a shared-nenory segment or nmapped file

SHMCTL i nvoke shared-nmenory-control operations

SHMDT det ach a shared-nenory or mapped file segnent

SHMCGET get a shared-nenory-segnment identifier

SHUTDOWN shut down part or all of a full-duplex connection
SI GACTI ON specify the action to be taken upon receipt of a signal

| Copyright IBM Corp. 1985, 1989
20-2

NNPNNPNPNPNDNPNNPNDNNNDNNONDNNNDNNONDNNDNNNNNDNDNDN

. 88
. 89
.90
.91
.92
.93
.94
.95
. 96
.97
.98
.99
. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110
. 111
. 112
. 113
. 114

VS/AIX Interface Library
System Calls

SI GBBLOCK bl ock one or nore signals
SI GNAL specify the process response to a signa
SI GPAUSE rel ease a bl ocked signal and wait for an interrupt
SI GPROCVASK set the current signal mask
SI GSETMASK set the signal mask of the current process
SI GSTACK set and get a signal -stack context
SI GSUSPEND reset the signal nmask and wait for an interrupt
SI GVEC sel ect signal-handling facilities
SOCKET create an endpoint for communi cation
SOCKETPAIR create a pair of connected sockets
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status
STI ME set the system cl ock

SYMLINK create a synbolic link to a file

SYNC update a file system

TIME get the systemtine

TI MES get the process tines

ULIMT get and set process limts

UVASK get and set a file-creation-node mask

UNAME, UNAMEX get the name of the current operating system
UNLI NK del ete a directory entry

USRI NFO get and set user information

USTAT get file-systeminfornmation

UTI ME set the file tines

UTI MES set the file tines

WAIT, WALT3 wait for a child process to terninate

WRITE, WRITEX wite to a file

WRI TEV wite output frommultiple buffers

| Copyright IBM Corp. 1985, 1989
20-3

VS/AIX Interface Library
ACCEPT accept a connection to a socket

2.1 ACCEPT accept a connection to a socket

Description
The ACCEPT systemcall extracts the first connection fromthe queue of

pendi ng connections, creates a new connection with the sanme properties as

s, and allocates a new file descriptor to that socket.
Synt ax
+--- Pascal ---------------ooooo oo e

I
I
| p_accept (s, addr, addrlen)
|
I

Par anet ers

S
is the descriptor of a socket that was created with a SOCKET system
call, was bound to an address with a BIND systemcall, and is
"listening" for connections after a LI STEN system call.

O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER
addr, ADDR1, ADDR2

are result paraneters that receive the address of the connecting
entity as it is known to the conmuni cations |layer. The exact fornmat

of addr is determi ned by the domain in which the comunication occurs.

O In Pascal, addr is of type sockaddrptr (declared in the include
file ailtypes.inc).

O In FORTRAN, addrl is of type |INTEGER and corresponds to
sockaddr.sa_famly in Pascal .

O In FORTRAN, addr2 is of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.

addr | en
initially contains the anmount of space pointed to by the "addr"
paraneters. On return, it contains the actual length of the address
returned.

0 In Pascal, addrlen is of type integer.
O In FORTRAN, addrlen is of type | NTEGER
Ret urn Val ues

The val ue returned upon successful conpletion of the call is the
nonnegati ve socket-descriptor of the accepted socket. The value -1 is

| Copyright IBM Corp. 1985, 1989
21-1

VS/AIX Interface Library
ACCEPT accept a connection to a socket

returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the ACCEPT
systemroutine, which in these exanples receives in the variable "green”
t he nonnegative socket-descriptor of the accepted socket.

Pascal

procedure accept 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

addrlen, s, green : integer;

addr : sockaddrptr;

% ncl ude /usr/include/aildefs.inc

begin
new (addr);
s .= p_socket (PF_UN X, SOCK_STREAM 0);
if (s =-1) then showerror;
addrlen := 20;
green := p_accept (s, addr, addrlen);
witeln ('Accept returned: ', green : 2);
if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE ACCEPT1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FACCEPT, FSOCKET, ADDR1l, S, CREEN
CHARACTER* 14 ADDR2

S = FSOCKET (PFUNI X, SKSTRM 0)

IF (S .EQ -1) CALL ERRORS

GREEN = FACCEPT (S, ADDR1, ADDR2, 20)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
21-2

VS/AIX Interface Library
ACCESS check file accessibility

2.2 ACCESS check file accessibility

Description

The ACCESS systemcall checks a file's accessibility against a specified
access node.

Synt ax

+--- Pascal --------------oooooo oo e +

p_access (path, anode);

g +
+= oo FFORTRAN = = == === cccccccooooomeeaseeeecnannnnnnnnnncaaaanannanaaaaens +
I I
1 |
I FACCESS (PATH, AMODE) !
I I
I I
1 |
g +

Par anet ers

pat h
is the nane of the file to be checked.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

anode
is the access node of the file specified by path. The paraneter val ue
is that of one of the parameter options or is constructed fromtwo or
nore of those options by logical ORing. The options are defined as
constants in the Pascal and FORTRAN constants include files.

F XK searches for a file

X_ K tests for execute perm ssion
W K tests for wite perm ssion

R K tests for read perm ssion

Note: In FORTRAN, the underscore is omtted (for exanple, "FOXK").

Not e: Specifying access node 0 (zero) tests whether the directories
leading to a file can be searched and whether the file exists.

O In Pascal, anode is a variable or constant of type integer.
O In FORTRAN, anode is a variable or constant of type | NTEGER
Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

| Copyright IBM Corp. 1985, 1989
22-1

VS/AIX Interface Library
ACCESS check file accessibility

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the ACCESS

systemroutine. The accessibility of the file specified by path ("blue")
is tested. The specified file is found and tested for execution, wite,
and read permnissions as specified by the ORed value 7, defined in the
variable "red".

Pascal

procedure accessl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green, red : integer;

bl ue : st80;

% ncl ude /usr/include/aildefs.inc

begin
red := XK + WK + RX
blue :="'"/tmp/nyfile';
green : = p_access (blue, red);
witeln (green);
end,
FORTRAN

SUBRQUTI NE ACCESS1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FACCESS, GREEN, RED
CHARACTER* 80 BLUE

RED = XOK + WK + ROK

BLUE = "/tnp/ nyfile

GREEN = FACCESS (BLUE, RED)

PRI NT *, GREEN

END

| Copyright IBM Corp. 1985, 1989
22-2

VS/AIX Interface Library
ACCT turn process accounting on or off

2.3 ACCT turn process accounting on or off

Description

The ACCT call wites records in a specified "accounting file" whenever a
process is termnated. Records of the term nated process are appended to
t he accounting file.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_acct (path);

+———————

__ +
w0 FORTRAN - - - = = = == = = e o o o e e o o e e oo e e .
I I
I I
| FACCT (PATH) :
| l
I I
I I
o o e o o e o e e e e eeeiaoo-- +

Par anet ers

ath

P is the name of the file to which all accounting records are witten.
Passing the file nane as an argunent in the call activates the
accounting function. Passing a null string turns the accounting
function off.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the ACCT
routine. The accounting function is turned on and the records are
appended to the files specified by path. The return value of the call is
in "blue".

Pascal

procedure acct1l,;

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
23-1

VS/AIX Interface Library
ACCT turn process accounting on or off
type
% ncl ude /usr/include/ailtypes.inc
var
blue : integer;
red : st80;

% ncl ude /usr/include/aildefs.inc

begin
red :="'"/tnp/acct';
blue := p_acct (red);
witeln (blue);
end;
FORTRAN

SUBRQUTI NE ACCT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FACCT, BLUE

CHARACTER*80 RED

RED = '/tnp/acct '

BLUE = FACCT (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
23-2

VS/AIX Interface Library
ADJTIME synchronize the system clock

2.4 ADJTI ME synchroni ze the system cl ock

Description

The ADJTI ME system call nakes small adjustnments to the systemtine (as
returned by the GETTI MEOFDAY call), advancing or slowing it by a specified
anmount .

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_adjtinme (delta, olddelta);

+———————

__ +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! FADJTIME (DELTA, OLDDELTA) !
| I
I I
1 |
g +

Par anet ers

delta
specifies the ambunt of time (in seconds and m croseconds) by which
the systemtine is to be adjusted. |[If the value specified is

negati ve, the systemclock is slowed down by advancing the tine at
| ess than the normal rate until synchronization is achieved.

O In Pascal, delta is of type tineval.
O In FORTRAN delta is an array containing two el enents of type
| NTEGER.
ol ddel t a

returns the nunber of seconds and microseconds to adjust the tinme from
the earlier call.

O In Pascal, olddelta is of type tineval.
O In FORTRAN olddelta is an array containing two elenments of type
| NTEGER.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the ADJTI ME
systemroutine.

| Copyright IBM Corp. 1985, 1989
24-1

VS/AIX Interface Library
ADJTIME synchronize the system clock

Pascal

procedure adjtinel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

delta, olddelta : tineval

% ncl ude /usr/include/aildefs.inc

begin
delta.tv_sec := 20;
delta.tv_usec := 30;
green := p_adjtine (delta, olddelta);

witeln ("Adjtine returned: ', green: 2),

if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE ADJTI ME1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FADJTI ME, DELTA(2), OLDDELTA(2), GREEN
DELTA(1) = 20
DELTA(2) = 30
GREEN = FADJTI ME (DELTA, OLDDELTA)
IF (GREEN . EQ -1) THEN
PRINT *, ' ADJTI ME: ERRCR

CALL ERRORS
ELSE

PRINT *, "ADJTI ME: OK
ENDI F
END

| Copyright IBM Corp. 1985, 1989
24-2

VS/AIX Interface Library
ALARM schedule an alarm signal

2.5 ALARM schedul e an al ar m si gnal

Description
The ALARM systemcall sends a SI GALARM signal to the calling process in a
speci fied nunmber of seconds. |In effect, it sets an "alarm clock. Unless

caught or ignored, the signal term nates the calling process.
Synt ax
+--- Pascal --------------oooooo oo e +

I
i p_al arm (sec);
|
I

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
' FALARM (SEC) !
| I
I I
1 |
g +

Par anet er s

sec
i s the nunmber of seconds before the alarmsignal is sent to the
calling process (see Notes at the end of this section).
O In Pascal, sec is of type usign.

O In FORTRAN, sec is of type |INTEGER

Ret urn Val ues

The return value of this call is the amount of clock tinme remaining from
the previous ALARM call. The return value is the amount of tine that
previously remained on the alarmclock of the calling process before it
is reset to the newtinme (see Notes).

0 In Pascal, the return value is of type usign

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the ALARM
systemroutine, which in these exanples instructs the alarmclock to
signal the calling process after 100 seconds have el apsed.

Pascal

procedure al arnt,;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, red : usign;

| Copyright IBM Corp. 1985, 1989
25-1

VS/AIX Interface Library
ALARM schedule an alarm signal

% ncl ude /usr/include/aildefs.inc

begin
red : = 100;
blue := p_alarm (red);
witeln (blue);
end;
FORTRAN

SUBROUTI NE ALARML

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FALARM BLUE, RED

RED = 100

BLUE = FALARM (RED)

PRI NT *, BLUE

END

Not es

Because Pascal and FORTRAN lack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter val ues of type
usign that fall in the range

2 147 483 648 through 4 294 067 295

To use a paraneter value in this range, subtract 4 294 067 296 fromt hat
val ue before issuing the call (the result will always be negative).

| Copyright IBM Corp. 1985, 1989
25-2

VS/AIX Interface Library
BIND bind a name to a socket

2.6 BIND bind a nane to a socket

Description
The BIND system call assigns a nane to a socket.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_bind (s, name, nanel en)

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
' FBIND (S, FAMLY, NAME, NAMELEN) !
I I
| :
1 |
g +

Par anet ers

S
is the descriptor of a socket that was created with a SOCKET system
call.

O In Pascal, s is of type integer.
O In FORTRAN, s is of type INTEGER, corresponding to
sockaddr.sa _fam Iyt in Pascal.

name
is a unique nane to be assigned to the socket.

O In Pascal, nanme is of type sockaddrptr (declared in the include
file ailtypes.inc).

O In FORTRAN, nanme is of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.

famly
is the address fanmily specified in the SOCKET system call.

O Used only in FORTRAN, family is of type INTEGER and corresponds to
sockaddr.sa_famly in Pascal .
nanel en

is the length of the nane paraneter. On return, it contains the
actual length of the address returned.

O In Pascal, nanelen is of type integer.
O In FORTRAN, nanelen is of type |NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value

-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

| Copyright IBM Corp. 1985, 1989
26-1

VS/AIX Interface Library
BIND bind a name to a socket

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the BIND
systemroutine, which in these exanples assigns the nane 'socket' to
socket descriptor "s".

Pascal

procedure bindl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

nanel en, s, green : integer

nanme : sockaddrptr
% nclude /usr/include/aildefs.inc
begin

new (nane)
s := p_socket (PF_UN X, SOCK STREAM 0);

if (s =-1) then showerror;
name”. sa _data := 'socket';
nanme”. sa_famly := PF_UN X;
nanel en : = 10;
green := p_bind (s, nane, nanelen);
witeln ('Bind returned: ', green : 2);
if (green = -1) then showerror;
green : = p_unlink(name);
end,
FORTRAN

SUBRQOUTI NE BI ND1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FBI ND, FSOCKET, FUNLINK, S, CGREEN
CHARACTER* 14 NAME

S = FSOCKET (PFUNI X, SKSTRM 0)

IF (S .EQ -1) CALL ERRORS

NAME = ' SOCKET '

GREEN = FBIND (S, PFUNI X, NAME, 10)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

GREEN = FUNLI NK (NAME)

END

Not es

Sockets in the AF_UN X address fam |y create a nane in the file system
nane space that nust be deleted by the calling process (using UNLINK) when
it is no |onger needed.

| Copyright IBM Corp. 1985, 1989
26-2

VS/AIX Interface Library
BRK, SBRK change data-segment space allocation

2.7 BRK, SBRK change dat a- segnent space allocation

Description

The BRK and SBRK system calls dynam cally change the ambunt of space
all ocated to the data segnment of the calling process.

The BRK systemcall sets the breakpoint value to that specified in the
call and changes the space allocation accordingly.

The SBRK systemcall adds to the breakpoint val ue the nunber of bytes
specified in the call and changes the space all ocation accordingly.

Synt ax
+--- Pascal ---------------ooooo oo +
p_brk (endds);

p_sbrk (incr);

o ———————

__ +
- FORTRAN == - - - - - mmmmmmmmm o oo m oo o oo oo o-- - +
I I
I I
! FBRK (ENDDS) :
I I
I I
: FSBRK (1 NCR) |
| l
I I
I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
Par anet er s
endds
is used only with the BRK call. It specifies the new breakpoint that
is to be set.
O In Pascal, endds is of type integer.
O In FORTRAN, endds is of type | NTEGER
i ncr
is used only with the SBRK call. It specifies the nunber of bytes to
be added to or subtracted fromthe space allocated to the program data
segnent .
O In Pascal, incr is of type integer.

0 In FORTRAN, incr is of type | NTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the BRK call.

The previous break value is returned upon successful conpletion of the
SBRK cal |

The value -1 is returned and an error code set in errno if either cal
fails.

| Copyright IBM Corp. 1985, 1989
27-1

VS/AIX Interface Library
BRK, SBRK change data-segment space allocation

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow issue an SBRK

systemcall to add 1000 bytes to the data segnent of the calling program
The return value is in the variable "blue".

Pascal

procedure sbhrkl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red : = 1000;
blue := p_sbrk (red);
witeln (blue);

end;

FORTRAN

SUBRQUTI NE SBRK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSBRK, BLUE, RED

RED = 1000

BLUE = FSBRK (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.7-2

VS/AIX Interface Library
CHDIR change the current directory

2.8 CHDIR change the current directory

Description
The CHDIR systemcall replaces the current working directory with the
directory specified in the call. The current working directory is the

starting point for searches when "/" is not specified.
Synt ax
+--- Pascal --------------oooooo oo e +

p_chdir (path);

ﬂ
Q
g
Py
0
>
s

Par anmet ers

pat h
is the nane of the directory that becones the current working
directory when the call is issued. Assigning "dot dot" (..) to this
vari abl e specifies the parent of the current directory.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Return Val ues
The value O is returned when the directory is changed. The value -1 is
returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the CHD R
systemroutine. The directory specified in the call is /usr/ganes, which
becones the current working directory. The return value of the call is in
the variable "folio". Wen the calling programterm nates, the directory
fromwhich that program was executed once again becones the current
wor ki ng directory.

Pascal

procedure chdirl

const
% ncl ude /usr/include/ail pconsts.inc

type

| Copyright IBM Corp. 1985, 1989
28-1

VS/AIX Interface Library
CHDIR change the current directory
% ncl ude /usr/include/ailtypes.inc
var
folio : integer,;
red : st80;

% ncl ude /usr/include/aildefs.inc

begin
red :="'/usr/games';
folio := p_chdir (red);
witeln (folio);

end,

FORTRAN

SUBROUTI NE CHDI R1

I NCLUDE (/usr/include/ailfconsts.inc)
I NTEGER FCHDIR, FCLIO

CHARACTER*80 RED

RED = '/usr/ganes '

FOLI O = FCHDI R (RED)

PRI NT *, FOLI O

END

| Copyright IBM Corp. 1985, 1989
28-2

VS/AIX Interface Library
CHHIDDEN convert a hidden or normal directory

2.9 CHHI DDEN convert a hidden or normal directory

Description

The CHHI DDEN systemcall allows a super-user to convert a normal directory
to a hidden one and vice versa.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal ---------------oooooo oo e +

p_chhi dden (dirname, hideflag);

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! FCHHI DDEN (DI RNAVE, Hi DEFLAG) !
| I
I I
1 |
g +

Par anet ers

di r nane
is the name of the directory to be convert ed.

O In Pascal, dirnane is a string variable or constant of type st80.

O In FORTRAN, dirnane is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

hi def | ag
determ nes the "direction" of the conversion. A nonzero val ue
converts a normal directory to a hidden one. The value O converts a
hi dden directory to a nornal one.

O In Pascal, hideflag is of type integer.
0 In FORTRAN, hideflag is of type | NTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the CHH DDEN
systemroutine, which in these exanples nmakes the directory

/bushel /1'ight/hide a hidden directory (by adding an '@ at the end of the
directory nane). Upon successful completion of the systemcall, the
directory is nmade "unhi dden" by calling CHH DDEN again, w th hideflag set
to O.

| Copyright IBM Corp. 1985, 1989
29-1

Pascal

VS/AIX Interface Library
CHHIDDEN convert a hidden or normal directory

procedure chhi ddenl

const

% ncl ude/ usr/incl ude/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

pl : st80;

% ncl ude /usr/include/aildefs.inc

begin
pl := '/bushel/light/hide
green := p_nkdir (pl, 128),;
green := p_chhidden (pl, 5);
witeln ('Chhidden returned: ', green : 2);
if (green = -1) then showerror;
green := p_chhidden (pl, 0);
end,
FORTRAN

SUBROUTI NE CHHI DDEN1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCHHI DDEN, FMKDI R, GREEN

P1 = 'bushel /light/hide

GREEN = FMKDI R (P1, 128)

GREEN = FCHHI DDEN (P1, 5)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

GREEN = FCHHI DDEN (P1, 0)

END

| Copyright IBM Corp. 1985, 1989

29-2

VS/AIX Interface Library
CHMOD change file-access permissions

2.10 CHMOD change fil e-access perni ssions

Description
The CHVOD system call changes the access perm ssions, or access node, Of
specified file.

Note: Only the owner of a file and the super-user can change the access
node of that file.

Synt ax
+--- Pascal --------------ooooo oo e

p_chnod (path, node);

Par anet ers

pat h
is the name of the file whose access npde is being changed.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

node
is the new access node for the file specified by path. The paraneter
value is either one of the parameter options shown here or it is
constructed by logically ORing two or nore of those options. The
options are defined as constants in the Pascal and FORTRAN constants
include files (Appendi x B)

Const ant Access Attribute

| SU D set user | D on execution

I SG@ D set group I D on execution

| SVTX save text imge after execution

ENFMT enabl es enforcenent node record | ocking

| RUSR read by owner

| WUSR wite by owner

| XUSR execute file (or search directory) by owner

| Copyright IBM Corp. 1985, 1989
210-1

Q

VS/AIX Interface Library
CHMOD change file-access permissions

| RGRP read by group

| WGRP wite by group

| XGRP execute by group

| ROTH read by others

| WOTH wite by others

| XOTH execute by others

O In Pascal, npde is of type integer.

O In FORTRAN, node is of type | NTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the CHMOD
systemroutine, which in these exanpl es changes the access node of
"anyfile" to "read by others," specified by the attribute | ROTH of the
node paraneter ("red"). The file affected is assunmed to be a valid file
owned by the issuer of the call

Pascal

procedure chnodl

const

% ncl ude/ usr/incl ude/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

green : st80;

% ncl ude /usr/include/aildefs.inc

begin
red : = | ROTH
green := "anyfile';

blue := p_chnod ("anyfile', red);
witeln (blue);
end;

FORTRAN
SUBROUTI NE CHMOD1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCHMOD, BLUE, RED

| Copyright IBM Corp. 1985, 1989
210-2

VS/AIX Interface Library
CHMOD change file-access permissions
CHARACTER* 80 GREEN
RED = | ROTH
GREEN = 'anyfile '
BLUE = FCHMOD (GREEN, RED)
PRI NT *, BLUE
END

| Copyright IBM Corp. 1985, 1989
2.10-3

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

2. 11 CHOMWN, CHOMNX change ownership of a file

Description

The CHOM and CHOMX system calls change the ownership of a specified file
by changi ng the user and group IDs. The CHOMX systemcall, however, can
specify that one of the IDs remai n unchanged.

Note: Only the owner of a file and the super-user can use these system
calls to change the ownership of that file.

Synt ax
+--- Pascal ---------------ooooo oo +

p_chown (path, owner, group);

p_chownx (path, owner, group, tflag);

o ——————

__ +
+o oo FFORTRAN = = = = === cccccccooooooeasseeeeeeaaaaaaaaannnoaaaaaannanaaaaens +
I I
1 |
| FCHOMN (PATH, OANER, GROUP) !
I I
1 |
| FCHOWNX (PATH, OANER GROUP, TFLAG !
I I
I I
1 |
g +

Par anmet ers

pat h
is the name of the file whose owner and group I Ds are bei ng changed.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

owner
is the user ID of the new owner of the file specified by path.

O In Pascal, owner is of type integer

O In FORTRAN, owner is of type | NTEGER

group
is the group ID of the new owner of the file specified by path.

O In Pascal, group is of type integer.
O In FORTRAN, group is of type | NTEGER

tflag
is a variable or constant, used only in the CHOMX call, that
specifies which of the two IDs is to remain unchanged. The options
are defined in the Pascal and FORTRAN constants include files.

| Copyright IBM Corp. 1985, 1989
211-1

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

T OMNER AS IS ignores the ID specified in the owner paraneter
T GROUP_AS IS ignores the ID specified in the group paraneter.

Note: |In FORTRAN, the underscore is omtted (for
exanmpl e, "TOANNERASI S").

O In Pascal, tflag is of type integer.
U In FORTRAN, tflag is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the CHOM
systemroutine, which in these exanpl es assigns the ownership of "nyfile"
to the owner of root. The file affected is assuned to be a valid file
owned by the issuer of the call

Pascal

procedure chownl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

yel l ow : st80
% ncl ude /usr/include/aildefs.inc

begin
red := 0;
green : = 0;
yellow := "nyfile';
blue := p_chown ('nyfile', red, green);
witeln (blue);

end,

FORTRAN

SUBROUTI NE CHOWN1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCHOWN, BLUE, GREEN, RED
CHARACTER*80 YELLOW

RED = 0

GREEN = 0

YELLOW = "nyfile '

BLUE = FCHOM (YELLOW RED, GREEN)
PRI NT *, BLUE

| Copyright IBM Corp. 1985, 1989
211-2

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

END

| Copyright IBM Corp. 1985, 1989
211-3

VS/AIX Interface Library
CHROOT change the root directory

2.12 CHROOT change the root directory

Description

The CHROOT systemcall changes a specified directory to the effective root
directory (the starting point when searching for pathnames that begin with
")

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_chroot (path);

+———————

__ +
=== FORTRAN = - == == = == = = s = s o s e o s e oo +
I I
I I
! FCHROOT (PATH) !
| I
I I
I I
g +

Par anet ers

pat h
is the name of the directory that will be used as the honme directory
for file names beginning with "/".

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the CHROOT
systemroutine, which in these exanples nmakes /usr/include the effective
root directory for the |ife of the calling process.

Pascal

procedure chroot1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

| Copyright IBM Corp. 1985, 1989
212-1

VS/AIX Interface Library
CHROOT change the root directory
red : integer,
bl ue : st80;

% ncl ude /usr/include/aildefs.inc

begin
blue := "/usr/include';
red := p_chroot (blue);
witeln (red);

end;

FORTRAN

SUBROUTI NE CHROOT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCHROOT, RED

CHARACTER*80 BLUE

BLUE = '/usr/include '

RED = FCHROOT (BLUE)

PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
212-2

VS/AIX Interface Library
CLOSE close a file

2.13 CLCSE close a file

Description
The CLOSE systemcall closes a specified file.

Synt ax
+--- Pascal --------------oooooo oo e +

p_close (fildes);

Par anet ers

fildes
is a descriptor returned by a CREAT, DUP, DUP2, FCNTL, OPEN, or PIPE
systemcal | .
O In Pascal, fildes is of type integer.

O In FORTRAN, fildes is of type | NTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the OPEN and
CLCSE systemroutines. The OPEN call returns a file descriptor in the
variable "red". This descriptor is used to close the same file.

Pascal

procedure cl osel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/tnp/anyfile', RDONLY, O0);
blue := p_close (red);

| Copyright IBM Corp. 1985, 1989
213-1

VS/AIX Interface Library
CLOSE close a file

witeln (blue);

end;

FORTRAN

SUBROUTI NE CLOSE1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FCLOSE, FOPEN, BLUE, RED

RED = FOPEN ('/tmp/anyfile ', RDONLY, O0)
BLUE = FCLCOSE (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
213-2

VS/AIX Interface Library
CONNECT initiate a connection to a socket

2.14 CONNECT initiate a connection to a socket

Description

The CONNECT system call nakes a connection to a specified "peer" socket if
that socket is of type SOCK DGRAM |If the socket is of type SOCK_STREAM
then this systemcall attenpts to make a connection to another socket.
Synt ax

+--- Pascal --------------oooooo oo e +

p_connect (s, nane, nanel en)

I
I
| FCONNECT (S, NAVEL, NAME2, NAMELEN)
I
|
I

Par anmet ers

S
is the descriptor of a socket that was created with a SOCKET system
call.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type |INTEGER
name
specifies the socket to which a connection is to be nade. Each
communi cati on space interprets this paraneter in its own way.
O In Pascal, nanme is of type sockaddrptr (declared in the include
file ailtypes.inc).
O In FORTRAN, nanel is of type |INTECGER and corresponds to
sockaddr.sa_famly in Pascal .
O In FORTRAN, nanme2 is of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.
nanel en

is the length of the nanme paraneter.

O In Pascal, nanelen is of type integer.

O In FORTRAN, nanelen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
214 -1

VS/AIX Interface Library
CONNECT initiate a connection to a socket

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the CONNECT
systemroutine, which in these exanpl es connects "s" and "sl1". Socket "s"
of type SOCK_DGRAM is created with a SOCKET systemcall. Another socket

"sl1l" has been created and then bound to nane "socket"™ with a Bl ND system
cal I.

Pascal

procedure connect 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

nanel en, s, sl, green : integer

nane : sockaddrptr;
% nclude /usr/include/aildefs.inc
begin

new (namne);
s .= p_socket (PF_UN X, SCCK DGRAM 0);

if (s =-1) then showerror;
sl := p_socket (PF_UNI X, SOCK_DGRAM 0);
nanme”. sa_famly := PF_UN X;
name”. sa _data : = 'socket';
nanel en : = 16;
green := p_bind (s1, name, nanel en);
green : = p_connect (s, name, nanelen);
witeln ('Connect returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE CONNECT1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FCONNECT, FBI ND, FSOCKET, NAMEl, S, GREEN, S1
CHARACTER* 14 NAME2

S = FSOCKET (PFUNI X, SKDGRAM 0)

S1 = FSOCKET (PFUN X, SKDGRAM 0)

NAVE2 = ' SOCKET '

NAMEL = PFUNI X

GREEN = FBIND (S1, NAMEL, NAME2, 16)
GREEN = FCONNECT (S, NAMEL, NAME2, 16)

PRI NT *, GREEN
IF (GREEN . EQ -1) CALL ERRORS
END

| Copyright IBM Corp. 1985, 1989
214 -2

VS/AIX Interface Library
CREAT create a new file

2.15 CREAT create a new file

Description

The CREAT systemcall creates a new file or calls up an existing file in
preparation for rewiting.

Synt ax

+--- Pascal --------------oooooo oo e +

p_creat (path, node);

Par anet ers

pat h
is the name of the file being created or rewitten.

O In Pascal, path is a string variable or constant of type st80.
O In FORTRAN, path is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

node
is the access node of the file being created or rewitten. (For a
l'ist of nodes see CHVMOD on page 2.10.)
O In Pascal, npode is of type integer.
O In FORTRAN, node is of type | NTEGER

Ret urn Val ues

The return value is the file descriptor of the file created. The value -1
is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the CREAT
systemroutine. The variable "green" defines the path paraneter. The
Pascal and FORTRAN constants include files contain definitions of
constants for the nodes available in CREAT. File /tnp/test.1 is given
owner read permnissions as specified by the variable "red".

Pascal

| Copyright IBM Corp. 1985, 1989
215-1

VS/AIX Interface Library
CREAT create a new file

procedure creati;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

green : st80;

% ncl ude /usr/include/aildefs.inc

begin
red : = | READ;
green .= "'/tnp/test.1";
blue := p_creat (green, red);
witeln (blue);
end,
FORTRAN
SUBROUTI NE CREAT1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCREAT, BLUE, RED
CHARACTER*80 GREEN
RED = | READ
GREEN = "/tnp/test. 1
BLUE = FCREAT (GREEN, RED)
END
Not es
For additional information about the CREAT system call,

refer to the unask

command in Al X Operating System Conmands Reference, which explains the
interaction between the current-file-creation mask and the node paraneter.

| Copyright IBM Corp. 1985, 1989
215-2

VS/AIX Interface Library
DISCLAIM "disclaim” the contents of an area of memory

2.16 DI SCLAI M "disclaint the contents of an area of nenory

Description

The DI SCLAI M system call marks an area of nmenory as containing data that
is no |onger needed. This systemcall cannot be used on nenory that has
been mapped to a file by the SHVAT system cal l

Synt ax

+--- Pascal ---------------o-ooo oo e +

I
I
p_disclaim (addr, |ength, flag) |
|
I

o m o o o o o m e e e e e o e o e o e e e o eemamao-- +
+--- Pascal external function definition -------------------------------- +
I I
I I
| p_disclaim(addr: nmenptr; length, flag : usign) : integer; i
| ext ernal ; |
| l
I I
I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
R = O 4 I 2 B +

Par anmet ers

addr
points to the beginning of the nenory area to be discl ai nmed.

O In Pascal, addr is a pointer of type nmenptr (nenptr is a pointer
to a user-defined area of any data type.

O In FORTRAN, addr is a user-defined area of any type.

| engt h
specifies the nunber of bytes of nenory to be disclained.

O In Pascal, length is of type usign.
O In FORTRAN, length is of type | NTEGER

flag
specifies that each nenory location in the address range is to be set
to 0 (zero). This flag nust have the val ue specified by ZERO MEM
(ZEROVEM i n FORTRAN) .

O In Pascal, flag is of type integer.
O In FORTRAN, flag is of type | NTEGER
Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

| Copyright IBM Corp. 1985, 1989
216-1

VS/AIX Interface Library
DISCLAIM "disclaim” the contents of an area of memory

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the D SCLAIM
systemroutine, which in these exanples disclains the content of 10 bytes
of nmenory in a character array ("yellow' or "ADDR'), and in effect frees
t hat anmount of nenory for other use.

Pascal

procedure discl ai ni,;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
nyaray = packed array[1l..10] of char;

nmyptr = @vyaray;
var

i : integer;

yellow : nyptr;

% ncl ude /usr/include/aildefs.inc

function p_disclaim(addr : nyptr; length, flag : usign)
i nt eger; external

begin
new(yel | ow) ;
green := p_disclaim(yellow 10, ZERO MEM;
witeln ("Disclaimreturned: ', green : 2);
if (green = -1) then showerror;
end;
FORTRAN

SUBRQOUTI NE DI SCLAI ML

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FDI SCLAIM GREEN

CHARACTER* 80 ADDR

GREEN = FDI SCLAI M (ADDR, 10, ZEROVEM
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

Not es

Because Pascal and FORTRAN |l ack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter val ues of type
usign that fall in the range

2 147 483 648 through 4 294 067 295

To use a paraneter value in this range, subtract 4 294 067 296 fromt hat
val ue before issuing the call (the result will always be negative).

| Copyright IBM Corp. 1985, 1989
2.16-2

VS/AIX Interface Library
DUP, DUP2 return a second file-descriptor

2.17 DUP, DUP2 return a second fil e-descriptor

Description

The DUP and DUP2 systemcalls create a second descriptor for a specified
open file.

0 The DUP systemcall returns a new file descriptor for the specified
file.

0 The DUP2 systemcall returns a new file descriptor in one of the
par anmet ers.

The descriptor that is to be "duplicated" must be an existing descriptor

returned by a CREAT, DUP, DUP2, FCNTL, OPEN, PIPE, SOCKET, or SOCKETPAIR
systemcall. The new file descriptor is synonynous with the existing one
(that is, the new descriptor points to the same file).

Synt ax

+--- Pascal ----------mmmmm e e e

p_dup (fildes);

p_dup2 (ol dfd, newfd);

o ————————

FDUP (FI LDES)

FDUP2 (OLDFD, NEWED)

Par anet ers

fildes
is the file descriptor to be duplicated by the DUP systemcall.

O In Pascal, fildes is of type integer.

O In FORTRAN, fildes of type | NTEGER

is the file descriptor to be duplicated by the DUP2 system call.
O In Pascal, oldfd is of type integer.

0 In FORTRAN, ol dfd of type | NTEGER

is the new fil e-descriptor generated by the DUP2 systemcall.
O In Pascal, newfd is of type integer.

O In FORTRAN, newfd of type | NTEGER

| Copyright IBM Corp. 1985, 1989
217-1

VS/AIX Interface Library
DUP, DUP2 return a second file-descriptor

Ret ur n Val ues

The return value is the new file-descriptor. The value -1 is returned and
an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that foll ow make calls to the
DUP systemroutine, which returns a file descriptor in the variable
"blue". The Pascal and FORTRAN constants include files contain

definitions of constants for the nodes avail able in OPEN.

Pascal

procedure dupil;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/usr/include/ailtypes.inc', RDONLY, O0);
blue := p_dup (red);
witeln (blue);

end;

FORTRAN

SUBROUTI NE DUP1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FDUP, FOPEN, BLUE, RED

RED = FOPEN (' /usr/include/ailtypes.inc ', RDONLY, 0)
BLUE = FDUP (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
217-2

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

2.18 EXECL, EXECLE, EXECLP execute a program

Description

The EXEC systemcall, in all its forms, executes a new programin the
calling process. The call does not create a new process but overlays the
current programw th a new one.

The three EXEC calls described in this section pass a maxi num of four
argunents to a specified executable file. This restriction on the nunber
of argunents is what distinguishes these three systemcalls fromthose
described in the next section.

The EXECLE call differs fromthe other two in having an envp paraneter.
The EXECLP call is issued with the sane argunments as EXECL, but it
duplicates the shell actions in searching for an executable file in a |list
of directories.

Synt ax

+--- Pascal --------------ooooooe oo +
p_execl (path, arg0O, argl, arg2, arg3);

p_execle (path, arg0, argl, arg2, arg3, envp); |

p_execlp (filenm arg0, argl, arg2, arg3); |

o

__ +
== FORTRAN - - == === === = = m = mmm e e oo e e et e +
I I
1 |
| FEXECL (PATH, AR®, ARGL, AR®, ARG3) !
I I
1 |
| FEXECLE (PATH, ARGD, ARGL, AR®, ARG3, ENVP) !
I I
1 |
| FEXECLP (FILENM AR, ARGL, AR®, ARG3) !
| |
1 |
g +

Par anmet ers

pat h
is the explicit path (location) of the file to be executed. This
paranmeter is used in the EXECL and EXECLE calls.

O In Pascal, path is of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string must be a
bl ank space.

filenm
is the name of the file to be executed. This paraneter is used in the
EXECLP call, which will search for the specified file only in the
current and default directories.

O In Pascal, filenmis of type st80.

| Copyright IBM Corp. 1985, 1989
218 -1

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

O In FORTRAN, filenmis a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

arg0, argl, arg2, and arg3
are string variables or constants. They hold the argunents to be
passed to the file specified by filenmor path. The value of arg0
nmust be filenmor the last attribute of path.

O In Pascal, each arg is of type st80. |If fewer than four argunents
are required, the remaining strings nmust be nil strings.

O In FORTRAN, each arg is a string variable or constant of type
CHARACTER*80. The term nating character of the string must be a
bl ank space. |If fewer than four argunents are required, the

remai ni ng strings nust each contain one, and only one, blank

envp
is a paraneter used only in EXECLE (and EXECVE, see next section). It
is an 80-elenent array that holds the attributes of the execution
environment of the calling process. Each elenent is an 80-byte
character string.

O In Pascal, envp is a variable of type pasargv. The term nating
string in the array nust be a nil string.

O In FORTRAN, envp is an array of strings of type CHARACTER*80. The
term nating character of a string nust be a blank space. The

termnating string in the array nust contain one, and only one,
bl ank.

Note: For details of this paraneter, see the sh command in Al X
Operating System Commands Ref erence.

Ret urn Val ues

There is no return value froma successful EXEC call. The value -1 is
returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the

EXECL systemroutine, which prints the current date.

Pascal

procedure execl 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

merlin : integer;

arg0, argl, arg2, arg3, path : st80;

| Copyright IBM Corp. 1985, 1989
2.18-2

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

% ncl ude /usr/include/aildefs.inc

begin
path := '/bin/sh';
arg0 := 'sh';
argl :="'-c¢';
arg2 := 'date';
arg3 :="'";

merlin := b_execl (path, arg0O, argl, arg2, arg3)
end;

FORTRAN

SUBROUTI NE EXECL1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FEXECL, MERLI N

CHARACTER*80 AR, ARGl, AR®X, ARG3, PATH

PATH = '/ bin/sh '

ARA = 'sh '’

ARGL = '-c '

ARG = 'date '

ARG ="' '

MERLIN = FEXECL (PATH, AR, ARGl, ARR, ARGR)
END

(*) The EXECV, EXECVE, and EXECVP calls are described in the
next subsection (page 2.19).

| Copyright IBM Corp. 1985, 1989
2.18-3

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

2. 19 EXECV, EXECVE, EXECVP execute a program

Description

The three EXEC systemcalls described in this section can pass a maxi num
of 80 argunents to a specified executable file (in contrast to the naxi mum
of four argunments that can be passed by the EXEC routines described in the
precedi ng section).

The EXECVE call differs fromthe other two in having an envp paraneter.
The EXECVP call is issued with the sane argunments as EXECV, but it
duplicates the shell actions in searching for an executable file in a |ist
of directories.

Synt ax

+--- Pascal --------------o--ooo oo e +
p_execv (path, args);

p_execve (path, args, envp);

p_execvp (filenm args);

FEXECV (PATH, ARGS)
FEXECVE (PATH, ARGS, ENVP)

FEXECVP (FI LENM ARGS)

Par anmet ers

pat h
is the explicit path (location) of the file to be executed. This
paranmeter is used in the EXECVY and EXECVE calls.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

filenm
is the nane of the file to be | oaded and executed. This paraneter is
used in the EXECVP call, which searches for the specified file only in
the current and default directories.

O In Pascal, filenmis a string variable or constant of type st80.
O In FORTRAN, filenmis a string variable or constant of type

CHARACTER*80. The term nating character of the string must be a
bl ank space.

| Copyright IBM Corp. 1985, 1989
219-1

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

args
is an array of strings. It holds any argunents to be passed to the
file specified by filenmor path. The first element of the array
should be filenmor the last attribute of path.

O In Pascal, args is a variable of type pasargv declared in the
ailtypes.inc file. The termnating string nust be a nil string.

O In FORTRAN, args is a string variable or constant of type
CHARACTER*80. The term nating character of a string must be a
bl ank space. The terminating string nust contain one, and only
one, bl ank.

envp
is a paraneter used only in EXECVE (and EXECLE, described in the
precedi ng section). It is an 80-elenent array that holds the
attributes of the execution environment of the calling process. (Each
el ement is an 80-byte character string.)

O In Pascal, envp is a variable of type pasargv, declared in the
types file. The termnating string in the array nust be a ni
string.

O In FORTRAN, envp is an array of strings of type CHARACTER*80. The
term nating character of a string nust be a blank space. The
termnating string in the array nust contain one, and only one,
bl ank space.

0 For details of this paraneter, see the description of the sh
command in &Al X Conmands Ref erence.

Ret ur n Val ues
There is no return value froma successful EXEC call. The value -1 is
returned and an error code set in errno if the call fails.

If EXECVP is called to execute a shell command file and it is inpossible
to execute that file, the values of args[0] and args[1l] are nodified
before the return.

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the EXECV
systemroutine, which will produce a listing of the current working
directory (see Notes).

Pascal

procedure execvpl;

const

% ncl ude /usr/include/ail fconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

merlin : integer;

name : st 80;
args : pasargv;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
219-2

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

begin
nanme : = 'exanp';
args[1] "exanp';
argsf 2] -x';
ar gs[3] -F;
ar gs[4] -ty
ar gs[5] ;
merlin := p_execvp (nane, args)
end;

FORTRAN

SUBROUTI NE EXECVP1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FEXECPV, MERLI N

CHARACTER*80 ARGS(80), NAME

NAME = 'exanp '

ARGS(1) = 'examp '

ARGS(2) ="'-x '

ARGS(3) ="'-F'

ARGS(4) ="'-f '

ARGS(5) =" '

MERLI N = FEXECVP (NAME, ARGS)
END

Not es

The executable file 'exanp' nust be in the current directory before these
exanpl es will work.

| Copyright IBM Corp. 1985, 1989
219-3

VS/AIX Interface Library
EXIT, _EXIT terminate a process

2.20 EXIT, _EXIT term nate a process

Description
The EXIT systemcall is the standard neans of term nating a process.

The EXIT call term nates a process w thout perform ng any of the clean-up
operations performed by the EXIT routine.

Synt ax
+--- Pascal ---------------oooooo oo +
p_exit (status);

p__exit (status);

o ——————-

__ +
-0 FORTRAN - - === === = o = s o m o n e +
I I
I I
! FEXIT (STATUS) !
I I
I I
! FEEXI T (STATUS) !
| I
I I
I I
g +

Par anmet ers

stat us
is the termnation status returned to the parent process.

O In Pascal, status is of type integer.
O In FORTRAN, status is of type | NTEGER

Return Val ues
There is no return value froma successful EXIT or _EXIT call.

Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the EX T,
FORK, and WAI T systemroutines. Both create a child process, which issues
the EXIT call. The parent process executes a WAIT call, and the
paraneter of that call ("green") receives the |ow order eight bits of the
value that the child passes to the EXIT routine. It is this value that is
print ed.

Pascal

procedure exitl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc

var

| Copyright IBM Corp. 1985, 1989
220-1

bl u

VS/AIX Interface Library
EXIT, _EXIT terminate a process

e, green, red, yellow : integer;

% ncl ude /usr/include/aildefs.inc

begin
green := p_fork;
if green = 0 then
blue := p_exit (red);
yellow := p_wait (green);
witeln ('status ', green);
end,
FORTRAN

SUBRQUTI NE EXI T1
I NCLUDE (/usr/include/ailfconsts.inc)

I NTEGER FEXI T, FFORK, FWAIT, BLUE, CREEN,

GREEN = FFORK ()
| F (GREEN .EQ 0) THEN
BLUE = FEXI T (RED)

ENDI F

YELLOW = FWAI T (GREEN)
PRI NT *, ' STATUS ', GREEN

END

| Copyright IBM Corp. 1985, 1989
2.20-2

RED, YELLOW

VS/AIX Interface Library
FABORT abort the changes to a file

2.21 FABORT abort the changes to a file

Description
The FABORT system call cancels data changes nmade to a specified file. The
file nmust be open for wite or read/wite at the tinme the call is made.

If no changes have been made since the file was last witten to storage,
the call has no effect.

Synt ax
+--- Pascal --------------oooooo oo e +

p_fabort (fildes);

Par anmet er s

fil des
is the descriptor of a file that has been opened for wite or
read/ wite.
O In Pascal, fildes is of type integer.

O In FORTRAN, fildes is of type | NTEGER

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the FABORT
systemroutine, which in these exanples cancel s changes nade to the file
fusr/include/junk since the last tinme it was fil ed.

Pascal

procedure fabort1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
221-1

VS/AIX Interface Library
FABORT abort the changes to a file

begin
red := p_open ('/usr/include/junk', WRONLY, O0);
blue := p_fcommt (red);

{ The file can be changed between these two calls }.

green : = p_fabort (red);

witeln (' Fabort returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE FABORT1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FFABORT, FFCOMM T, FOPEN, BLUE, RED, YELLOW
RED = FOPEN ('/usr/include/junk ', WRONLY, O0)

BLUE = FFCOM T (RED)

C THE FI LE CAN BE CHANGED BETWEEN THESE TWO CALLS.

BLUE = FFABORT (RED)

IF (BLUE . EQ -1) PRINT *, 'FABORT: ERROR
IF (BLUE .NE. -1) PRINT *, 'FABORT: X
END

| Copyright IBM Corp. 1985, 1989
221-2

VS/AIX Interface Library
FCLEAR clear space in a file

2.22 FCLEAR clear space in afile

Description

The FCLEAR systemcall clears space (nakes a "hole") in a file by witing
binary zeros to a specified nunber of bytes in that file. This "zeroing"
process begins at the current position of the seek pointer of the file
specified in the call.

Synt ax

+--- Pascal --------mmmmm st i e m e ma oo

I
I
| p_fclear (fildes, nbytes);
I
|
I

Par anmet ers

fil des
is the descriptor of the file in which space is being cleared.

O In Pascal, fildes is of type integer.

O In FORTRAN, fildes is of type | NTEGER

nbyt es
is a constant or a variable specifying the nunber of bytes to be
zeroed. If this nunmber falls within a certain range, the programer
wi Il have to use a conversion formula to obtain the proper value for

nbytes (see Notes).
O In Pascal nbytes is of type usign.
O In FORTRAN nbytes is of type | NTEGER

Return Val ues

The return value is nbytes. |If this value falls within a certain range,
the progranmer will have to use a conversion fornula to obtain the actua
nunber (see Notes).

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the FCLEAR
systemroutine, which overwites the specified open file /tnp/junk with
200 null characters.

Pascal

procedure fclearl

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
222-1

VS/AIX Interface Library
FCLEAR clear space in a file

type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/tnp/junk', WRONLY, 0);
blue := p_fclear (red, 200);
witeln (blue);

end,

FORTRAN
SUBROUTI NE FCLEARL
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFCLEAR, FOPEN, BLUE, RED
RED = FOPEN ('/tnmp/junk ', WRONLY, 0)
BLUE = FFCLEAR (RED, 200)
PRI NT *, BLUE
END

Not es

Because Pascal and FORTRAN |l ack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter val ues of type
usign that fall in the range

2 147 483 648 through 4 294 067 295
To use a paraneter value in this range, subtract 4 294 067 296 fromthe

paraneter value (the result will always be negative) before issuing the
call.

Conversely, if the return value is a negative nunber, add 4 294 067 296 to

t hat nunber to obtain the correct val ue.

| Copyright IBM Corp. 1985, 1989
222-2

VS/AIX Interface Library
FCNTL control an open-file descriptor

2.23 FCNTL control an open-file descriptor

Description

The FCNTL systemcall perforns various control operations on an open-file
descri ptor.

Synt ax

+--- Pascal --------------oooooo oo e +

I
I
p_fcntl (fildes, cnd, arg); l
|
I

o m o o o o o m e e e e e o e o e o e e e o eemamao-- +
+--- Pascal external function declaratios ------------------------------- +
I I
I I
| function p_fcntl (fildes, cnd : int; var arg : integer) : integer; |
| external ; |
: l
: or :
: l
| function p_fcntl (fildes, cnd : int; var arg : flockrec) : integer; |
| external; |
: l
I I
I I
o m o o o o o m e e e e e e e o e o e o e e e e e e e e e e e e o e e e e e e e eema—ao-o +
oo FORTRAN -------mmmmmmmmm oo m oo n oo oooo--o----o- +

Par anet er s

fildes
is a descriptor returned by a CREAT, DUP, DUP2, FCNTL, OPEN, PIPE
SOCKET, or SOCKETPAIR system cal |
O In Pascal, fildes is of type integer.

O In FORTRAN, fildes is of type | NTEGER

cnmd
is a variable or constant specifying the operation to be perforned.
The options are defined as constants in the Pascal and FORTRAN
constants include files.

F DUPFD returns a new file descriptor.

F GETFD returns the value of the close-on-exec flag associated with
the file descriptor fildes.

F SETFD sets the close-on-exec flag associated with fildes to the
value of the |oworder bit of arg.

F_GETFL gets the file status flags of the file descriptor. fildes.

| Copyright IBM Corp. 1985, 1989
2.23-1

VS/AIX Interface Library
FCNTL control an open-file descriptor

F_SETFL sets the file status flags to the value of arg.
F GETLK gets the first blocking file | ock.

F SETLK sets or clears a file |ock.

F SETLKW waits, if necessary, to set or clear a file |ock

F GETOW gets the process ID or process-group ID set to receive
si gnal s.

F SETOMW sets the process ID or process-group ID set to receive
si gnal s.

Note: In FORTRAN, the underscore is omtted (for exanple, "FDUPFD").
O In Pascal, cnd is of type integer.
O In FORTRAN, cnd is of type | NTEGER

arg
vari es according to the cnd paraneter.

O In Pascal, arg is of type integer for all values of cnd except
F_GETLK, F_SETLK, and F_SETLK. For these values, arg is of type
fl ockrec. Possible values for the | _type field are:

F RDLCK = 1
F WRLCK = 2
F_UNLCK = 3

O In FORTRAN, arg is of type integer for all values of cnd except
F_GETLK, F_SETLK, and F_SETLK. For these values, arg is of type
I NT*2 ARG Possible values for arg[1l] are:

FRDLCK = 1
FWRLCK = 2
FUNLCK = 3

Return Val ues
The val ue returned varies according to the command option specified in the
cnd paraneter of the call:

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
FCNTL systemroutine, which in these exanples opens the file
fusr/include/ailtypes.inc for reading and witing. The file descriptor
returned by the OPEN call is used for the fildes paraneter ("blue") in
FCNTL; the cnd paraneter ("red") instructs the systemto return the
file-status flags of the file descriptor. This is the value printed out.

Pascal

procedure fcntl 1;

| Copyright IBM Corp. 1985, 1989
2.23-2

VS/AIX Interface Library
FCNTL control an open-file descriptor

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red, yellow : integer;

% ncl ude /usr/include/aildefs.inc

function p_fcntl (fildes, cnmd : int; var arg : integer) : integer; externa
begin
red := F_CGETFL;
green := 0;
blue := p_open ('/usr/include/ailtypes.inc', 2, 0);
yellow := p_fcntl (blue, red, green);
witeln (yellow;
end,
FORTRAN

SUBROUTI NE FCNTL1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FFCNTL, FOPEN, BLUE, GREEN, RED, YELLOW
RED = FGETFL

GREEN = 0

BLUE = FOPEN (' /usr/include/ailtypes.inc ', 2, 0)
YELLOW = FFCNTL (BLUE, RED, GREEN)

PRI NT *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
2.23-3

VS/AIX Interface Library
FORK create a process

2.24 FORK create a process

Description
The FORK systemcall creates a new process whose nenory inmage is a copy of
the nmenory image of the process that issued the FORK call.

Synt ax

+--- Pascal ---------------ooooo oo e +
I I

I I

| p_fork; |
: l
I I

I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
R = O 4 I N B +
I I

I I

| FFORK () |
: l
I I

I I
o m o o o o o m e e e e e o e o e o e e e o eemamao-- +

Par anet ers

This systemcall has no paraneters.

Ret urn Val ues

Upon successful completion, FORK returns the value O to the child process
and the process ID of the child to the parent. The value -1 is returned
and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the FORK
systemroutine to create a new process. The process ID of the child is
returned to the parent process in the variable "blue", and the value 0 to
the child process. Therefore both 0 and the process ID of the child are
printed out.

Pascal

procedure forkl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
blue := p_fork;
witeln (blue);
end;

| Copyright IBM Corp. 1985, 1989
224 -1

VS/AIX Interface Library
FORK create a process

FORTRAN

SUBRQUTI NE FORK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFORK, BLUE

BLUE = FFORK ()

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
224 -2

VS/AIX Interface Library
FSYNC, FCOMMIT write to permanent storage

2.25 FSYNC, FCOWM T wite to permanent storage

Description

FSYNC and FCOM T are synonymous systemcalls that wite all nodified data
in a specified open file to permanent storage.

Synt ax

+--- Pascal --------------oooooo oo e +

p_fsync (fil des);

p_fcommt (fildes);

FFFSYNC (FI LDES)

FFCOW T (FI LDES)

Par anmet ers

fil des
is the descriptor of an open file.

O In Pascal, fildes is of type integer.
O In FORTRAN, fildes is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
FSYNC system routine, which wites changes in a specified file to

per manent st orage.

Pascal

procedure fsyncl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red, yellow : integer;

| Copyright IBM Corp. 1985, 1989
2.25-1

VS/AIX Interface Library
FSYNC, FCOMMIT write to permanent storage

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/tnp/junk', WRONLY, 0);
blue := p_fsync (red);
witeln (blue);

end;

FORTRAN

SUBROUTI NE FSYNC1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFFSYNC, FOPEN, BLUE, RED
RED = FOPEN ('/tnmp/junk ', WRONLY, 0)
BLUE = FFFSYNC (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.25-2

VS/AIX Interface Library
FTRUNCATE truncate a file

2.26 FTRUNCATE truncate a file

Description

The FTRUNCATE system call counts a specified nunber of bytes fromthe
begi nning of a specified file and then deletes all the remaining bytes.
Synt ax

+--- Pascal --------------oooooo oo e +

I
I
p_ftruncate (fildes, len); i
I
I
I
I

Par anet ers

fil des
is the descriptor of an open file.

O In Pascal, fildes is of type integer.
O In FORTRAN, fildes is of type | NTEGER
I en
is the nunber of bytes to be left in the truncated file, counting from
the first byte. (See Notes.)
O In Pascal, |len is of type usign.
O In FORTRAN, len is of type |NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
FTRUNCATE systemroutine, which in these exanples truncates the file
[tnp/ xxx (assuming that it exists) to a length of 100 bytes as specified
by the |l en paranmeter ("blue").

Pascal

procedure ftruncatel

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
2.26-1

VS/AIX Interface Library
FTRUNCATE truncate a file

type

% ncl ude /usr/include/ailtypes.inc
var

blue, red, yellow : integer;

orange : st 80;

% ncl ude /usr/include/aildefs.inc

begin
orange := "/tnp/ xxx";
bl ue : = 100;
red := p_open (orange, WRONLY, O0);
yellow := p_ftruncate (red, blue);
witeln (yellow;

end;

FORTRAN

SUBROUTI NE FTRUNCATE1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FFTRUNCATE, FOPEN, BLUE, RED, YELLOW
CHARACTER* 80 ORANGE

ORANGE = '/t np/ xxx '

BLUE = 100

RED = FOPEN (orange, WRONLY, O0)

YELLOW = FFTRUNCATE (RED, BLUE)

PRI NT *, YELLOW

END

Not es

Because Pascal and FORTRAN |l ack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter val ues of type
usign that fall in the range

2 147 483 648 through 4 294 067 295

To use a paraneter value in this range, subtract 4 294 067 296 fromt hat
val ue before issuing the call (the result will always be negative).

| Copyright IBM Corp. 1985, 1989
2.26-2

VS/AIX Interface Library
GETDTABLESIZE get the size of a process-descriptor table

2.27 CGETDTABLESI ZE get the size of a process-descriptor table

Description

The GETDTABLESI ZE systemreturns the size of the process-descriptor table,
whi ch has at |east 20 slots for each process. In Al X the value returned
is 200.

Synt ax

+--- Pascal -------mmmmm st ma i ma oo +

p_get dt abl esi ze;

Par anmet ers

This systemcall has no paraneters.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the
GETDTABLESI ZE system routi ne.

Pascal

procedure getdtabl esizel,

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;
begin

green : = p_getdtabl esi ze;

witeln ("tablesize is ', green);

if green = -1 then

witeln (' CGetdtabl esize: ERROR)
el se

witeln ('Getdtabl esize: OK);
end,

| Copyright IBM Corp. 1985, 1989
227-1

The val ue

FORTRAN

VS/AIX Interface Library
GETDTABLESIZE get the size of a process-descriptor table

SUBROUTI NE GETDTABLESI ZE1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FGETDTABLESI ZE, GREEN
GREEN = FGETDTABLESI ZE()
IF (GREEN . EQ -1) THEN
PRI NT *, ' GETDTABLESI ZE: ERROR

CALL ERRORS
ELSE

PRI NT *, ' GETDTABLESI ZE: K
ENDI F
END

| Copyright IBM Corp. 1985, 1989
2.27-2

VS/AIX Interface Library
GETGROUPS get a group access list

2.28 CGETGROUPS get a group access list

Description

The GETGROUPS system call gets the group access list of the current
process and stores it in an array specified in the call.

Synt ax

+--- Pascal --------------oooooo oo e +

p_getgroups (ngrps, gidset);

g +
- == FORTRAN - - - == === = = == mmm m e o e e oo +
I I
1 |
| FGETGROUPS (NGRPS, G DSET) !
I I
I I
1 |
g +

Par anet ers

ngr ps
is the nunmber of entries that can be stored in the array specified by
the gi dset paraneter.

O In Pascal, ngrps is of type integer.
0 In FORTRAN, ngrps is of type I NTEGER

gi dset
is an array in which the requested list items will be put. The
maxi mum nunber of elenents the array may hold is equal to the constant
NGROUP defined in the Pascal and FORTRAN constants include files.

O In Pascal, gidset is of type intngroup. (Getptr is a pointer to a
user-defined integer array.)

O In FORTRAN, gidset is a user-defined array of type | NTEGER

Ret urn Val ues

The val ue returned upon successful conpletion of the call is the nunber of
el enents stored in the group access list. The value -1 is returned and an
error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
GETGROUPS system routine, which in these exanple returns a nunber that is
equal to the nunber of elements in the array specified by the variable
"red".

Pascal

| Copyright IBM Corp. 1985, 1989
2.28-1

VS/AIX Interface Library

GETGROUPS get a group access list

procedure getgroupsi;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
bl ue, green : integer;
red : intngroup;
begin
green : = 20;
blue := p_getgroups (green, red);
witeln (blue);
end,
FORTRAN

SUBRQOUTI NE GETGROUPS1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FGETGROUPS, BLUE, GREEN, RED(20)
GREEN = 20

BLUE = FGETGROUPS (GREEN, RED)
PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.28-2

VS/AIX Interface Library
GETHOSTID get a host ID

2.29 CGETHOSTID get a host ID

Description

The GETHOSTID systemreturns an integer identifier for the current host.
Synt ax

+--- Pascal --------------o-oooo oo +
I I
I I

| p_get hosti d; '
| l
I I

I I
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
oo FORTRAN -------mmmmmmmmmmmm oo oo n oo oooo--o----o- +

ﬂ
.
:
O

Par anet er s
This systemcall has no paraneters.

Ret urn Val ues

The identifier for the current host is returned upon successful conpletion
of the call. The value -1 is returned and an error code set in errno if
the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow return the host ID
in the variable "green".

Pascal

procedure gethostidl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_gethostid;
witeln (" CGethostid returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

| Copyright IBM Corp. 1985, 1989
229-1

VS/AIX Interface Library
GETHOSTID get a host ID

SUBROUTI NE GETHOSTI D1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FGETHOSTI D, GREEN

GREEN = FGETHOSTID ()

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.29-2

VS/AIX Interface Library
GETHOSTNAME get a local host name

2.30 GETHOSTNAME get a | ocal host name

Description
The GETHOSTNAME systemreturns the nanme of the current host.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_get host name (nane, nanel en);

g +
e == FORTRAN - - - === === = == mm m m o e o e e e e +
I I
1 |
| FGETHOSTNAME (NAME, NAMELEN) !
I I
l l
1 |
e o e meemaa - +

Par anmet ers

name
recei ves the nane of the host machi ne.

O In Pascal, nanme is of type st80.
O In FORTRAN, nanme is of type CHARACTER*80

nanel en
is the length of the nane paraneter.

O In Pascal, nanelen is of type integer.
O In FORTRAN, nanelen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page return the

name of the current host in the variable nane.

Pascal

procedur e get host nanel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green, nanelen : integer

| Copyright IBM Corp. 1985, 1989
230-1

VS/AIX Interface Library
GETHOSTNAME get a local host name

name : st 80;
% ncl ude /usr/include/aildefs.inc

begin
nanel en : = 20;
green : = p_get hostnane (nane, nanel en);
witeln ('Gethostnane returned: ', green : 2);
if (green = -1) then showerror;

end,

end,

FORTRAN

SUBROUTI NE GETHOSTNAMEL

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FGETHOSTNAME, NAMELEN, GREEN
CHARACTER* 80 NAME

NAMELEN = 20

GREEN = FGETHOSTNAME (NAME, NAMELEN)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.30-2

VS/AIX Interface Library
GETITIMER get the current value of an internal timer

2.31 GETITIMER get the current value of an internal tiner
Description

The GETITI MER systemcall returns the value of the internal tiner
specified in the call.

Synt ax

+--- Pascal --------------oooooo oo e +

p_getitiner (which, value);

Par anet ers

whi ch
specifies one of the followi ng tiners:

| TI MER_REAL the timer decrenents in real tinme.

| TIMER VIRTUAL the timer decrenments in process virtual time (it runs
only when the process is executing).

| TI MER_PROF the tiner decrenents both in process virtual tine and
when the operating systemis executing on behal f of
t he process.

Note: I n FORTRAN, the underscore is omtted (for exanple,
"1 TI MERREAL") .

O In Pascal, which is of type integer.
0 In FORTRAN, which is of type |INTEGER

val ue
is a variable in which the tinme is returned when the call is executed.

O In Pascal, value is of type itinmerval, declared in the include
file ailtypes.inc.

U In FORTRAN, value is an array of four integers, or |INTEGER
VALUE(4) .

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
231-1

VS/AIX Interface Library
GETITIMER get the current value of an internal timer
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
GETI TI MER systemroutine, which in these exanples get the current val ue of
the ITIMER REAL tinmer. This value is returned in the variables "vval ue”
(Pascal) and "VAL" (FORTRAN).

Pascal

procedure getitinmerl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

which : integer

vvalue : itinerval

% ncl ude /usr/include/aildefs.inc

begin
new(vval ue) ;
whi ch : = I TI MER_REAL,
green := p_getitinmer (which, vvalue);
witeln ("Getitimer returned: ', green : 2);
if (green = -1) then showerror;

end;

FORTRAN

SUBRQUTI NE CGETI TI MERL

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCETI TI MER, VAL(4), GREEN
GREEN = FGETI TI MER (I TI MERREAL, VAL)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
231-2

VS/AIX Interface Library
GETLOCAL get the alias for <LOCAL>

2.32 GETLCCAL get the alias for <LOCAL>

Description
The GETLOCAL systemcall gets the alias for <LOCAL>.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_getlocal (Il ocal nanme, naxlength)

g +
e == FORTRAN - - - == === = = == mmm m e o e e e oo +
I I
1 |
| FGETLOCAL (LOCALNAVE, MAXLENGTH) !
I I
l l
1 |
g +

Par anet ers

| ocal nane
receives the pathnane for <LOCAL>.

O In Pascal, l|ocalnane is of type st80.
O In FORTRAN, |ocal nane is of type CHARACTER*80

max| engt h
is the maxi mum |l ength of the |ocal name buffer.

O In Pascal, nmaxlength is of type integer.
O In FORTRAN, naxlength is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the

GETLOCAL systemroutine, and the alias for <LOCAL> is placed in buf.

Pascal

procedure getl ocal 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

| Copyright IBM Corp. 1985, 1989
232-1

VS/AIX Interface Library
GETLOCAL get the alias for <LOCAL>

buf : st80;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_getlocal (buf, 50);
witeln ("Alias for local is ', buf);
witeln ('Getlocal returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE GETLOCAL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCGETLOCAL, GREEN

CHARACTER BUF(80)

PRINT *, "Calling Getlocal"’

GREEN = FGETLOCAL (BUF, 20)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
232-2

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket

2.33 GETPEERNAME get the nanme of a "peer" socket

Description

The GETPEERNAME system call returns the nanme of the "peer" connected to
t he socket specified in the call

Synt ax

+--- Pascal --------------oooooo oo e +

I
I
p_get peername (s, nane, namel en) :
|
I

Par anet ers

S
is the descriptor of a socket that was created with a SOCKET or
SOCKETPAI R system cal | .
O In Pascal, s is of type integer.
O In FORTRAN, s is of type |INTEGER
name
receives the name of the peer upon conpletion of the call
O In Pascal, nanme is of type sockaddrptr (declared in the include
file ailtypes.inc).
O In FORTRAN, nanel is of type |INTEGER and corresponds to
sockaddr.sa_famly in Pascal .
O In FORTRAN, nanme2 is of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.
nanel en
is the length of the name paranmeter. It should be initialized to
i ndi cate the anmount of space pointed to by nane. It receives the

actual size of the peer nanme upon conpletion of the call

O In Pascal, nanelen is of type integer.

O In FORTRAN, nanelen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
233-1

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the
GETPEERNAME system routine, which in these exanples returns (in the
vari abl e "nanel"), the nanme associated with socket "sv[1]" (previously
created and bound to the nanme "socknane" with a BIND systemcall).

Pascal

procedure get peer nanel

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

nanel en, blue, gray : integer

nane, nanel : sockaddrptr;

SV @ int2;

% ncl ude /usr/include/aildefs.inc

begin
new (name)
new(nanmel);
nanel en : = 16;
green: =p_socket pai r (PF_UNI X, SOCK_DGRAM 0, sv);
name”.sa _data := 'abc';
name”. sa_famly := PF_UN X;
green := p_unlink(' abc');
gray := p_bind (sv[2], nane, nanelen);
green : = p_getpeernane (sv[1l], nanel, nanel en);

if (green <> -1) then
witeln(' Getpeername returned : OK)

el se
writel n(' Get peername returned : ERROR);
if (green = -1) then showerror;

green: =p_unlink ('"abc');

green: =p_shutdown (sv[1l], 2);

green: =p_shutdown (sv[2], 2);
end;

FORTRAN

SUBROUTI NE GETPEERNAMEL

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FGETPEERNAME, FBI ND, FSHUTDOMN, FSOCKETPAI R, FUNLI NK
| NTEGER GREEN, LEN, SV(2)

CHARACTER* 14 NAME, NAME1l

PROT = 0O

GREEN = FSOCKETPAI R (PFUNI X, SKDGRAM 0, SV)

NAME = ' BNAME '

GREEN = FUNLI NK (' BNAME ')

GREEN = FBIND (SV(1), PFUNI X, NAME, 16)

LEN = 16

NAMEZ = ' SOCKNAME

GREEN = FGETPEERNAME (SV(2), PFUNI X, NAMELl, LEN)

| Copyright IBM Corp. 1985, 1989
2.33-2

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket
IF (GREEN .LE. -1) THEN
PRI NT *, ' GETPEERNAME : ERRCR

ELSE
PRINT *, ' GETPEERNAME : OK'

ENDI F

GREEN = FUNLI NK (' BNAMVE ')

GREEN = FSHUTDOWN (SV(1), 2)

GREEN = FSHUTDOWN (SV(2), 2)

END

| Copyright IBM Corp. 1985, 1989
2.33-3

VS/AIX Interface Library
GETPGRP, GETPID, GETPPID get a process-group or process identifier

2.34 GETPCGRP, GETPID, GETPPID get a process-group or process identifier
Description

The GET systemcalls described in this and the follow ng section return
the I D of a group, process, or user.

0 GETPGRP returns the process group ID of the calling process.

0 GETPID returns the process ID of the calling process and is often used

to generate uniquely naned tenporary fil es.

0 GETPPID returns the process ID of the parent process.

Synt ax

T——— Pascal --------------"-----------------"-"-----------------------
i p_getpgrp

E p_get pi d;

| p_getppi d;

i

o o o e e e e e
oo FORTRAN - - oo oooooo oo oo oo oo oo oo
i FGETPGRP ()

i FGETPI D ()

E FGETPPI D ()

|

Par anet er s
These system cal | s have no paraneters.

Ret urn Val ues

The return value of each of the three calls is a particular ID (see
descri ption above).

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exanpl es
The Pascal procedure and FORTRAN subroutine that follow call the GETPID
systemroutine, which returns the process IDin the variable "blue"

Pascal

procedure getpidi;

const
% ncl ude /usr/include/ail pconsts.inc

type

| Copyright IBM Corp. 1985, 1989
234-1

VS/AIX Interface Library
GETPGRP, GETPID, GETPPID get a process-group or process identifier
% ncl ude /usr/include/ailtypes.inc
var
blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
bl ue : = p_getpid;
witeln (blue);
end;

FORTRAN

SUBROUTI NE GETPI D1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FCETPI D, BLUE

BLUE = FGETPI D ()

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.34-2

VS/AIX Interface Library
GETSOCKNAME get a socket name

2.35 CGETSOCKNAME get a socket nane

Description

The GETSOCKNAME systemreturns the current nane of the socket specified in
the call.

Synt ax

+--- Pascal --------------oooooo oo e +

I
I
p_get sockname (s, nane, nanel en) :
|
I

Par anet ers

S
is the descriptor of a socket that was created with a SOCKET system
call.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER
name
receives the nanme of the socket upon conpletion of the call
O In Pascal, nanme is of type sockaddrptr (declared in the include
file ailtypes.inc).
O In FORTRAN, nanel is of type |INTEGER and corresponds to
sockaddr.sa_famly in Pascal .
O In FORTRAN, nanme2 is of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.
nanel en
is the length of the name paranmeter. It should be initialized to
i ndi cate the anmount of space pointed to by nane. It receives the

actual size of the socket nanme upon conpletion of the call

O In Pascal, nanelen is of type integer.

O In FORTRAN, nanelen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
235-1

VS/AIX Interface Library
GETSOCKNAME get a socket name

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the
GETSOCKNAME system routine, which in these exanples returns in the

vari abl e "nanmel" the nane 'sockname’', which was bound to socket "sé&cdq,
with a BIND systemcall.

Pascal

procedure getsocknanel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

nanel en, s, green : integer

nane, nanel : sockaddrptr;

% ncl ude /usr/include/aildefs.inc

begin
new (nane);
nane”. sa_data : = 'socknane';
name”. sa_famly := PF_UN X;
s := p_socket (PF_UN X, SOCK _STREAM 0);
if (s =-1) then showerror;
new (nanel);
nanel en : = 16;
green := p_bind (s, nane, nanelen);
green : = p_getsocknane (s, nanel, namel en);
witeln (' Getsocknane returned: ', green : 2);
if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE GETSOCKNAMEL

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FCGETSOCKNAME, FBI ND, FSOCKET, S, NAMELEN
| NTEGER, GREEN, NAMEl, RC

CHARACTER* 14 NAME, NAME2

S = FSOCKET (PFUNI X, SKSTRM 0)

NAME2 = 'socknane '

NAMELEN = 16

NAMVEL = PFUNI X

RC = FBIND (S, NAME1l, NAME2, NAMELEN)

IF (S .EQ -1) CALL ERRORS

GREEN = FGETSOCKNAME (S, NAMELl, NAME, NAMELEN)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
235-2

VS/AIX Interface Library
GETSOCKOPT get socket options

2.36 CGETSOCKOPT get socket options

Description

The GETSOCKOPT system gets the options associated with a specified socket.
These options may exist at multiple protocol |evels, and are al ways
present at the uppernost socket |evel.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_get sockopt (s, level, optnane, optval, optlen) :

+———————

__ +
-0 FORTRAN - - === === = o o s o s o n e +
I I
I I
! FGETSOCKOPT (S, LEVEL, OPTNAME, OPTVAL, COPTLEN) !
I I
: :
I I
e o e meemaa - +

Par anmet ers

S
is the descriptor of a socket that was created with a SOCKET system
call.

O In Pascal, s is of type integer.
O In FORTRAN, s is of type |INTEGER

| evel
| evel at which the desired option resides. To manipul ate options at
the socket |evel, specify the |evel as SO._SOCKET.

O In Pascal, |evel is of type integer.
O In FORTRAN, |evel is of type | NTEGER;
opt name

is the option nanme, passed uninterpreted to the appropriate protocol
nodul e for interpretation. The socket-level options are:

SO_DEBUG turns on recordi ng of debugging information.

SO REUSEADDR al | ows | ocal address reuse.

SO KEEPALI VE keeps connections alive.

SO DONTROUTE does not apply routing on outgoi ng messages.

SO LI NGER lingers on a CLCSE systemcall if data is present.

SO OOBI NLI NE | eaves received out-of-band data in |ine.

| Copyright IBM Corp. 1985, 1989
2.36-1

VS/AIX Interface Library
GETSOCKOPT get socket options

SO_SNDBUF sends buffer size.
SO_RCVBUF recei ves buffer size.
SO _ERROR gets error status.
SO TYPE gets socket type.

SO BROADCAST requests permission to transmt broadcast nessages.
Note: In FORTRAN, the underscore is omtted (for exanple, "SODEBUG').
O In Pascal, optnane is of type integer.
O In FORTRAN, optnane is of type | NTEGER

opt val
points to a buffer, in which the option values are returned by the
systemcal l.
O In Pascal, optval is of type st80.
O In FORTRAN, optval is of type CHARACTER*8O0.

optl en.
specifies the length of the buffer pointed to by optval.

O In Pascal, optlen is of type integer.
O In FORTRAN, optlen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the
GETSOCKOPT systemroutine, which in these exanples returns the options

associ ated with socket "s".

Pascal

procedure getsockopt1;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
| evel , optlen, optnane, s, green : integer,

optval : st80;
% ncl ude /usr/include/aildefs.inc
begin

| Copyright IBM Corp. 1985, 1989
2.36-2

VS/AIX Interface Library
GETSOCKOPT get socket options

S := p_socket (PF_UN X, SOCK_STREAM 0);

l evel := SOL_SOCKET,;
optlen : = 80;
green : = p_getsockopt (s, level, optname, optval, optlen);
witeln ('Getsockopt returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE GETSOCKOPT1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FGETSOCKOPT, FSOCKET, LEVEL, OPTLEN, OPTNAME, S, GREEN
CHARACTER*80 OPTVAL

PRINT *, "Calling CGetsockopt'

S = FSCCKET (PFUNI X, SKSTRM 0)

IF (S .EQ -1) CALL ERRORS

LEVEL = SOLSOCKET

OPTLEN = 80;

GREEN = FGETSOCKOPT (S, LEVEL, OPTNAME, OPTVAL, OPTLEN)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.36-3

VS/AIX Interface Library
GETTIMEOFDAY get the current time

2.37 CGETTI MEOFDAY get the current tinme

Description
The GETTI MEOFDAY system call gets the current tinmne.

Synt ax
+--- Pascal --------------o-oooo oo +

p_gettineofday (tp, tzp);

Par anet ers

tp
hol ds two integers:
1. the nunber of seconds that have el apsed since 00:00: 00 January 1,
1970 @I, plus
2. the nunber of mcroseconds that nust be added to the preceding
nunber to get the current tinme.
O In Pascal, tp is of type tineval, declared in the include file
ail types.inc.
O In FORTRAN, tp is of type INTEGER TP(2)
tzp

hol ds two integers:
1. the tine west of Greenwich in nnutes.
2. the type of DST correction to apply.

O In Pascal, tzp is of type tinmezone, declared in the include file
ailtypes.inc.

O In FORTRAN, tzp is of type |INTEGER TZP(2).
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
GETTI MECFDAY systemroutine, which in these exanples returns G eenw ch

| Copyright IBM Corp. 1985, 1989
237-1

VS/AIX Interface Library
GETTIMEOFDAY get the current time

time and the current tine zone in the variables tp and tzp respectively.

Pascal

procedure gettinmeof dayl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

tp : tineval,;

tzp : timezone;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_gettineofday (tp, tzp);
witeln ('Gettineofday returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE GETTI MEOFDAY1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER, FGETTI MEOFDAY, TP(2), TZP(2), GREEN
GREEN = FGETTI MECFDAY (TP, TZP)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.37-2

VS/AIX Interface Library
GETUID, GETEUID, GETGID, GETEGID get a user or group identifier

2.38 GETU D, CGETEUID, GETA@ D, GETEA D get a user or group identifier
Description

The four GET systemcalls described in this section return the real or
effective ID of a user or group.

0 GETU DT returns the ID of the real user of the calling process.

0 GETEUID returns the effective user ID of the calling process.

0 GETA@Dreturns the real group ID of the calling process.

0 GETE@ D returns the effective group ID of the calling process.

Synt ax

I+— -- Pascal -------------------------"-"-------------oo oo
E p_get ui d;

E p_get eui d;

E p_getgid;

i p_getegid;

i

e o e e e e

FGETUI D ()
FGETEUI D ()
FGETG D ()

FGETEG D ()

Par anet er s
These system cal | s have no paraneters.

Ret urn Val ues
The return value of each of the four calls is a particular 1D (see
descri ption above).

O In Pascal, the return value is of type ushrt

O In FORTRAN, the return value is of type | NTEGER*2

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
GETGE D systemroutine, which returns the real group ID of the calling
process in the variable "blue".

Pascal

| Copyright IBM Corp. 1985, 1989
2.38-1

VS/AIX Interface Library

GETUID, GETEUID, GETGID, GETEGID get a user or group identifier

procedure getgidi;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue : ushrt;

% ncl ude /usr/include/aildefs.inc
begin

blue := p_getgid;
witeln (blue);

end,

FORTRAN
SUBRQOUTI NE CGETG D1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTECER*2 FGETA D, BLUE
BLUE = FGETGA D ()
PRI NT *, BLUE
END

Not es

Because Pascal and FORTRAN lack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter val ues that fal

t he range

2 147 483 648 through 4 294 067 295

To use a paraneter value in this range, subtract 4 294 067 296 fromthe

paraneter val ue before issuing the call (the result wll
negati ve).

| Copyright IBM Corp. 1985, 1989
2.38-2

al ways be

in

VS/AIX Interface Library
GETXVERS get the UNIX version string

2.39 GETXVERS get the UNI X version string

Description
The GETXVERS systemcall returns the UNI X version string

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_get xvers (xvers, |ength);

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
| FGETXVERS (XVERS, LENGTH) !
| I
I I
1 |
g +

Par anet ers

Xvers
is a pointer to the version string.

O In Pascal, xvers is of type st80.
O In FORTRAN, xvers is of type CHARACTER*80.

| ength
is the length of the version string.

O In Pascal, length is of type integer.
O In FORTRAN, length is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
GETXVERS systemroutine. After conpletion of the call, string "s"

contains the UNI X version string.

Pascal

procedure getxversl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

| Copyright IBM Corp. 1985, 1989
239-1

VS/AIX Interface Library
GETXVERS get the UNIX version string

green: integer:
s : st80;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_getxvers (s, 10);
witeln (s);
end;
FORTRAN

SUBROUTI NE GETXVERS1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTECER, FGETXVERS, GREEN
CHARACTER*80 S

GREEN = FGETXVERS (S, 10)

PRINT *, S

END

| Copyright IBM Corp. 1985, 1989
2.39-2

VS/AIX Interface Library
IOCTL control the input and output of a device

2.40 I OCTL control the input and output of a device

Description

The | OCTL systemcall performs a variety of functions on both bl ock- and
character-special files (devices). (For information about avail able
devices see Al X Operating System Commands Reference and Al X Operating

Syst em Techni cal Reference.)

Synt ax

+--- Pascal --------------oooooo oo e +

p_ioctl (fildes, requst, arg);

+———————

__ +
o o0 FORTRAN - - == == = o = s o m o n e +
I I
I I
! FIOCTL (FILDES, REQUST, ARG !
I I
: :
I I
e o e meemaa - +

Par anmet ers

fildes
is the file descriptor of an opened devi ce.

O In Pascal, fildes is of type integer.
0 In FORTRAN, fildes is of type | NTECER

requst
is either of two operations to be perforned on the device specified by
fildes. Both are defined in the Pascal and FORTRAN constants incl ude
files. They are as follows:

| OCTYP returns the device type associated with fildes. The
device types are defined in the constant include files.

| OCI NF stores device information specified by fildes in the
buffer specified by arg.

O In Pascal, requst is of type integer.
O In FORTRAN, requst is of type | NTEGER

arg
is a data structure used to pass and receive values fromthe | OCTL
routine.

O In Pascal, arg is of type devptr
Not e: The Pascal type-definition file /usr/include/ailtypes.inc
may have to be edited, and the data structure pointed to by
devptr changed, to nmake that structure acceptable to the
device specified in the call

O In FORTRAN, arg is a variable or array of type |NTEGER

| Copyright IBM Corp. 1985, 1989
240-1

VS/AIX Interface Library
IOCTL control the input and output of a device

Note: |In FORTRAN, arg nust be defined in the programto make it
acceptable to the device specified in the call. This
vari abl e nust be an array | arge enough to contain the
structure returned by IOCTL. |If the array is not |arge
enough, the |OCTL will destroy the stackframe and cause a
menory fault.

Return Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the | OCTL
systemroutine, which returns information about device /dev/Ip in the

Pascal record "green" or FORTRAN array "CGREEN'.

Pascal

procedure ioctl1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red, yellow : integer;

green : devptr;
% ncl ude /usr/include/aildefs.inc
begin

new (green);
red := p_open ('/dev/lIp', RDWR 0);

yel I ow : = | OCl NF;
blue := p_ioctl (red, yellow, green);
witeln (blue);
end,
FORTRAN

SUBROUTI NE | OCTL1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FI OCTL, FOPEN, BLUE, GREEN(61), RED, YELLOW
RED = FOPEN ('/dev/Ip ', RDWR 0)

YELLOW = | OCl NF

BLUE = FI OCTL (RED, YELLOW GREEN)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
240-2

VS/AIX Interface Library
KILL, KILLPG send a signal to a process or a process group

2.41 KILL, KILLPG send a signal to a process or a process group
Description

The KILL systemcall sends a specified signal to a specified process. The
KI LLPG system call sends a specified signal to a specified process group

The process receiving the signal is usually termnated as a result (see
S| GNAL on page 2.89).

Note: Only the super-user may issue either call if the sending and
recei ving processes or groups have different effective user |Ds.

Synt ax
+--- Pascal ---------------ooooo oo +
p_kill (pid, sig);

p_killpg (pgrp, sig);

o ———————

__ +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! FKILL (PID, SIQ !
I I
1 |
! FKILLPG (PGRP, SIQ !
| I
I I
1 |
g +

Par anet ers

P is the ID of the process to which a signal is to be sent.
O In Pascal, pidis of type integer.
O In FORTRAN, pid is of type |INTEGER
pgrp ,
is the ID of the process group to which a signal is to be sent.
O In Pascal, pgrp is of type integer.
0 In FORTRAN, pgrp is of type I NTEGER
sig

is the signal to be sent to the specified process. A process or
process group may send signals to itself.

O In Pascal, sig is of type integer.
U In FORTRAN, sig is of type | NTEGER
Ret urn Val ues

The value O is returned if the specified process is term nated; The val ue
-1 is returned and an error code set in errno if the call fails.

| Copyright IBM Corp. 1985, 1989
241-1

VS/AIX Interface Library
KILL, KILLPG send a signal to a process or a process group

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the KILL

systemroutine, which in these exanples verifies the existence of the
"special" root process, with process ID = 0.

Pascal

procedure kill1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
blue := p_kill (0, 0);
witeln (blue);

end,

FORTRAN

SUBRQUTI NE KI LL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FKI LL, BLUE

BLUE = FKILL (0O, 0)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
241-2

VS/AIX Interface Library
LINK link to a file

2.42 LINK link to a file

Description
The LINK systemcall creates a link to an existing file.

Synt ax
+--- Pascal ---------------o-ooo oo e +

I
|
p_link (pathl, path2): |
|
|

I
|
FLI NK (PATHL, PATH2) !
|
|

Par anmet ers

pat hl
is the nane of the file to which alink is created.

O In Pascal, pathl is a string variable or constant of type st80.
O In FORTRAN, pathl is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

pat h2
is the name of the new directory entry (link) to be created.

O In Pascal, path2 is a string variable or constant of type st80.
O In FORTRAN, path2 is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the LINK
systemroutine, which in these exanples creates a second link (/tnp/new)
for the file /tnp/xxx. This will not be a copy of the file /tnp/xxx but
an additional link to the existing file.

Pascal

procedure |inkl

| Copyright IBM Corp. 1985, 1989
242 -1

VS/AIX Interface Library
LINK link to a file

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

yell ow : integer;

bl ue, red : st80;

% ncl ude /usr/include/aildefs.inc

begin
red :="/tnp/xxx';
blue := "'/tnp/ new ;

yellow := p_link (red, blue);
witeln (yellow;
end,

FORTRAN

SUBRQOUTI NE LI NK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FLI NK, YELLOW

CHARACTER*80 BLUE, RED

RED = '/tnp/ xxx '

BLUE = '/tnp/ new '

YELLOW = FLI NK (RED, BLUE)

PRI NT *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
242 -2

VS/AIX Interface Library
LISTEN "listen" for a connection to a socket

2.43 LISTEN "listen" for a connection to a socket

Description

The LI STEN systemcall specifies a nmaxi num queue | ength for the nunber of
pendi ng connections to a specified socket. The call applies only to
sockets of type SOCK_STREAM

Synt ax

+--- Pascal --------------oooooo oo e +

p_listen (s, backlog);

Par anmet ers

S
is the descriptor of the socket that was created by a SOCKET system
call.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type |INTEGER
backl og

specifies the maxi rum | ength of the queue of pending connections.
O In Pascal, backlog is of type integer.
U I n FORTRAN, backlog is of type |INTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es
The Pascal procedure and FORTRAN subroutine on the next page call the

LI STEN systemroutine after the backl og paraneter has been set to 1

Pascal

procedure |istenl

const
% ncl ude /usr/include/ail pconsts.inc

type

| Copyright IBM Corp. 1985, 1989
243 -1

VS/AIX Interface Library
LISTEN "listen" for a connection to a socket

% ncl ude /usr/include/ailtypes.inc
var

backl og, nanelen, s : integer;

addr : sockaddrptr;

% ncl ude /usr/include/aildefs.inc

begin
s .= p_socket (PF_UN X, SCCK DGRAM 0);
if (s =-1) then showerror;
new (addr);
addr”™.sa _data := 'socket';
addr”™.sa_famly := PF_UN X;

green := p_unlink ('socket');
green := p_bind (s, addr, 16);
backlog : = 1;

green := p_listen (s, backlog);

if (green <> -1) then
witeln ('Listen returned : OK)

el se
witeln ('Listen returned : ERROR);
if (green = -1) then showerror;
green := p_shutdown (s, 2);
end;
FORTRAN

SUBRQOUTI NE LI STENL

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FLI STEN, FBI ND, FSHUTDOWN, FSOCKET, FUNLI NK
| NTEGER BACKLOG, S, GREEN

CHARACTER* 80 NAME

S = FSOCKET (PFUNI X, SKSTRM 0)

NAME = ' BNAME '

GREEN = FUNLI NK (NAVE)
GREEN = FBIND (S, SKSTRM NAME, 16)
BACKLOG = 1

GREEN = FLI STEN (S, BACKLOG
IF (GREEN . EQ -1) THEN
PRINT *, 'LISTEN : ERROR
CALL ERRORS
ELSE
PRINT *, "LISTEN : K
ENDI F
GREEN
GREEN
END

FUNLI NK (' BNAMVE ')
FSHUTDOMN (S, 2)

| Copyright IBM Corp. 1985, 1989
243 -2

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

2.44 LOCKF | ock or unlock a region of a file

Description

The LOCKF system call |ocks and unl ocks regions of an open file. It is
used to synchroni ze simnmultaneous access to a specified open file by

mul tiple processes. Only one process at a tinme can naintain a "l ock" on a
region of a file. The LOCKF systemcall can invoke either of two kinds of
lock: (1) enforced or (2) advisory.

1. Wen a process holds an enforced lock on a region of a file:

a. no other process can access that region with read or wite system
calls; and

b. CREAT and OPEN are prevented fromtruncating the file.
2. Wen a process holds an advisory lock on a region of a file:

a. no other process can |ock that region or an overl appi ng region
wth the LOCKF call; and

b. the CREAT, OPEN, READ, and WRITE call are not affected, which
nmeans that a process itself nmust issue a LOCKF call in order to
make advi sory | ocks effective.

Note: To select enforced | ocking, the ENFMI access node of the specified
file must be set. QO herwise, locking is optional. Thus a given
file can have enforced | ocks or advisory |ocks but not both.

Warning: Buffered 1/0O does not work properly with file | ocking.

Synt ax

+--- Pascal ---------------ooooo oo e +

p_l ockf (fildes, request, size);

Par anmet ers

fildes
is the descriptor of an open file that has been returned by a CREAT,
DUP, DUP2, OPEN, or PIPE systemcall.

O In Pascal, fildes is of type integer.
0 In FORTRAN, fildes is of type | NTECER
requst

can be a constant or a variable. The options are defined as constants
in the Pascal and FORTRAN constants include files.

| Copyright IBM Corp. 1985, 1989
244 -1

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

F_ULOCK unl ocks a previously |locked region in the file.
F_LOCK | ocks the region for exclusive use.
F_TLOCK det erm nes whet her anot her process has | ocked the

specified region and, if not, |ocks the region.

F_TEST det erm nes whet her anot her process has already | ocked a
regi on.

Note: In FORTRAN, the underscore is omtted (for exanple, "FULOCK").
O In Pascal, requst is of type integer.
O In FORTRAN, requst is of type | NTEGER
si ze
can be a constant or a variable and it defines the number of bytes
bei ng | ocked or unl ocked. Unallocated "holes" in the file can also be
| ocked (see FCLEAR on page 2.22).
O In Pascal size is of type integer.
O In FORTRAN, size is of type | NTECER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the LOCKF
systemroutine, which | ocks an open file "forward" 1000 bytes.

Pascal

procedure | ockf 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/usr/include/ailtypes.inc', RDONLY, O0);
blue := p_lockf (red, F_LOCK, 1000);
witeln (blue);

end;

FORTRAN

| Copyright IBM Corp. 1985, 1989
244 -2

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

SUBROUTI NE LOCKF1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FLOCKF, FOPEN, BLUE, RED

RED = FOPEN (' /usr/include/ailtypes.inc ', RDONLY, 0)
BLUE = FLOCKF (RED, FLOCK, 1000)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
244 -3

VS/AIX Interface Library
LSEEK set a read or write pointer

2.45 LSEEK set a read or wite pointer

Description

The LSEEK systemcall sets a read or wite pointer in a specified file
t hat has been opened for reading or witing.

Synt ax

+--- Pascal --------------oooooo oo e +

p_I seek (fildes, offset, whence);

g +
o0 FORTRAN - - == == = o = s s o n e +
I I
I I
! FLSEEK (FILDES, OFFSET, WHENCE) !
l l
I I
I I
g +

Par anet er s
fildes
is the descriptor of the file to be read fromor witten to; it is
returned by a CREAT, DUP, DUP2, FCNTL, or OPEN systemcall.
O In Pascal, fildes is of type integer.
O In FORTRAN, fildes is of type | NTEGER
of f set
is a value (nunber of bytes) used in conbination with the whence
paraneter to position the pointer in the file.
O In Pascal, offset is of type integer.
O In FORTRAN, offset is of type | NTEGER
whence
specifies how the offset value will be used to position the file
poi nter of fildes.

SEEK SET the pointer will be set to the value of offset.

SEEK CUR the pointer will be set to the value of the current |ocation
plus the of fset val ue.

SEEK END the pointer will be set to the value of the offset nunber of
bytes plus the size of the file.

Note: I n FORTRAN, the underscore is omtted (for exanple,
" SEEKSET") .

O In Pascal, whence is of type integer.
O In FORTRAN, whence is of type |INTEGER

Ret ur n Val ues

| Copyright IBM Corp. 1985, 1989
245-1

VS/AIX Interface Library
LSEEK set a read or write pointer

The return value is the new | ocation of the file pointer as neasured in
bytes fromthe beginning of the file. The value -1 is returned and an
error code set in errno if the call fails.

O In Pascal, the return value is of type integer

O In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the LSEEK
systemroutine, which noves the file pointer to the 200-byte mark of the
open file specified in the call. The return value in "yellow' should in
this case equal the offset of 200.

Pascal

procedure | seekl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red, yellow : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/usr/include/ailtypes.inc', RDONLY, O0);
bl ue : = SEEK SET;

green : = 200;
yellow := p_l seek (red, green, blue);
witeln (yellow;
end,
FORTRAN

SUBROUTI NE LSEEK1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FLSEEK, FOPEN, BLUE, GREEN, RED, YELLOW

RED = FOPEN (' /usr/include/ailtypes.inc ', RDONLY, 0)
BLUE = SEEKSET

GREEN = 200

YELLOW = FLSEEK (RED, GREEN, BLUE)

PRI NT *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
245-2

VS/AIX Interface Library
MKDIR create a directory

2.46 MKDIR create a directory

Description
The MKDIR systemcall creates a new directory.

Synt ax
+--- Pascal --------------oooooo oo e +

p_nkdir (path, node);

Par anet ers

pat h
is the nane of the new directory.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

node
is the mask for the read, wite, and execute (rwx) flags for owner
group, and others. The loworder 9 bits in node are nodified by the
file-nmode-creation mask of the process. All bits set in the creation
mask are cleared. For nore information, see page 2.105)

O In Pascal, node is of type integer.

O In FORTRAN, node is of type |INTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
MKDI R systemroutine. The directory specified in the call is /usr/ganes,
whi ch becones the new directory. The return value of the call is in the

variable "folio".

Pascal

procedure nkdirl

| Copyright IBM Corp. 1985, 1989
246 -1

VS/AIX Interface Library
MKDIR create a directory

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

folio : integer,;

red : st80;

% ncl ude /usr/include/aildefs.inc

begin
red :="'"/usr/games';
folio := p_nkdir (red, 128);
witeln (folio);

end,

FORTRAN

SUBROUTI NE MKDI R1

I NCLUDE (/usr/include/ailfconsts.inc)
I NTEGER FWKDI R, FCLIO

CHARACTER*80 RED

RED = '/usr/ganes '

FOLI O = FMKDI R (RED, 128)

PRI NT *, FOLI O

END

| Copyright IBM Corp. 1985, 1989
2.46 -2

VS/AIX Interface Library
MKNOD create a directory or special file

2.47 MKNOD create a directory or special file

Description

The MKNOD systemcall creates a new regular file, special file, or
directory; specifies an access node that includes directory special-file
bits; and initializes the first pointer of the i-node.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e

p_nknod (path, node, dev);

Par anet ers

pat h
is the nanme of the newfile or directory.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nust be a
bl ank space.

node

is the access node of the new file and includes special bits and

directory bits. It is constructed by logically OR ng the val ues of

the access-attribute bits of CHVOD (see page 2.10.) with one of the

foll owi ng val ues, which define the file type:

SIFDR directory

S IFCHR character special file

S IFWX nmnultiplexed character special file the value of the
| ow-order bit of arg.

S IFBLK bl ock special file
S IFREG regular data file
SIFIFO FIFO special file

The protection bits of the node are nodified by the process node mask
(see UMASK on page 2.105)

O In Pascal, npode is of type integer.

| Copyright IBM Corp. 1985, 1989
247-1

VS/AIX Interface Library
MKNOD create a directory or special file

O In FORTRAN, node is of type | NTEGER

dev
initializes the first block pointer of the i-node. For ordinary files
and directories, dev is usually zero. |In the case of a special file,
dev specifies the file to be created. (For information on
special-file bits, see Al X Technical Reference.)

O In Pascal, dev is of type integer.

O In FORTRAN, dev is of type |INTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

O In FORTRAN, the return value is of type | NTEGE

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call MKNOD system
routine, which in these exanples creates a file (/tnp/junk). The val ue of
node ("blue") specifies a text file with read and wite privileges for the
owner of the file.

Pascal

procedure nknodl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

yel l ow : st80
% ncl ude /usr/include/aildefs.inc

begin
yellow :="/tnp/junk';
blue : = 33152;
red := p_nknod (yellow, blue, 0);
witeln (red);
end;

FORTRAN

SUBROUTI NE MKNCOD1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FMKNOD, BLUE, RED
CHARACTER*80 YELLOW

YELLOW = ' /tnp/junk '

BLUE = 33152

RED = FMKNOD (YELLOW BLUE, 0)

| Copyright IBM Corp. 1985, 1989
247 -2

VS/AIX Interface Library
MKNOD create a directory or special file
PRI NT *, RED
END

| Copyright IBM Corp. 1985, 1989
247 -3

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

2.48 MOUNT, UMOUNT mount or unmount a file system

Description

The MOUNT systemcall mounts a renovable file systemon a bl ock-structured
special file, names a newroot file for that file system and specifies
whet her the systemis wite enabled or wite protected.

The UMOUNT system call unnmounts a renovable file system the associated
root file is replaced by the default version, any pending I/O for the
unnmount ed systemis conpleted, and the systemitself is marked cl ean

Note: Only users with an effective user |ID of super-user nay issue
t hesecal | .

Synt ax
+--- Pascal --------------oooooo oo e +
p_nount (dev, dir, nflag);

p_urount (dev, flag);

o ———————

__ +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! EMOUNT (DEV, DIR MFLAQ !
I I
1 |
! FUMOUNT (DEV, FLAQ !
I I
I I
1 |
g +

Par anmet ers

dev
specifies the device on which the file systemis to be nounted or from
which it is to be unnmount ed.

O In Pascal, dev is a string variable or constant of type st80.

O In FORTRAN, dev is a string variable or constant of type
CHARACTER*80. The term nating character of the string must be a
bl ank space.

dir
is used only with MOUNT. It is the name of the directory of the file
systemthat is to be nounted. The file specified by dir nust exist
and it nmust be a directory unless the root file of the mounted file
systemis not a directory.

O In Pascal, dir is a string variable or constant of type st80.
O In FORTRAN, dir is a string variable or constant of type

CHARACTER*80. The term nating character of the string must be a
bl ank space.

nfl ag
is used only with MOUNT. The least significant bit specifies whether

| Copyright IBM Corp. 1985, 1989
248 -1

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

the file systemis wite enabled or not.
Not e: For possible values of this parameter, see Appendix B
O In Pascal, nflag is of type integer.
O In FORTRAN, nflag is of type | NTEGER
flag
if set to a non-zero value, forces the unmounting of the file system
even if it contains open files.
O In Pascal, flag is of type integer.
O In FORTRAN, flag is of type |INTEGER
Ret urn Val ues
MOUNT returns the value O upon successful conpletion of the call. The

value -1 is returned and an error code set in errno if the call fails.

UMOUNT returns the value O upon successful conpletion of the call. The
value -1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exanpl es
The Pascal procedure and FORTRAN subroutine that follow call the UMOUNT
systemroutine. |In these exanples, the call instructs the routine to

unnmount a devi ce.

Pascal

procedure unount1

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

yell ow : integer;

bl ue : st80;

% ncl ude /usr/include/aildefs.inc

begin
blue := "'/dev/hd9";
yell ow : = p_unount (blue, 0);
witeln (yellow);
end;
FORTRAN

SUBRQUTI NE UMOUNT 1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUMOUNT, YELLOW

CHARACTER* 80 BLUE

| Copyright IBM Corp. 1985, 1989
2.48 -2

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

BLUE = '/dev/hd9 '
YELLOW = FUMOUNT (BLUE, O0)
PRI NT *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
248 -3

VS/AIX Interface Library
MSGCTL invoke message-control operations

2.49 MSCCTL i nvoke message-control operations
Description
The MBGCTL systemcall invokes any of three nmessage-control operations,
including the storing and setting of the values in a specified nessage
queue.
Note: Only users with an effective user ID of super-user may issue this
call.
Synt ax
+--- Pascal ----------------oooo oo
I
I
| p_nsgct!l (nsqid, cnd, buf);
I
:
I
e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
R = O 4 I = B
I
I
| FMSGCTL (MSQ D, CMD, BUF)
I
:
I
e e e e e e e e m e e mmm e MM mmmeememmmmmememsmmemmmmeammmemmmmmemmmemmmmmmmmmmmm—————a
Par anmet er s
nsqi d
is the identifier of a nessage queue created by a previ ous MSGGET cal
(see page 2.50). The value of nsqgid is returned by MSGGET.
O In Pascal, nsqgid is of type integer.
O In FORTRAN, nsqid is of type | NTEGER
cnd
specifies the operation to be performed, which can be any of the
options in the following |ist.
Not e: Each option nunber corresponds to a mmenonic (shown in
parent heses) defined in the Pascal and FORTRAN constants
include files.
| PCRVD renoves the nessage-queue identifier and its associated

data structure fromthe operating system and destroys

t he associ at ed nessage.

| PCSET sets the value of the following fields and the data

structure associated with nsqid to the corresponding
val ue found in the data structure pointed to by buf.

In Pascal these fields are:

nsg_permuid
nsg_permugid
nsg_per m node
nsg_gbytes

[. |

In FORTRAN t he corresponding fields are:

| Copyright IBM Corp. 1985, 1989
249-1

VS/AIX Interface Library
MSGCTL invoke message-control operations

MEQ X 1)
MEQ X 2)
MEQ X 5)
MBQ X 12)

Note: Only a process whose effective user IDis
super-user can raise the value of nmsg_gbytes.

[. |

| PCSTT takes the current value of each field of the data
structure associated with nsgid and stores it in the
structure pointed to by the buf paraneter (see bel ow).

Note: The first two options can be used only when the effective user
IDis equal to the super-user ID or to the value of
neqi d_ds@nsg_permuid in Pascal or M5Q D(1) in FORTRAN.

O In Pascal, cnd is of type integer.
O In FORTRAN, cnd is of type | NTEGER
buf
points to a record of type nsqid_ds. The values stored or set in this

record are the current values of the data structure associated with
nsqi d.

O In Pascal, buf is of type ndsptr.

O In FORTRAN, buf is an array(17) of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the MSGCTL
systemroutine. The value of the first parameter of this call is the

return value of MSGGET. (The value of the first parameter of MSGGET is

the return value of the ftok system subroutine; see Notes at the end of

this section.) The variable "pink" specifies the option that stores the
val ues associated with the nmsqid paranmeter "green" in the data structure
pointed to by "yell ow

Pascal

procedure nsgctl 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, pink, red : integer

orange : st 80;
brown : char;

| Copyright IBM Corp. 1985, 1989
249 -2

VS/AIX Interface Library
MSGCTL invoke message-control operations

yel l ow : ndsptr;

% ncl ude /usr/include/aildefs.inc

begin
new (yel |l ow);
brown := "ni;
orange := '/usr/include/ailtypes.inc';
blue := I PCCRT + | RUSR,
red := p_ftok (orange, brown);
green : = p_nsgget (red, blue);
pi nk := | PCSTT;

red := p_nsgctl (green, pink, yellow;
witeln (red);
end;

FORTRAN

SUBRQUTI NE MSGCTL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFTOK, FMSGGET, FMSCGCTL, BLUE, GREEN, PINK, RED, YELLOW17)
CHARACTER* 80 ORANGE

CHARACTER BROWN

BROM = ' ni

ORANGE = '/fusr/include/ailtypes.inc '
BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

GREEN = FMSGGET (RED, BLUE)

PINK = | PCSTT

RED = FMSCGCTL (GREEN, PINK, YELLOW
PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
249-3

VS/AIX Interface Library
MSGGET get or create a message queue

2.50 MSGGET get or create a nmessage queue

Description

The MBGGET systemcall gets a specified nessage queue identifier

associ ated with the specified key paranmeter. NMSGGET can al so create the
identifier and nmessage queue if they do not already exist.

Synt ax

+--- Pascal ---------------ooooo oo +

p_nsgget (key, nsgflg);

Par anet ers

key
determ nes which identifier and associ ated data structure to use. The
key paraneter may be equal to 0 (IPCPVT); or key can be an |PC key
constructed by a call to the ftok system subroutine.

O In Pascal, key is of type integer.
O In FORTRAN, key is of type |INTEGER

nsgfl g
specifies a set of conditions (options) governing the creation of the
nmessage- queue data structure and the accessibility of the message
queue. The paraneter value is that of one of the follow ng options or
is constructed fromtwo or nore of those options by |ogical ORing.
The options are defined as constants in the Pascal and FORTRAN
constants include files.

| PCCRT creates the nessage-queue data structure when it does not
exi st.

| PCEXL causes MSGGET to fail when IPCCRT is set and the
message- queue data structure exists.

| RUSR permts the process that owns the nmessage- queue data
structure to read it.

| WUSR permts the process that owns the nmessage- queue data
structure to nodify it.

| RCRP permits the group associated with the nessage-queue data
structure to read it.

| WVCRP permits the group associated with the nessage-queue data
structure to nodify it.

| Copyright IBM Corp. 1985, 1989
250-1

VS/AIX Interface Library
MSGGET get or create a message queue

| ROTH permts others to read the nessage-queue data structure.
| WOTH permts others to nodify the nessage-queue data structure.
O In Pascal, nsgflg is of type integer.

O In FORTRAN, nsgflg is of type | NTEGER

Ret urn Val ues

A nessage-queue identifier is returned upon successful conpletion of the
call, and the data structure (nsqgid_ds; see Appendix C) associated with
the newidentifier is initialized. The value -1 is returned and an error
code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the MSGGET
systemroutine. (The value of the first paraneter of the call is the

return value of the ftok system subroutine. The value assigned to the
paraneter "blue" specifies the creation of a nmessage queue for the process
(if one does not already exist) and gives the user read access to it.

Pascal

procedure nsgget 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

orange : st 80;
brown : char;

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/usr/include/ailtypes.inc';
blue := I PCCRT + | RUSR
red := p_ftok (orange, brown);

green : = p_nsgget (red, blue);
witeln (green);
end;

FORTRAN

SUBROUTI NE MSGGET1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FMSGGET, FFTOK, BLUE, GREEN, RED
CHARACTER* 80 ORANGE

CHARACTER BROWN

BROM = ' ni

ORANGE = '/fusr/include/ailtypes.inc '

| Copyright IBM Corp. 1985, 1989
250-2

VS/AIX Interface Library
MSGGET get or create a message queue

BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)
GREEN = FMSGGET (RED, BLUE)
PRI NT *, GREEN

END

| Copyright IBM Corp. 1985, 1989
250-3

VS/AIX Interface Library
MSGRCV, MSGXRCYV read and store a message

2.51 MBGRCV, MSGXRCV read and store a message

Description

Both of the MG systemcalls read a nessage froma specified queue and
place it in a structure specified in the call.

In addition, MSGXRCV Wwill return the following itens of information:

0 the tinme the nessage was sent

O the sender's effective user ID

O the sender's effective group ID

0 the sender's node ID

0 the sender's process ID

Synt ax

+--- Pascal ----------mmmmm e e - +
p_nsgrcv (nsqgid, nsgp, nsgsz, nsgtyp, nsgflg); |

p_nsgxrcv (msqgi d, nmsgpt, nsgsz, nsgtyp, nsgflg); |

o ————————

__ +
-0 FORTRAN - - == === = o = s o m s e +
I I
I I
! FMBGRCV (MBQ D, MSGP1, MBGP2, MBGSZ, MSGTYP, NBGFLG) !
I I
I I
! FMBGXRCV (MBQ D, MBGPT1, MBGPT2, MBGSZ, MSGTYP, NSGFLG) !
I I
: :
I I
g +

Par anmet ers

nsqi d
is a nmessage-queue identifier containing the nmessage to be read.

O In Pascal, nsqgid is of type integer.

O In FORTRAN, nsqid is of type | NTEGER

nmegp
points to the record nsgbuf, in which a type identifier and the

message will be stored. This message is read fromthe queue specified
by msgid. The nsgp paraneter is used only in the MSGRCV call.

O In Pascal, nsgp is of type nbufptr.

0 In FORTRAN, nsgp is sent as two paraneters:

- nmegpl is of type | NTEGER

- nmegp2 i s of type CHARACTER*80.

| Copyright IBM Corp. 1985, 1989
251-1

VS/AIX Interface Library
MSGRCV, MSGXRCYV read and store a message

nmsgpt

points to the extended nessage receive buffer (nmsgxbuf), in which the
nmessage tine, sender information, type identifier, and nessage will be
stored. This nmessage is read fromthe queue specified by nsqid. The
nmegpt paraneter is used only in the MSGXRCV call
O In Pascal, nsgpt is of type nsgxptr.
O In FORTRAN, nsgpt is sent as two paraneters:

- nmegptl is an array(6) of type I NTEGER

- nmegpt 2 is of type CHARACTER*80

megsz

is a constant or variable that specifies the length of the nmessage in
bytes. The maxi mum si ze of nsgsz is 80 characters.

O In Pascal, nsgsz is of type integer.

O In FORTRAN, nsgsz is of type | NTEGER

nmegtyp

is a constant or variable that specifies the type of the nessage to be
read.

O In Pascal, nsgtyp is of type integer

O In FORTRAN, nsgtyp is of type | NTEGER

nmsgfl g

specifies the operation to be perfornmed when the desired nmessage is in
the queue and when it is not. The value assigned to nmsgflg is that of
one or nore of the foll ow ng:

| PCNER
truncates the nessage when it is |onger than the nunber of
bytes specified by nsgsz.

| PCNWI
specifies the operation to be perfornmed when the desired
message is not in the queue.

O In Pascal, nsgflg is of type integer.

O In FORTRAN, nsgflg is of type | NTEGER

Ret urn Val ues
A val ue equal to the number of bytes stored in ntext (of nsgbuf or

msgxbuf) is returned upon successful conpletion of a call, and the data
structure associated with the nessage-queue identifier is nodified as
foll ows:

O msg_gnumis decrenented by 1

O nmeg_lpidis set equal to the process ID of the calling process

O neg_rtine is set equal to the current tine

The value -1 is returned and an error code is set in errno if the cal

| Copyright IBM Corp. 1985, 1989
251-2

VS/AIX Interface Library
MSGRCV, MSGXRCYV read and store a message

fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the NMSGRCV
systemroutine. The value of the first parameter of this call is the

return value of MSGGET. (The value of the first parameter of MSGGET is
the return value of the ftok system subroutine; see Notes at the end of
this section.) The variable "orange" specifies the nmaxi num|ength of the
message. The value printed out is the nunber of bytes received froma
nmessage.

Pascal

procedure nsgrcvl,;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
bl ue, green, grey, orange, pink, purple, red : integer

white : st80;
brown : char;
yel l ow : nbufptr

% ncl ude /usr/include/aildefs.inc

begin
new (yel |l ow);
brown := "W ;
white := "/usr/include/ailtypes.inc';
blue := 0;
green : = | PCNER
orange : = 50;
pink := I PCCRT + | RUSR

purple := p_ftok (white, brown);
red : = p_nsgget (purple, pink);

grey := p_nsgrcv (red, yellow, orange, blue, green);
witeln (grey);
end,
FORTRAN

SUBRQUTI NE MSGRCV1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FMBGRCV, FMSGGET, FFTOK, BLUE, GREEN, GREY, ORANGE
| NTEGER PI NK, PURPLE, RED, VIOLET

CHARACTER*80 WHI TE, YELLOW

CHARACTER BROWN

BROM = ' w
VWH TE = '/usr/include/ailtypes.inc '
BLUE = 0O

GREEN = | PCNER

| Copyright IBM Corp. 1985, 1989
251-3

VS/AIX Interface Library

MSGRCV, MSGXRCYV read and store a message
ORANGE = 50
PINK = | PCCRT + | RUSR
PURPLE = FFTOK (WHI TE, BROWN)
RED = FMSGGET (PURPLE, PI NK)
GREY = FMSGRCV (RED, VIOLET, YELLOW ORANGE, BLUE, GREEN)
PRI NT *, GREY
END

| Copyright IBM Corp. 1985, 1989
251-4

VS/AIX Interface Library
MSGSND send a message to a queue

2.52 MSGSND send a message to a gueue

Description
The MBGSND system call sends a message to a specified queue.
Synt ax
+--- Pascal --------------oooooo oo e
I
I
| p_nmsgsnd (nsqi d, nsgp, nsgsz, nsgflg);
I
|
I
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
R = O 4 I N B T
I
I
| FMSGSND (MSQ D, MSGP1l, MsGP2, MSGSZ, MSGFLG
I
|
I
e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a
Par anet er s
nsqi d
is a nmessage-queue identifier to which a nessage is to be sent.
O In Pascal, nsqgid is of type integer.
O In FORTRAN, nsqid is of type | NTEGER
nmegp _ .
is the pointer to the record nsgbuf, which contains the nmessage to be
sent .

O In Pascal, nsgp is of type nbufptr.
0 In FORTRAN, nsgp is sent as two paraneters:
- msgpl is of type | NTEGER
- nmegp2 is of type CHARACTER*80.
negsz
is a constant or variable that specifies the length of the nmessage in
bytes. The maxi mum val ue of nsgsz is 80.
O In Pascal, nsgsz is of type integer.
O In FORTRAN, nsgsz is of type | NTEGER
nmsgfl g
specifies the action taken when either of the follow ng conditions

prevents the nmessage from being sent:

0 the nunber of bytes already in the queue is equal to the nunber
specified by nmsg_gbytes.

O the total nunber of nmessages in all queues in the systemis equal
to the systeminposed limt.

| Copyright IBM Corp. 1985, 1989
252-1

VS/AIX Interface Library
MSGSND send a message to a queue

O In Pascal, nsgflg is of type integer.

O In FORTRAN, nsgflg is of type I NTEGER

Ret urn Val ues

The value 0 is returned upon successful completion of the call, and the
data structure associated with the nessage-queue identifier is nodified as
fol | ows:

O msg_gnumis increnented by 1

O nmeg_lspidis set equal to the process ID of the calling process

O neg_stine is set equal to the current tine

The value -1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the MSGSND
systemroutine. The value of the first parameter of this call is the

return value of MSGGET. (The value of the first parameter of MSGGET is
the return value of the ftok system subroutine; see Appendix E.) The
vari abl e "orange" specifies the length of the nmessage.

Pascal

procedure nsgsndl;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
bl ue, grey, orange, pink, purple, red : integer

white : st80;
brown : char;
yel l ow : nbufptr

% ncl ude /usr/include/aildefs.inc

begin
new (yel |l ow);
brown := "W ;
white := "/usr/include/ailtypes.inc';
bl ue : = | PCNWAT;
orange : = 27,
pink := I PCCRT + | RUSR + | WUSR
yellow@ntype := 1

yel | ow@ mnt ext "This is 1 test for nessages';
purple := p_ftok (white, brown);
red : = p_nsgget (purple, pink);

grey := p_nsgsnd (red, yellow orange, blue);
witeln (grey);
end,

| Copyright IBM Corp. 1985, 1989
252-2

VS/AIX Interface Library
MSGSND send a message to a queue

FORTRAN

SUBROUTI NE MSGSND1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FMSGSND, FMSGGET, FFTOK, BLUE, GREY, ORANGE, PINK
| NTEGER PURPLE, RED, YELLOW

CHARACTER*80 WHI TE, VI OLET

CHARACTER BROWN

BROM = 'w

VWH TE = '/usr/include/ailtypes.inc '
BLUE = | PCNWI

ORANGE = 27

PINK = | PCCRT + | RUSR + | WUSR
YELLOW = 1

VIOLET = '"This is 1 test for nessages'

PURPLE = FFTOK (WH TE, BROWN)

RED = FMSGGET (PURPLE, PI NK)

GREY = MBGSND (RED, YELLOW VI COLET, ORANGE, BLUE)
PRI NT *, GREY

END

| Copyright IBM Corp. 1985, 1989
252-3

VS/AIX Interface Library
NICE set a process priority

2.53 NICE set a process priority

Description

The NI CE systemcall assigns a new CPU priority to a process by adding a
specified value to its current N CE val ue.

If this value results in a priority nunber outside the valid range, the
NICE routine will reset the priority to the nearest limt.

Synt ax
+--- Pascal ---------------oooooo oo e +

I
i p_nice (incr),;
|
I

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
' ENICE (INCR !
| I
I I
1 |
g +

Par aneters
i ncr

is a value that--when added to the priority nunber of the current
process--determnes the new priority nunber of the current process.

O In Pascal, incr is of type integer.
O In FORTRAN, incr is of type | NTEGER

Ret urn Val ues

The new NI CE value mnus 20 is the val ue returned upon successf ul
completion of the call. The value -1 is returned and an error code set in
errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the N CE
systemroutine. The priority nunber of the current process is increased
by 5, thereby lowering the priority. The incr paraneter is specified with
the variable "red". The return value printed is the new priority val ue

m nus 20.

Pascal

procedure nicel;

const
% ncl ude /usr/include/ail pconsts.inc

type

| Copyright IBM Corp. 1985, 1989
253-1

VS/AIX Interface Library
NICE set a process priority

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red : = 5;
blue := p_nice (red);
witeln (blue);
end;
FORTRAN

SUBRQUTI NE NI CE1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FNI CE, BLUE, RED

RED = 5

BLUE = FNI CE (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
253-2

VS/AIX Interface Library
OPEN open a file for reading or writing

2.54 OPEN open a file for reading or witing

Description

The OPEN systemcall opens a specified file for reading or witing or
bot h, dependi ng on the access node specified in the call

Synt ax

+--- Pascal --------------oooooo oo e +

p_open (path, oflag, node);

Par anet ers

pat h
is the name of the file to be opened.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

of | ag
specifies one or a conbination of the options listed below. The
paranmeter value is that of one of the followi ng options or is
constructed fromtwo or nore of those options by logical ORing. The
options are defined as constants in the Pascal and FORTRAN constants
include files (see Appendi xes).

Note: The RDONLY, WRONLY, and RDWR val ues cannot be logically ORed

t oget her.
RDONLY opens the file for reading.
VIRONLY opens the file for witing.
RDWR opens the file for both reading and witing.
NDELAY open wi thout delay. This flag may affect subsequent

reads and wites.

APPEND sets the file pointer to the end of the file prior to
each wite.

CREATE has no effect if the file specified by path exists.
However, if the specified file does not exist, the file
owner's ID and the files's group ID are set to the
effective user I D of the process; and the access node
is set to node

| Copyright IBM Corp. 1985, 1989
254-1

VS/AIX Interface Library
OPEN open a file for reading or writing

TRUNC truncates the file length to zero.

EXCL when this option and CREATE are set, OPEN W II fail if
the file exists.

O In Pascal, oflag is of type integer.

O In FORTRAN, oflag is of type | NTEGER

node
is used with the CREATE val ue of ofl ag.

Note: For nore information on the node paraneter, see CHMOD on page
2.10 and STATX on page 2.98.

Ret urn Val ues

The return value is the file descriptor of the opened file. This file
descriptor will be needed for subsequent input-output operations. The
value -1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine that follow call the OPEN
systemroutine, which returns a file descriptor in the variable "red". |If
the call is successful, the nunber printed out is a valid file descriptor
Pascal

procedure openl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_open ('/usr/include/ailtypes.inc', RDONLY, O0);
witeln(red);

end;

FORTRAN

SUBRQOUTI NE OPEN1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FOPEN, RED

CHARACTER*80 BLUE

BLUE = '/usr/include/ailtypes.inc
RED = FOPEN (BLUE, RDONLY, O0)

PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
254-2

VS/AIX Interface Library
PAUSE wait for a signal

2.55 PAUSE wait for a signa

Description
The PAUSE system call suspends the execution of a process until it
recei ves a signal

Synt ax

+--- Pascal --------------oooooo oo e +
] I

1 I

| p_pause; |
| |
] I

1 I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
N 0 Sl 2 N +
] I

1 I

: FPAUSE () :
| |
] I

1 I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

Par anet er s
This systemcall has no paraneters.

Ret urn Val ues

There is no return value froma successful conpletion of PAUSE. The val ue
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the PAUSE
systemroutine, which suspends the calling process until the signal from
the ALARM call is received.

Pascal

procedure pausel;

const

% ncl ude /usr/include/ail fconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

green, red : usign;

% ncl ude /usr/include/aildefs.inc

begin
red : = 20;
green := p_alarm (red);
witeln (green);
bl ue : = p_pause
end,

| Copyright IBM Corp. 1985, 1989
255-1

FORTRAN

VS/AIX Interface Library
PAUSE wait for a signal

SUBROUTI NE PAUSE1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FPAUSE, FALARM BLUE, GREEN, RED
RED = 20

GREEN = FALARM (RED)

PRI NT *, GREEN

BLUE = FPAUSE ()

END

| Copyright IBM Corp. 1985, 1989
255-2

VS/AIX Interface Library
PIPE create an interprocess channel

2.56 PIPE create an interprocess channe

Description
The PI PE systemcall creates an interprocess conmunication
nmechani sm-called a "pipe" or "channel"--that allows the passing of data

bet ween processes. After a pipe has been set up, two or nore cooperating
processes (created by subsequent FORK routines) can pass data to one
another with READ and WRI TE cal | s.

Synt ax

+--- Pascal --------------ooooo oo e +

p_pipe (fildes);

Par anet ers

fil des
is an array of two file descriptors, both of which are returned by a
PIPE call. The first elenment of the array holds the file descriptor
for the read end of the pipe; the second elenment holds the file
descriptor for the wite end of the pipe.

O In Pascal, fildes is a variable of type piparray.

O In FORTRAN, fildes is an array(2) of type |INTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails (for
exanmple, if too many files are open).
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es
The Pascal procedure and FORTRAN subroutine that follow call the PIPE
systemroutine. A pipe is created between two files whose descriptors are
returned: the read end of the pipe is returned in the first elenent of the

array "red" and the wite end is returned in the second.

Pascal

procedure pipel;

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
256-1

VS/AIX Interface Library
PIPE create an interprocess channel
type
% ncl ude /usr/include/ailtypes.inc
var
blue : integer;
red : piparray;

% ncl ude /usr/include/aildefs.inc

begin
blue := p_pipe (red);
witeln (blue);
witeln (red[1]);
witeln (red[2]);
end,

FORTRAN

SUBRQUTI NE PI PE1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FPI PE, BLUE, RED(2)

BLUE = FPI PE (RED)

PRI NT *, BLUE

PRI NT *, RED(1)

PRI NT *, RED(2)

END

| Copyright IBM Corp. 1985, 1989
2.56-2

VS/AIX Interface Library
PLOCK lock or unlock a process, text, or data

2.57 PLOCK |l ock or unlock a process, text, or data

Description

The PLOCK systemcall allows the calling process to lock or unlock its
text segment (text lock), its data segnment (data |ock), or both (process
| ock) into menmory. Locked segnments are "pinned" in nenory and are

unaf fected by pagi ng.

Note: Only users with an effective user ID of super-user may issue this

call.

Synt ax

+--- Pascal --------------oooooo oo e +
I I
I I
i p_plock (op); i
| l
I I
I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +
R = O 4 I N B R +
I I
I I
: FPLOCK (OP) |
| l
I I
I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

Par anet ers

o is a constant or variable that specifies one of four options:
UNLOCK remove the | ocks.
PROCLOCK | ock text and data segnents into menory.
TXTLOCK | ock text segnment into nenory.
DATLOCK | ock data segnent into nenory.
O In Pascal, op is of type integer.

O In FORTRAN, op is of type | NTEGER

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the PLOCK
systemroutine. The value of the op paraneter ("red") specifies that the
routine |l ock the current text segnment into nenory.

Pascal

procedure pl ockl;

| Copyright IBM Corp. 1985, 1989
257-1

VS/AIX Interface Library
PLOCK lock or unlock a process, text, or data

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red : = TXTLOCK
blue := p_plock (red);
witeln (blue);

end;

FORTRAN

SUBROUTI NE PLOCK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FPLOCK, BLUE, RED

RED = TXTLOCK

BLUE = FPLOCK (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
257-2

VS/AIX Interface Library
PROFIL generate an execution-time profile

2.58 PROFIL generate an execution-tinme profile
Description

The PROFIL systemcall generates a histogram of periodically sanpled
val ues of the program counter of the calling process.

Synt ax
+--- Pascal --------------oooooo oo e +

p_profil (buf, bufsiz, offset, scale);

Par anet ers

buf
for any value of bufsiz except -1, points to an area of menory, and
its length in bytes is given by bufsiz. |f the value of bufsiz is -1,
then the paraneters offset and scale are ignored and buf points to an
array of "prof" structures (declared in ailtypes.inc and avail abl e
only in Pascal).

O In Pascal, buf is of type intptr.
O In FORTRAN, buf is of type | NTEGER*2.
buf si z
specifies the size of the buffer in bytes. A value of 0 (zero)
renders the routine ineffective. (See Notes.)

O In Pascal, bufsiz is of type usign.

O In FORTRAN, bufsiz is of type | NTEGER

of f set
specifies the value to be subtracted fromthe programcounter. (See
Not es.)
O In Pascal, offset is of type usign.

O In FORTRAN, offset is of type | NTEGER
scal e
specifies the value by which the quantity (programcount - offset) is
multiplied before the value in buf is incremented. (See Notes.)
O In Pascal, scale is of type usign.

O In FORTRAN, scale is of type | NTEGER

Ret urn Val ues

| Copyright IBM Corp. 1985, 1989
258-1

VS/AIX Interface Library
PROFIL generate an execution-time profile

There is no return value froma successful PROFIL call. The value -1 is
returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the PROFIL
systemroutine. Wth the values assigned in the exanple, all instructions

will be mapped to the area in nenory pointed to by the variable "yell ow

Pascal

procedure profill

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

yellow : shrtptr
bl ue, indigo, violet : usign

% ncl ude /usr/include/aildefs.inc

begin
new (yel |l ow);
blue := 2;
i ndi go :
vi ol et
green := p_profil (yellow, blue, indigo, violet)
end,

0;
1;

FORTRAN

SUBROUTI NE PROFI L1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FPROFI L, BLUE, GREEN, |INDI GO, VICLET, YELLOW2

BLUE = 2

INDIGO = 0

VIOLET = 1

GREEN = FPROFI L (YELLOW BLUE, | NDI GO, VIOLET)

END
Not es
Because Pascal and FORTRAN |l ack the facilities for handling unsigned
4-byte integers, the programmer nust convert paraneter values that fall in
t he range

2 147 483 648 through 4 294 067 295

To use a paraneter value in this range, subtract 4 294 067 296 fromthe
paraneter value before issuing the call (the result will always be
negati ve).

| Copyright IBM Corp. 1985, 1989
2.58-2

VS/AIX Interface Library
PTRACE trace the execution of a child process

2.59 PTRACE trace the execution of a child process

Description

The PTRACE routine enables a parent process to control the execution of a
child process and to exam ne and change its nenory inmage. The routine is
used primarily for breakpoint debuggi ng.

Synt ax

+--- Pascal --------------oooooo oo e

p_ptrace (requst, pid, addr, data, buff);

Par anmet er s

requst
is a variable that specifies a trace operation (see Al X Technica
Ref er ence) .
O In Pascal, requst is of type integer.

O In FORTRAN, requst is of type | NTEGER
pi d
is a variable that contains the process ID of the traced process.
This process nust be an i mediate child of the tracing process.
O In Pascal, pidis of type integer.
O In FORTRAN, pid is of type |INTEGER

addr
Dependi ng on the value of requst, this paraneter

- points to an area where data is returned; or

- i ndicates a register whose value is to be nodified or
returned; or

- points to a block of data (in the child process) to be read
fromor witten to.

O In Pascal, addr is of type intptr.
O In FORTRAN, addr is of type | NTEGER
dat a
when it is not ignored, usually holds data for requests that wite to

the nenory image of the traced process.

O In Pascal, data is of type integer.

| Copyright IBM Corp. 1985, 1989
259-1

VS/AIX Interface Library
PTRACE trace the execution of a child process

O In FORTRAN, data is of type | NTEGER

buf f
is a pointer to a block of data (for any requst that requires a
buffer).
O In Pascal, buff is of type intptr.
O In FORTRAN, buff is of type I NTEGER

Ret urn Val ues

For the values that are returned by PTRACE, see the descriptions of the
argunments to the requst paraneter. The value -1 is returned and an error
code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the PTRACE
systemroutine. A child process is created by a FORK systemcall. The

child process then calls PTRACE, requesting that it be traced by the
parent (requst = 0). The parent process waits for a signal fromthe child
and then calls PTRACE, which returns the value of register 2 used by the
child process (requst = 11).

Pascal

procedure ptracel;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
bl ue, green, orange, red, yellow : integer,;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_fork;
if green = 0 then
begin
orange := p_alarm (1),
orange := p_ptrace (0, 0, nil, 0, nil);
for blue := 1 to 10 do
for red := 1 to 100 do
wite ('z');
witeln;
end

el se
begin
orange := p_wait (yellow);
witeln (‘return fromwait ', orange);
orange := p_ptrace (11, green, nil, 2, nil);

witeln ('register two contains , orange);

| Copyright IBM Corp. 1985, 1989
259-2

VS/AIX Interface Library
PTRACE trace the execution of a child process
end
end,

FORTRAN

SUBROUTI NE PTRACE1L

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FPTRACE, FALARM FFORK, FWAI T

| NTEGER BLUE, GREEN, ORANGE, RED, YELLOW
GREEN = FFORK ()

| F (GREEN . EQ 0) THEN
ORANGE = FALARM (1)
ORANGE = FPTRACE (0, 0, 0, 0, 0)
DO 10 BLUE = 1, 10
DO 20 RED = 1, 100

PRINT *, 'z’
ELSE
ORANGE = FWAI T (YELLOW
PRINT *, 'RETURN FROM WAIT ', ORANGE
ORANGE = FPTRACE (11, GREEN, 0, 2, 0)
PRINT *, 'REG STER TWO CONTAINS ', ORANGE
ENDI F
END

| Copyright IBM Corp. 1985, 1989
259-3

VS/AIX Interface Library
READ, READX read from a file

2.60 READ, READX read froma file

Description

The READ systemcall reads a specified nunber of bytes froma file into a
buffer.

The READX system call invokes the same function as READ, but it provides
the alternative of comunication with character device drivers that
require nore information or return nore status information than READ can
handl e.

Synt ax

+--- Pascal ---------------oooooo oo e
p_read (fildes, buf, nbytes);

p_readx (fildes, buf, nbytes, ext);

o ————————

+--- Pascal external function definitions -------------------------------
I

I

| function p_read (fildes : integer; buf : readptr;

| nbytes : integer) : integer; external;

I

I

| function p_readx (fildes : integer; buf : readptr;

| nbytes, ext : integer) : integer; external;

|

I

I

e e e e e e e emm e mmm s MM mmmeemmemeEmmmmemsmememsmmmeammmemmmememmmeemmmmmmmmmmm—————a

FREAD (FI LDES, BUF, NBYTES)

FREADX (FI LDES, BUF, NBYTES, EXT)

Par anmet ers

fil des
is the descriptor returned by a successful CREAT, DUP, DUP2, FCNTL,
OPEN, PI PE, SOCKET, or SOCKETPAIR system call.

O In Pascal, fildes is of type integer.
0 In FORTRAN, fildes is of type | NTECER

buf
is a pointer to a buffer. The bytes read fromthe file specified by
fildes are placed in this buffer when a READ or READX systemcall is
execut ed.

O In Pascal, buf is of type readptr. (Readptr is a user-defined
poi nter to a packed array of type character.)

| Copyright IBM Corp. 1985, 1989
260-1

VS/AIX Interface Library
READ, READX read from a file

O In FORTRAN, buf is a user-defined array of type CHARACTER

nbyt es
is the nunber of bytes to be read fromthe file specified by fildes.

O In Pascal, nbytes is of type integer.
O In FORTRAN, nbytes is of type integer.

ext
is a paraneter of the READX call only. It provides a value or a
pointer to a conmmunication area for specific devices.

O In Pascal, ext is of type integer.
O In FORTRAN, ext is of type | NTEGER

In Pascal and FORTRAN, ext is device-dependent (see Al X Technica
Ref er ence) .

Ret urn Val ues

The return value is the actual nunmber of bytes read fromthe file. [If the
return value is 0 (zero), the end file has been reached. The value -1 is
returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the READ
systemroutine, which reads a specified nunber of bytes froma file that
has been opened for reading. In these exanples, 100 bytes are read from
the file /fusr/include/ailtypes.inc into the buffer pointed to by the
Pascal variable "yell ow' and by the FORTRAN string "YELLOW.

Pascal

procedure readl;

const
% ncl ude /usr/include/ail pconsts.inc

type
% ncl ude /usr/include/ailtypes.inc

readary = packed array[1l..100] of char;
readptr = @ eadary;

var
bl ue, orange, red : integer

yell ow : readptr

function p_read (fildes : integer; buf : readptr;
nbytes : integer) : integer; external;
begin
new (yell ow);
blue := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
red : = 100;
orange := p_read (blue, yellow, red);

| Copyright IBM Corp. 1985, 1989
2.60-2

VS/AIX Interface Library
READ, READX read from a file
witeln (orange);
end,

FORTRAN

SUBRQOUTI NE READ1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FREAD, FOPEN, BLUE, ORANGE, RED

CHARACTER* 100 YELLOW

BLUE = FOPEN (' /usr/include/ailtypes.inc ', RDONLY, 0)
RED = 100

ORANGE = FREAD (BLUE, YELLOW RED)

PRI NT *, ORANCE

END

| Copyright IBM Corp. 1985, 1989
2.60-3

VS/AIX Interface Library
READLINK read the value of a symbolic link

2.61 READLINK read the value of a synmbolic |ink

Description

The READLI NK system call places a specified nunber of characters fromthe
synmbolic-link path in a specified buffer.

Synt ax

+--- Pascal --------------oooooo oo e +

p_readlink (path, buf, bufsize);

e o e meemaa - +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! FREADLI NK (PATH, BUF, BUFSI ZE) !
| I
I I
1 |
g +

Par anet ers

pat h
points to the path nane of an existing file.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

buf
is the user's buffer to be filled with read dat a.

O In Pascal, buf is a string variable or constant of type st80.

O In FORTRAN, buf is a string variable or constant of type
CHARACTER* 80.

buf si ze
is the size of buf

O In Pascal, bufsize is of type integer.
O In FORTRAN, bufsize is of type | NTEGER

Return Val ues

The count of characters read into the buffer is returned to the calling
process. The value -1 is returned and an error code set in errno if the
call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the READLI NK
systemroutine, after first creating a synbolic Iink between

| Copyright IBM Corp. 1985, 1989
261-1

VS/AIX Interface Library
READLINK read the value of a symbolic link

[/ bushel /1ight/hide and /usr/include/aildefs.inc. The systemcall places
the name of the synbolic link in the paraneter buf. After successfu
conpletion of the call, the link is removed by UNLI NK

Pascal

procedure readlinkl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer,;

pat h, buf : st80;

% ncl ude /usr/include/aildefs.inc

begin
path : = '/bushel /light/hide
green := p_symink ('/usr/include/aildefs.inc', path);
if (green = -1) then showerror;
green := p_readlink (path, buf, 50);
witeln (' Readlink returned: ', green : 2);
if (green = -1) then showerror;
witeln ("buf =", buf);
green := p_unlink ('/bushel/light/hide');

end,

FORTRAN

SUBROUTI NE READLI NK1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FREADLI NK, FSYM.I NK, FUNLI NK, GREEN
CHARACTER*80 BUF, P1, P2

P1 = '/usr/include/aildefs.inc
P2 = '/bushel/light/hide "
GREEN = FSYMLI NK (P1, P2)

IF (GREEN . EQ -1) CALL ERRORS
GREEN = FREADLI NK (P2, BUF, 50)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS
PRI NT *, BUF

GREEN = FUNLI NK (P2)

END

| Copyright IBM Corp. 1985, 1989
2.61-2

VS/AIX Interface Library
READV read input into multiple buffers

2.62 READV read input into rmultiple buffers

Description

The READV systemcall obtains data froma specified source and reads that
data into a specified set of buffers.

Synt ax

+--- Pascal --------------oooooo oo e

p_readv (d, iov, iovcnt);

e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
+--- Pascal external function definition --------------------------------
I

I

| function p_readv (d : integer; var iov : iovarr

| iovcnt : integer) : integer; external;

|

I

I

e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a

This systemcall is not avail able in FORTRAN

Par anmet ers

d
is a file descriptor or a socket descriptor.

O In Pascal, dis of type integer.

is an array of buffers.

O In Pascal, iov is an array of records of type iovrec
(user-defined).

i ovent
is the nunber of buffers of the type specified by iov

O In Pascal, iovcnt is of type integer.
Ret urn Val ues
The nunber of bytes read and placed in a buffer is returned upon
successful conpletion of the call. The value -1 is returned and an error
code set in errno if the call fails.

O In Pascal, the return value is of type integer

Exampl es

In the Pascal procedure that follows, five iovec records are initialized
with base addresses and a buffer length of 10. Socket descriptor s is
created by a SOCKET systemcall, and READV is called to read information

| Copyright IBM Corp. 1985, 1989
262-1

VS/AIX Interface Library
READV read input into multiple buffers
fromthe socket into the five buffers pointed to by iov.
Pascal

procedure readvl;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
buf = packed array[1l..10] of char;
buf ptr = ~buf;
iovrec = record

iov_len : integer;
i ov_base : bufptr;
end,
iovarr = array[1l..5] of iovrec;
var
i, s, green : integer;
arr : stb5;
iov : iovarr;

% ncl ude /usr/include/aildefs.inc

function p_readv (d : integer; var iov : iovarr
iovcnt : integer) : integer; external;
begin
for i :=11to 5 do
begin
iov[i].iov_len := 10;
new(iov[i].iov_base);
end,
s := p_open ('/usr/include/aildefs.inc', RDONLY, O0);
green .= p_readv (s, iov, 5);

if (green <> -1) then
witeln (' Readv returned: K')

el se
witeln ('Readv returned: ERRCOR)
if (green = -1) then showerror;
end,

| Copyright IBM Corp. 1985, 1989
2.62-2

VS/AIX Interface Library
REBOQOT reinitialize or halt system operation

2.63 REBOOT reinitialize or halt system operation

Description

The REBOOT systemcall makes a "request” that the operating system be
reinitialized ("rebooted”) or that it be stopped ("halted"). If the call
fails, it returns a value; otherwi se, it does not.

Synt ax

+--- Pascal -------mmmmm st ma i ma oo +

p_reboot (how 0);

Par anmet ers

howt o
specifies one of the follow ng flags:

RBNOSYNC prevents the normals WRI TE of buffered data to file systens.
RBHALT st ops system operation.
O In Pascal, howo is of type integer.
O In FORTRAN, howto is of type | NTEGER
Ret urn Val ues
There is no return value froma successful REBOOT call. The value -1 is
returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es
The Pascal procedure and FORTRAN subroutine that follow call the REBOOT
systemroutine, with the howto flag set to RBHALT. The Al X subsystemis

term nated and not restart ed.
Pascal

procedure reboot1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

howto : integer

| Copyright IBM Corp. 1985, 1989
263-1

VS/AIX Interface Library
REBOQOT reinitialize or halt system operation

% ncl ude /usr/include/aildefs.inc

begin
howt o : = RBHALT;
p_reboot (how 0);
end;

FORTRAN

SUBROUTI NE REBOOT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FREBOOT, HOMO

HOMO = RBHALT

CALL FREBOOT (HOWMO)

END

| Copyright IBM Corp. 1985, 1989
2.63-2

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket

2.64 RECV, RECYMSG RECVFROM receive a nessage from a socket

Description

The RECV, RECVMSG and RECVFROM systemcalls receive a nessage froma

speci fied socket.

Note: The RECV systemcall can be used only when the specified socket is
in a connected state. The RECVMSG and RECVFROM calls can be used
at any tine.

Synt ax

+--- Pascal --------------oooooo oo e +

p_recv (s, buf, len, flags);

p_recvnsg (s, nsg, flags);

]
1
]
1
]
1
]
1
]
1
| p_recvfrom (s, buf, len, flags, from fromen); |
]
1
]
1
]
1

o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
+--- Pascal external function definitions ------------------------------- +
I I
I I
| function p_recv (s : integer; var nmsg : nsgarr; len : integer; |
| flags : integer) : integer; external; |
I I
I I
| function p_recvfrom (s : integer; var nsg : nsgarr; var len : integer;
: flags : integer; from: sockaddrptr; :
| fromen : intptr) : integer; external; |
l l
I I
I I
o m o o o o o m e e e e e e e o e o e o e e e e e e e e e e e e o e e e e e e e eema—ao-o +
R = O 4 I 2 N B +

FRECV (S, BUF, LEN, FLAGS)
FRECVMSG (S, MBG FLAGS)

FRECVFROM (S, BUF, LEN, FLAGS, FROM FROWLEN) |

Par anmet ers

> is the descriptor of a socket created by a SOCKET system call.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER

buf

is the structure in which the nmessage is to be received.

Note: The buf paraneter is used only in the RECY and RECVFROM system

| Copyright IBM Corp. 1985, 1989
264-1

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket

cal |l s.

O In Pascal, buf is an array of type nmsgarr (a user-defined array of
type character).

O In FORTRAN, buf is a user-defined array of type CHARACTER
I en
is the length of the nessage received. The |en paraneter is used only
in the RECV and RECVFROM system calls.
O In Pascal, |len is of type integer.
O In FORTRAN, len is of type |NTEGER
flags
is an argunent whose value is specified by logically ORing one or
both of the val ues shown here:
MSG OOB processes the out-of-band data on sockets that support it.

MSG PEEK peeks at the incom ng nessage.

Note: I n FORTRAN, the underscore is omtted (for exanple,

" MSGOOB") .
The flags paraneter is used only in the RECVY and RECVFROM system
cal |l s.
O In Pascal, flags is of type integer.

0 In FORTRAN, flags is of type | NTEGER

neg
is a nessage header to be received.
O In Pascal, nsg is of type nsghdrptr, declared in the include file
ailtypes.inc.
O In FORTRAN, nsg is of type CHARACTER*80.
from
receives the source address of the nessage if the argunent is a
nonzero val ue.
O In Pascal, fromis of type sockaddrptr, declared in the include
file ailtypes.inc.
O In FORTRAN, fromis of type CHARACTER*14 and corresponds to
sockaddr.sa_data in Pascal.
from en

isinitialized to the size of the fromparaneter. On return, this
value is changed to the actual size of the address stored there.

O In Pascal, fromen is of type intptr
O In FORTRAN, fromen is of type | NTEGER

Ret urn Val ues

| Copyright IBM Corp. 1985, 1989
2.64-2

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket
The length of the nessage, in bytes, is returned upon successfu
completion of the call. A value of -1 is returned and an error code set
inerrno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the RECV
systemroutine. Because RECV receives a nessage only when a socket is in
a connected state, sockets s and "sl1" are created, after which "sl1" is
bound to the name "socket" and connected to socket s. Finally, a nessage
is received from"sl".

Pascal

procedure recvl;

const
% ncl ude /usr/include/ail pconsts.inc
type
nmsgarr = packed array[1..50] of character;

% ncl ude /usr/include/ailtypes.inc
var
flags, len, namelen, s, sl1l, green : integer;
buf : nsgarr;
nanme : sockaddrptr
% ncl ude /usr/include/aildefs.inc
function p_recv (s : integer; var buf : nsgarr; var len : integer;

flags : integer) : integer; external;

begin
s : = p_socket (PF_UNI X, SOCK_STREAM 0);

flags : = MSG DONTROUTE + MSG_QOOB;
|l en : = 50;
green := p_recv (s, buf, len, flags);
witeln (' Recv returned: ', green : 2);
if (green = -1) then showerror;
end,

FORTRAN

SUBRQUTI NE RECV1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FRECV, FSOCKET, FLAGS, GREEN
CHARACTER*50 BUF

FLAGS = MSCDONTROUTE +MsGOOB

S = FSOCKET (PFUNI X, SKSTRM 0)

IF (S .EQ -1) CALL ERRORS

GREEN = FRECV (S, BUF, 50, FLAGS)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
264-3

VS/AIX Interface Library
RENAME rename a directory

2.65 RENAME renane a directory

Description
The RENAME systemcall renames a directory or file in a file system

Synt ax
+--- Pascal --------------oooooo oo e +

p_renane (frompath, topath)

g +
+o oo FFORTRAN = = = = === cccccccooooooeasseeeeeeaaaaaaaaannnoaaaaaannanaaaaens +
I I
1 |
| FRENAME (FROVPATH, TOPATH) !
I I
| :
1 |
g +

Par anet ers

fronpath
is the name of the directory or file to be renaned.

O In Pascal, fronpath is a string variable or constant of type st80.
O In FORTRAN, fronpath is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

topath
is the new nane of the directory or file.

O In Pascal, topath is a string variable or constant of type st80.

O In FORTRAN, topath is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
RENAME systemroutine. The directory to be renamed by the call is

[usr/ganmes, which becomes /usr/work. The return value of the call is in
the variable "folio".
Pascal

procedure renanmel

const

| Copyright IBM Corp. 1985, 1989
265-1

VS/AIX Interface Library
RENAME rename a directory
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
folio : integer,;
bl ue, red, : st80;

% ncl ude /usr/include/aildefs.inc

begin
red :="'"/usr/games';
blue := "/usr/work';
folio := p_renane (red, blue);
witeln (folio);
end;
FORTRAN

SUBROUTI NE RENAMEL

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FRENAME, FOLI O

CHARACTER*80 BLUE, RED

RED = '/usr/ganes '

BLUE = '/usr/work '

FOLI O = FRENAME (RED, BLUE)

PRI NT *, FOLI O

END

| Copyright IBM Corp. 1985, 1989
2.65-2

VS/AIX Interface Library
RMDIR remove a directory

2.66 RVDIR renove a directory

Description
The RMDIR systemcall renoves a directory specified in the call

Synt ax
+--- Pascal --------------oooooo oo e +

p_rndir (path);

ﬂ
Py
S
Py
Y
>
<

Par anmet ers

pat h
is the name of the directory to be renoved.

O In Pascal, path is a string variable or constant of type st80.

O In FORTRAN, path is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
RVDI R systemroutine. The directory specified in the call is /usr/ganes,
which is renoved. The return value of the call is in the variable
"folio".

Pascal

procedure rndirl

consts

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

folio : integer

red : st80;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
2.66-1

VS/AIX Interface Library
RMDIR remove a directory

begin
red :="/usr/games';
folio :=p_rmdir (red);
witeln (folio);

end,

FORTRAN

SUBROUTI NE RVDI R1

I NCLUDE (/usr/include/ailfconsts.inc)
I NTEGER FRMDIR, FCLIO

CHARACTER*80 RED

RED = '/usr/ganes '

FOLI O = FRVDI R (RED)

PRI NT *, FOLI O

END

| Copyright IBM Corp. 1985, 1989
2.66 -2

VS/AIX Interface Library
SELECT check the status of file descriptors and message queues

2.67 SELECT check the status of file descriptors and nmessage queues

Description

The SELECT systemcall checks specified file descriptors and nessage
gueues for readiness to read or wite or for any exceptional condition
that may be pendi ng.

Note: For nore information about the SELECT systemroutine, and
particul arly about nessage queues, see the correspondi ng
description in Al X Operating System Techni cal Reference.

Synt ax
+--- Pascal --------------oooooo oo e

I
I
| p_select (nfds, readfds, witefds, exceptfds, tineout);
I
|
I
I
I

Par anmet ers

nf ds
specifies the nunber of file descriptors being sel ected.

O In Pascal, nfds is of type integer.
O In FORTRAN, nfds is of type | NTEGER

r eadf ds
points to a mask specifying a set of file descriptors or nessage
gueues to be checked for readiness to read (receive). Those that are
ready are said to neet the selection criteria.

O In Pascal, readfds is of type integer.
0 In FORTRAN, readfds is of type | NTEGER

writefds
points to a mask specifying a set of file descriptors or nessage
gueues to be checked for readiness to wite (send). Those that are
ready are said to neet the selection criteria.

O In Pascal, witefds is of type integer.
O In FORTRAN, witefds is of type | NTEGER

except fds
points to a mask specifying a set of file descriptors or nessage
gueues to be checked for exceptions. Those that have exceptions
pending are said to neet the selection criteria.

| Copyright IBM Corp. 1985, 1989
2.67-1

VS/AIX Interface Library

SELECT check the status of file descriptors and message queues
O In Pascal, exceptfds is of type integer.

O In FORTRAN, exceptfds is of type | NTEGER

ti meout

specifies the maxi numlength of time that the calling process wll
wait for at |least one of the files or nessage queues specified in the

masks to "test positive" for

O In Pascal, timeout is of type tinevalptr.

readi ness or for a pending exception.

O In FORTRAN, exceptfds is an array of type INT with two el enents.

This array corresponds to the Pascal

data structure--defined in

the constants include file (Appendix B)--as foll ows:

TI MEQUT(1)

TI MEQUT(2)

tinmeout.tv_sec

tinmeout.tv_usec

Ret urn Val ues

The val ue representing the total

nunber of file descriptors and nessage

queues that neet the selection criteria is returned upon successfu

conmpl etion of the call.

errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal

procedure and FORTRAN subroutine that follow call
syst em subrouti ne,

The value -1 is returned and an error code set

Upon return,

in

the SELECT
whi ch in these exanpl es checks file descriptors 0, 1,
and 2 for readiness to read (rfds points to bit mask 7).

t he

bit mask is overwitten with one showing which file descriptors have data

ready.

Pascal

procedure sel ectl;

const

% ncl ude /usr/include/ail pconsts.inc

type

% ncl ude /usr/include/ailtypes.inc

var
green,
ti meout

begin

efds, rfds, wids : integer;

timeval ptr;

new (timeout);

ti meout
rfds” :
wf ds”
ef ds” :
green :

AN

.tv_sec :=b5;

7;

0;

0;

p_select (3, rfds, wids, efds, tineout)

witeln (green);

end;

| Copyright IBM Corp. 1985, 1989
2.67-2

FORTRAN

VS/AIX Interface Library
SELECT check the status of file descriptors and message queues

SUBROUTI NE SELECT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSELECT, GREEN, TOUT(2)
TQUT(1l) =5

GREEN = FSELECT (3, 7, 0, 0, TQUT)
PRI NT *, GREEN

END

| Copyright IBM Corp. 1985, 1989
2.67-3

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

2.68 SEMCTL i nvoke semaphore-control operations

Description

The SEMCTL systemcall invokes a variety of semaphore-control operations,

nmost of which involve getting and setting the values of a data structure

containing informati on about a set of semaphores.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax

+--- Pascal ----------mmmm s e e e +

p_sentt!l (semd, semmum cnd, arg);

Par anet ers

sem

semum

cnmd

___ +

FORTRAN - - === - - s s oo oo oo oo oo oo oo oo oo oo oo oo oo +
I
I

FSEMCTL (SEM D, SEMNUM CMD, ARG :
I
:
I

___ +

d

is the identifier of a semaphore set created by a previous SEMGET call

(see page 2.69). The value of semid is returned by the SEMGET call.

O In Pascal, semd is of type integer.

O In FORTRAN, senmid is of type | NTEGER

specifies the particular semaphore that will be affected by the

control operation invoked by the call.

O In Pascal, setmmumis of type integer.

O In FORTRAN, setmumis of type | NTEGER

specifies the control operation to be performed, which can be any of

the options in the following list. These options are executed with

respect to the semaphores specified by semid and semmum

Not e: Each constant is defined in the Pascal and FORTRAN constants

include file (see Appendi x B).

The fields referred to in the option descriptions bel ow belong to the

semrecord (see Appendix C).

CGETVAL returns the value of the semval field of the semaphore

specified by semi d and semrmum
SETVAL sets the value of the senval field of the semaphore set

according to the array pointed to by the field arg.val.

| Copyright IBM Corp. 1985, 1989
2.68-1

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

GETPI D returns the value of the senpid field of the semaphore
specified by semi d and semmum

GTNCNT returns the value of the semmcnt field of the semaphore
specified by semid and semmum

GTIZCNT returns the value of the senmecnt field of the semaphore
specified by semid and semmum

The followi ng cnd options return and set every senval field in the set
of semaphores.

GETALL takes the values of the semval field of the semaphore
specified by sem d and senrmum and stores themin the
array pointed to by the field arg.arry.

SETALL sets senval s according to the array pointed to by
arg.arry.
| PCSTT takes the current value of each field of the data

structure associated with semd and stores it in the
structure pointed to by the field arg.buf. In FORTRAN
information is stored in the first 14 elenents of the
field arg.arry (for further information see Table A on
page 2.68).

| PCSET sets the value of the following fields of the data
structure associated with semid to the correspondi ng
val ues found in the structure pointed to by arg. buf.

0 sempermuid
0 sempermgid
O sempermnode (|l ow order nine bits only)

In FORTRAN these fields are set according to elements
1, 2, and 5 of the field arg.arry.

Note: This option can be used only when the effective
user IDis equal to the super-user ID or to the
user |ID

| PCRVD renoves the semaphore identifier and its associ ated
data structure fromthe operating system

Note: This option can be used only when the effective
user IDis equal to the super-user ID or to the
user |ID

O In Pascal, cnd is of type integer.
O In FORTRAN, cnd is of type | NTEGER

arg
is a data structure determined by the cnd paraneter. The val ues
returned to the Pascal record and the FORTRAN array are listed on the
next page.
For cnd options CGETVAL, SETVAL, GETPI D, GINCNT,
and GIZCNT:

| Copyright IBM Corp. 1985, 1989
2.68-2

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

i The val ues of the sem
| record are set and
| returned here.

Pascal | FORTRAN i Description
________________________________ e
arg.arry@ 1] I ARE(1) i The values of the semary
Co A | record are set and
arg.arry@ 1000] | ARG 1000) | returned here.

| Copyright IBM Corp. 1985, 1989

2.68-3

Pascal | FORTRAN i Description
________________________________ e
arg. buf @em permui d I ARG 1) | owner's user ID
________________________________ e
ar g. buf @em permgid I AR 2) | owner's group ID
________________________________ e
ar g. buf @em perm cui d I ARE 3) | creator's user ID
________________________________ e
ar g. buf @em perm cgi d I ARE4) | creator's group ID
________________________________ e
ar g. buf @em _per m node I ARQE5) | access node
________________________________ e
ar g. buf @em perm seq I ARQ 6) | lot-usage sequence

| | nunber
________________________________ e
ar g. buf @em per m key I ARE7) | key val ue
________________________________ e
ar g. buf @em base@enval I AR 8) | operation perm ssion

| | structure
________________________________ e
ar g. buf @em base@enpi d I ARE9) i IDof last process that

! | issued SEMOP
________________________________ e
ar g. buf @em base@emmcnt I ARE10) | nunber of processes

| | awaiting senmval > cval
________________________________ e
ar g. buf @em base@enecnt I ARGE(11) | nunber of processes

| | awaiting senval =0
________________________________ e
arg. buf @em nsens I ARG 12) | nunber of semaphores in

| | a set
________________________________ e
ar g. buf @enl cnt I ARE13) | processes waiting on

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

l ! ! | ocked semaphore

o m o m e e e e e e e aaoo-- o e e e o o m e e e e ao--
| arg. buf @emotine I ARG 14) | time of last SEMOP call |
Fo e e e e e e e e e e e oo Fom e oo o - e |
| arg. buf @emctine I ARE15) | last tinme this structure |
! ! ! was changed by a SEMCTL |
I | I Cal I I
I 1 I I
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
O In Pascal, arg is of type senrec.

O In FORTRAN, arg is a 1000-el ement array of type | NTEGER

Ret urn Val ues
The val ue returned froma successful call varies with the cnd option
speci fied.

GINCNT semmcnt
CETPI D senpi d
CETVAL senval

GIZCNT senzcnt

All Ohers O
The value -1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the SEMCTL
systemroutine. In these exanples, a semaphore identifier is retrieved by

a call to SEMGET fromthe associated key paraneter ("red") returned by a
call to the ftok system subroutine. The call to SEMCTL stores the current
val ue of each nmenber of the data structure associated with the senid
paraneter ("green") in the structure yellow buf (in Pascal) or
YELLOAN(1) .. YELLON 15) in FORTRAN

Pascal

procedure senctl 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, pink, purple, red : integer;

orange : st 80;
brown : char;
yel l ow : senrec;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
2.68-4

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

begin
new (yel | ow. buf);
brown := "ni;
orange := '/tnp/junk';
blue := I PCCRT + | RUSR,
red := p_ftok (orange, brown);
green : = p_senget (red, 20, blue);
pi nk := 20;

purple := p_senctl (green, pink, 2, yellow);
witeln (purple);
end,

FORTRAN

SUBRQUTI NE SEMCTL1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSEMCTL, FFTOK, FSEMGET, BLUE, GREEN, PINK
| NTEGER PURPLE, RED, YELLOW 1000)
CHARACTER BROWN, ORANGE(80)

BROM = ' ni

ORANGE = '/tnp/junk '

BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

GREEN = FSEMGET (RED, 20, BLUE)

PINK = 20

PURPLE = FSEMCTL (CGREEN, PINK, 2, YELLOW
PRI NT *, PURPLE

END

| Copyright IBM Corp. 1985, 1989
2.68-5

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID

2.69 SEMGET get or create a semaphore-set ID

Description

The SEMGET systemcall returns a semaphore-set ID associated with the
specified key paraneter.

Synt ax

+--- Pascal ---------------ooooo oo e +

p_senget (key, nsens, senflqg);

g +
+o oo FFORTRAN = = = = === cccccccooooooeasseeeeeeaaaaaaaaannnoaaaaaannanaaaaens +
I I
1 |
| FSEMGET (KEY, NSEMB, SEMFLQ) !
| I
I I
1 |
g +

Par anet ers

key
is a semaphore-set |ID that has been assigned directly by the
progranmer or has been returned by the ftok system subroutine or
simlar algorithm

O In Pascal, key is of type integer.
O In FORTRAN, key is of type |INTEGER

nsems
specifies the nunber of semaphores in a set.

O In Pascal, nsens is of type integer.
O In FORTRAN, nsens is of type | NTEGER

senflg
specifies one or nore conditions (options) governing the creation of a
semaphore-set data structure and the accessibility of the semaphore
set. The parameter value is that of one of the follow ng options or
is constructed fromtwo or nore of those options by |ogical ORing
The options are defined as constants in the Pascal and FORTRAN
constants include files.

| PCCRT creates a data structure if one does not exist.

| PCEXL causes SEMGET to fail if IPCCRT is also set and the data
structure already exists.

| RUSR permts the process that owns the data structure to read
it.

| WUSR permts the process that owns the data structure to nodify
it.

| RGRP permts the group associated with the data structure to

| Copyright IBM Corp. 1985, 1989
269-1

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID

read it.

| WGRP permts the group associated with the data structure to
nmodify it.

| ROTH permts others to read the data structure.

| WOTH permts others to nodify the data structure.

O In Pascal, senflg is of type integer.

U In FORTRAN, senflg is of type |INTEGER

Ret urn Val ues
A semaphore-set IDis returned upon successful conpletion of the call.
The value -1 is returned and error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SEMGET
systemroutine, which in these exanples returns a senaphore identifier
associ ated with the key paraneter ("red") returned by a call to the ftok
system subroutine. This identifier is the value printed out.

Pascal

procedure senget 1

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

orange : st80;
brown : char;

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/tnp/junk';
blue := I PCCRT + | RUSR
red := p_ftok (orange, brown);

green : = p_senget (red, 20, blue);
witeln (green);
end;

FORTRAN

SUBROUTI NE SEMGET1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSEMGET, FFTOK, BLUE, GREEN, RED
CHARACTER BROWN, ORANGE(80)

BROMW = ' ni

| Copyright IBM Corp. 1985, 1989
2.69-2

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID
ORANGE = '/tnp/junk '
BLUE = | PCCRT + | RUSR
RED = FFTOK (ORANGE, BROMN)
GREEN = FSEMGET (RED, 20, BLUE)
PRI NT *, GREEN
END

| Copyright IBM Corp. 1985, 1989
2.69-3

VS/AIX Interface Library
SEMOP perform semaphore operations

2. 70 SEMOP perform semaphore operations

Description

The SEMOP system call invokes a group of senmaphore operations that are
perforned on a specified semaphore set.

Synt ax

+--- Pascal --------------oooooo oo e +

p_senop (sem d, sops, nsops);

e o e meemaa - +
e == FORTRAN - - - === === = == mmm m o e o e e e oo +
I I
1 |
! FSEMOP (SEM D, SOPS, NSOPS) !
I I
l l
1 |
g +

Par anet ers

sem d
is the I D of the semaphore set that is to be operated on.

O In Pascal, semd is of type integer

O In FORTRAN, senmid is of type | NTEGER

sops
is a pointer to an array of semmphore operation data structures. The
breakdown of this paraneter for each of the n semaphores is as

foll ows:
Pascal FORTRAN Description
nsops[n].sem num NSOPS(n, 1) Semaphor e nunber
nsops[n].sem op NSOPS(n, 2) Semaphore operation
nsops[n].semflg NSOPS(n, 3) Operation flags

Each semaphore operation specified by semop (FORTRAN, NSOPS(n,2)) is
perfornmed on the correspondi ng semaphore specified by sem num
(FORTRAN, NSOPS(n,1)). The semflg (FORTRAN, NSOPS(n,3)) value can be
0, one of the follow ng constants, or the value obtained from
logically ORing (adding) the followi ng constants defined in the Pasca
and FORTRAN constants include files.

SEMNDO (SEM_UNDO)
SEMODR (SEM_ORDER)
| PCNWT (1 PC_NOWAI T)

Note: For further information about these constants and the semaphore
operations, see Al X Operating System Techni cal Reference.

O In Pascal, sops is of type senopary.
U In FORTRAN, sops is an array(1000,3) of type | NTEGER
nsops

| Copyright IBM Corp. 1985, 1989
2.70-1

VS/AIX Interface Library
SEMOP perform semaphore operations

specifies the nunber of semaphore operations to be performed. A
semaphore set is limted to 1000 seraphores.

O In Pascal, nsops is of type integer.

O In FORTRAN, nsops is of type | NTEGER

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. In
addi ti on, each value of senpid for each semaphore in the array pointed to
by sops is set to the process ID of the calling process. The value -1 is
returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the SEMOP
systemroutine. In these exanples, a semaphore identifier is retrieved by

a call to SEMGET fromthe associated key paraneter ("red") returned by a
call to the ftok system subroutine. The call to SEMGET would typically be
part of a program used between two processes using senmaphores to buffer
information. The call to SEMOP is used by the sending process to perform
two semaphore operations. The first operation decrenents a counter of
enpty buffer avail able upon sending information. The second operation
increments a second counter of data packages that can be received by a
second process.

Pascal

procedure senopil;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, grey, pink, red : integer
orange : st 80;

brown : char;

yel l ow : senppary;

% ncl ude /usr/include/aildefs.inc

begin
brown := "z";
orange := '/tnp/junk';
grey := | PCCRT + | RUSR + | WUSR
red := p_ftok (orange, brown);

pink := p_senget (red, 2, grey);
yell oW 1] . sem num : = 1,

yellow 2] . sem num:= 2
yellow 1] . semop : = 1;
yellow 2] .semop := -1,
yellow 1] .semflg := O;
yellow 2] .semflg := O;

blue := p_senop (pink, yellow 2);
witeln (blue);

| Copyright IBM Corp. 1985, 1989
2.70-2

end;

FORTRAN

VS/AIX Interface Library
SEMOP perform semaphore operations

SUBROUTI NE SEMOP1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSEMOP, FSEMGET, FFTOK, BLUE, GREY
| NTEGER PI NK, RED, YELLOW 1000, 3)
CHARACTER BROWN, ORANGE(80)

BROMW = 'z

ORANGE = '/tnp/junk '

GREY = | PCCRT + I RUSR + | WUSR

RED = FFTOK (ORANGE, BROWN)

PINK = FSEMGET (RED, 2, GREY)

YELLOWN 1, 1)
YELLOWN 2, 1)
YELLOW 1, 2)
YELLOW 2, 2)
YELLOW 1, 3)
YELLOW 2, 3)
BLUE = SEMOP (PINK, YELLOW 2)
PRI NT *, BLUE

END

[EEN

OO ' PN

| Copyright IBM Corp. 1985, 1989
2.70-3

VS/AIX Interface Library
SEND, SENDMSG, SENDTO send a message from a socket

2.71 SEND, SENDMSG SENDTO send a message from a socket

Description

The SEND, SENDMSG and SENDTO systemcalls send a nessage froma specified

socket .

Note: The SEND systemcall can be used only when the specified socket is
in a connected state. The SENDMSG and SENDTO calls can be used at
any tinme.

Synt ax

+--- Pascal ---------------ooooo oo +

p_send (s, msg, len, flags);

p_sendmsg (s, msg, flags);

p_sendto (s, nmeg, len, flags, to, tolen); :

o

__ +
+--- Pascal external function declarations ------------------------------ +
I I
I I
| function p_send (s : integer; nmsg : nsgarr; len : integer; i
| flags : integer) : integer; external; |
I I
I I
| function p_sendto (s : integer; nmsg : nsgarr; len : integer; |
: flags : integer; to : sockaddrptr; |
: tolen : integer) : integer; external; |
| l
I I
I I
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +
o FORTRAN -------mmmmmmmmm oo m oo n oo n oo oooo--o----o- +
I I
I I
| FSEND (S, MsG LEN, FLAGS) |
I I
I I
| FSENDMVSG (S, MSG, FLAGS) |
I I
I I
| FSENDTO (S, MSG LEN, FLAGS, TO TOLEN) !
I I
| :
I I
o m o o o o o m e e e e e e o e o e e o eema—aoo-- +

Par anmet ers

> is the descriptor of a socket created by a SOCKET system call.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER

I en

is the length of the message to be sent. The |en paraneter is used
only in the SEND and SENDTO system cal | s.

O In Pascal, |len is of type integer.

| Copyright IBM Corp. 1985, 1989
271-1

VS/AIX Interface Library
SEND, SENDMSG, SENDTO send a message from a socket

O In FORTRAN, len is of type |NTEGER

flags
is an argunent whose value is specified by logically ORing one or
both of the val ues shown here:

MSG OOB processes the out-of-band data on sockets that support this
noti on.

MSG DONTROUTE sends the nessage without reference to routing tables.
The flags paraneter is used only in the SEND and SENDTO system calls.
O In Pascal, flags is of type integer.

0 In FORTRAN, flags is of type | NTEGER

neg
is a nmessage header to be received.
VWhen the SENDMSG systemcall is used:
O In Pascal, nsg is of type nsghdrptr, declared in the include file
ailtypes.inc.
O In FORTRAN, nsg is of type CHARACTER*80.
Wien the SEND and SENDTO systemcalls are used:
O In Pascal, nsg is an array of type nsgarr (a user-defined packed
array of type character).
O In FORTRAN, nsg is a user-defined array of type CHARACTER
to
is the address of the target.
O In Pascal, to is of type sockaddrptr, declared in the include file
ailtypes.inc.
O In FORTRAN, to is of type CHARACTER*14. The final character of
the string nust be a bl ank space.
tol en

is the size of the data in the to paraneter.

O In Pascal, tolen is of type integer.

O In FORTRAN, tolen is of type | NTEGER
Ret urn Val ues
The length of the nmessage, in bytes, is returned upon successfu
completion of the call. A value of -1 is returned and an error code set
inerrno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
271-2

VS/AIX Interface Library

SEND, SENDMSG, SENDTO send a message from a socket
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the SEND
systemroutine. Because SEND sends a nessage only when a socket is in a
connected state, sockets "s" and "sl1" are created, after which "sl1" is
bound to the name "socket"” and connected to socket "s". Finally, a
message is sent from"s" to the connected socket (in this case, "sl1").

Pascal

procedure sendl;

const

% ncl ude /usr/include/ail pconsts.inc
type

nmsgarr = packed array[1l..50] of char;

% ncl ude /usr/include/ailtypes.inc
var

flags, len, s : integer

neg : nsgarr;

function p_send (s : integer; nsg : nsgarr;
len, flags : integer) : integer; external;

% ncl ude /usr/include/aildefs.inc

begin
s : = p_socket (PF_UNI X, SOCK_STREAM 0);

nmseg := 'This is a short nessage';
len : = 23;
flags : = MSG DONTROUTE + MSG_QOOB;
green := p_send (s, nsg, len, flags);
witeln ('Send returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBRQUTI NE SEND1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSEND, FSOCKET, FLAGS, LEN, S
CHARACTER*50 MsG

FLAGS = MSGDONTROUTE + MsGOOB

S = FSOCKET (PFUNI X, SKSTRM 0)

IF (S .EQ -1) CALL ERRORS

MSG = 'This is a short nessage

LEN = 23

GREEN = FSEND (S, MSG LEN, FLAGS)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.71-3

VS/AIX Interface Library
SETGROUPS set a group access list

2.72 SETGROUPS set a group access |ist

Description

The SETGROUPS system call sets, or creates, the group access list of the
current user process according to the values set in an array specified in
the call.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_setgroups (ngrps, gidset);

+———————

__ +
- == FORTRAN - - - = = === = = == mmm m o e o e e e +
I I
1 |
| FSETGROUPS (NGRPS, G DSET) !
I I
I I
1 |
g +

Par anet ers

ngr ps
is the nunber of entries in the array pointed to by gidset. This
nunber may not exceed the constant NGROUP defined in the Pascal and

FORTRAN constants include files.
O In Pascal, ngrps is of type integer.
0 In FORTRAN, ngrps is of type I NTEGER

gi dset
is an array containing the values to be placed in the group access
list. The maxi mum nunber of elenents the array may hold is equal to
the constant NGROUP defined in the Pascal and FORTRAN constants
include files.

O In Pascal, gidset is an array of type intngroup. (Setptr is a
pointer to a user-defined integer array.)

O In FORTRAN, gidset is a user-defined array, of type | NTEGER
containing up to NGROUP el enents.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine on the next page call the
SETGROUPS systemroutine, which in these exanples sets the group access

| Copyright IBM Corp. 1985, 1989
272-1

VS/AIX Interface Library
SETGROUPS set a group access list

list of the current user process to that of the three nanmed el enents of
the array pointed to (Pascal) or specified (FORTRAN) by the variable
"red".

Pascal

procedure setgroupsi;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green : integer;

red : intngroup;

begin
red[1]
red[2]
red[3]
green : = 3;
blue := p_setgroups (green, red);
witeln (blue);

end,

noon
wh e

FORTRAN

SUBRQUTI NE SETGROUPS1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETGROUPS, BLUE, GREEN, RED(3)

RED(1) = 1
RED(2) = 2
RED(3) = 3
GREEN = 3

BLUE = FSETCROUPS (GREEN, RED)
PRI NT *, BLUE
END

| Copyright IBM Corp. 1985, 1989
2.72-2

VS/AIX Interface Library
SETHOSTID set an identifier for the host machine

2.73 SETHCSTI D set an identifier for the host nmachi ne

Description
The SETHOSTI D systemcall sets a unique identifier for the current host.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal ---------------ooooo oo e +

p_sethostid (hostid);

Par anmet ers

hosti d
is the unique identifier assigned to the current host.

O In Pascal, hostid is of type integer.
O In FORTRAN, hostid is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es
The Pascal procedure and FORTRAN subroutine on the next page set the host

IDto 25.

Pascal

procedure sethostidl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer,;

% ncl ude /usr/include/aildefs.inc
begin

| Copyright IBM Corp. 1985, 1989
2.73-1

green

VS/AIX Interface Library
SETHOSTID set an identifier for the host machine

.= p_sethostid(25);

witeln (" Sethostid returned: ', green : 2);
if (green = -1) then showerror;

end;

FORTRAN

SUBROUTI NE SETHOSTI D1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETHOSTI D, GREEN

GREEN = FSETHOSTI D(25)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.73-2

VS/AIX Interface Library
SETHOSTNAME set the name of the current host

2. 74 SETHOSTNAME set the nane of the current host

Description
The SETHOSTNAME system call sets the name of the current host nachine.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_set host name (nane, nanel en);

g +
e == FORTRAN - - - == == == = = = mmm m o e o e e e e +
I I
1 |
| FSETHOSTNAME (NAME, NAMELEN) !
I I
l l
1 |
g +

Par anet ers

name
is the nane of the host nmchi ne.

O In Pascal, nanme is of type st80.

O In FORTRAN, nanme is of type CHARACTER*80. The term nating
character of the string nust be a bl ank space.

nanel en
is the length of the nane paraneter.

O In Pascal, nanelen is of type integer.
O In FORTRAN, nanelen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine on the next page set the nane

of the current host to "HNAME"

Pascal

procedure sethost nanel;

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
274 -1

VS/AIX Interface Library

SETHOSTNAME set the name of the current host

type

% ncl ude /usr/include/ailtypes.inc
var

green, nanelen : integer

name : st 80;

% ncl ude /usr/include/aildefs.inc

begin
nanel en : = 5;
name := ' HNAME ',
green : = p_sethostnane (nane, nanel en);
witeln ('Sethostnanme returned: ', green : 2);
if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE SETHOSTNAMEL

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETHOSTNAME, GREEN

GREEN = FSETHOSTNAME (' HNAME ', 5)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS
END

| Copyright IBM Corp. 1985, 1989
274 -2

VS/AIX Interface Library
SETITIMER set the value of an internal timer

2.75 SETITIMER set the value of an internal tinmer

Description

The SETI TI MER system call sets the value of internal tinmer specified in
the call.

Note: Only users with an effective user |ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------ooooo oo e

I
I
| p_setitiner (which, value, ovalue);
|
I
I

Par anet ers

whi ch
specifies one of the follow ng internal tiners:

| TI MER_REAL the timer decrenents in real tinme.

| TIMER VIRTUAL the tinmer decrements in process virtual time (it runs
only when the process is executing).

| TI MER_PROF the tiner decrenents both in process virtual tine and
when the operating systemis executing on behal f of
t he process.

Note: I n FORTRAN, the underscore is omtted (for exanple,
"1 TI MERREAL") .

O In Pascal, which is of type integer.
0 In FORTRAN, which is of type |INTEGER

val ue

is a variable in which the tinme is returned when the call is executed.

O In Pascal, value is of type itinmerval, declared in the include
file ailtypes.inc.

U In FORTRAN, value is an array of four integers, or |INTEGER

VALUE(4) .
oval ue
is a variable in which the previous tinmer value is returned when the
call is executed.
O In Pascal, ovalue is of type itinmerval, declared in the include

| Copyright IBM Corp. 1985, 1989
2.75-1

VS/AIX Interface Library
SETITIMER set the value of an internal timer

file ailtypes.inc.

0 In FORTRAN, ovalue is an array of four integers, or |NTECER
VALUE(4) .

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code is set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SETITI MER
systemroutine, which in these exanples set the value of the | TI MER_ REAL
timer to "5" and returns the previous value in the variable "oval ue".

Pascal

procedure setitinerl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

which : integer

oval ue, vvalue : itinerval

% ncl ude /usr/include/aildefs.inc

begin
w th vval ue do
begin
it interval.tv_sec := 5;
it interval.tv_usec := 4;
it_value.tv_sec := 3;
it value.tv_usec := 2;
end;
whi ch : = I TI MER_REAL;
green := p_setitimer (which, vvalue, ovalue);
witeln ('Setitimer returned: ', green : 2);
if (green = -1) then showerror;
end;
FORTRAN

SUBRQOUTI NE SETI TI MERL
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETI TI MER, VAL(4), OVAL(4), GREEN

VAL(1) =5
VAL(2) = 4
VAL(3) = 3
VAL(4) = 2

GREEN = FSETI TI MER (| TI MERREAL, VAL, OVAL)
PRI NT *, GREEN
IF (GREEN . EQ -1) CALL ERRORS

| Copyright IBM Corp. 1985, 1989
2.75-2

VS/AIX Interface Library
SETITIMER set the value of an internal timer

END

| Copyright IBM Corp. 1985, 1989
2.75-3

VS/AIX Interface Library
SETLOCAL set the alias for <LOCAL>

2.76 SETLOCCAL set the alias for <LOCAL>

Descri ption
The SETLOCAL systemcall sets the calling process' alias for <LOCAL>.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_setlocal (I ocal nane)

e o e meemaa - +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
| FSETLOCAL (LOCALNAVE) !
| I
I I
1 |
g +

Par anmet ers

| ocal nane
is the pathname for <LOCAL>.

O In Pascal, l|ocalnane is of type st80.

O In FORTRAN, |ocalname is of type CHARACTER*80. The term nating
character nust be a bl ank space.

Return Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
SETLOCAL systemroutine, which in these exanpl es sets the value of the
current <LOCAL> to "NEWAI X" (Pascal) or "NEWAI X' (FORTRAN).

Pascal

procedure setl ocal 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

buf : st80;

% ncl ude /usr/include/aildefs.inc
begin

| Copyright IBM Corp. 1985, 1989
2.76 -1

VS/AIX Interface Library
SETLOCAL set the alias for <LOCAL>

buf := 'new aix';
green := p_setlocal (buf);
witeln (buf);
witeln ('Setlocal returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBROUTI NE SETLOCAL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETLOCAL, GREEN

CHARACTER BUF(80)

BUF = ' NEWAI X *

GREEN = FSETLOCAL (BUF)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.76 -2

VS/AIX Interface Library
SETPGRP, SETPGID set a process group ID

2.77 SETPGRP, SETPA D set a process group ID

Description
The SETPGRP and SETPA D systemcalls set a process group ID.

0 The SETPGRP systemcall sets the group ID of the calling process to
its process ID.

0 The SETPA D systemcall is used either to join a calling process to a
process group or to create a new process group.

Synt ax
+--- Pascal ---------------ooooo oo e +
p_set pgrp;

p_setpgid (pid, pgid)

o ———————

__ +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
! FSETPGRP () !
I I
1 |
! FSETPG D (PID, PG D) !
| I
I I
1 |
g +

Par anet er s
The SETPGRP system call has no paraneters.

pi d
is the process group IDto be set.

O In Pascal, pidis of type integer.

O In FORTRAN, pid is of type integer.

pgi d
specifies the value to which the pid is to be set.

O In Pascal, pgid is of type integer.
O In FORTRAN, pgid is of type integer.
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SETPGRP
system routine, which returns a new process group IDin the variable

"bl ue".

| Copyright IBM Corp. 1985, 1989
277-1

VS/AIX Interface Library
SETPGRP, SETPGID set a process group ID

Pascal

procedure setpgrpl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
bl ue : = p_setpgrp;
witeln (blue);
end;

FORTRAN

SUBRQOUTI NE SETPGRP1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSETPGRP, BLUE

BLUE = FSETPGRP ()

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
277-2

VS/AIX Interface Library
SETSOCKOPT set options on sockets

2. 78 SETSOCKOPT set options on sockets

Description

The SETSOCKOPT system sets the options for a specified socket. These
options may exist at multiple protocol |evels, and are al ways present at
t he uppernost socket |evel.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e

p_setsockopt (s, level, optnane, optval, optlen)

+———————

Par anmet ers

> islrhe descriptor of a socket that was created with a SOCKET system
cal |.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER
| evel
is level at which the desired option resides. To manipul ate options
at the socket |evel, specify the |evel as SO._SOCKET.
O In Pascal, |evel is of type integer.
O In FORTRAN, |evel is of type | NTEGER
opt nane

is the option nanme, passed uninterpreted to the appropriate protocol
nodul e for interpretation. The socket-level options are:

SO_DEBUG turns on recordi ng of debugging information.

SO REUSEADDR al | ows | ocal address reuse.

SO KEEPALI VE keeps connections alive.

SO DONTROUTE does not apply routing on outgoi ng messages.

SO LI NGER lingers on a CLCSE systemcall if data is present.

SO OOBI NLI NE | eaves received out-of-band data in |ine.

| Copyright IBM Corp. 1985, 1989
2.78 -1

VS/AIX Interface Library
SETSOCKOPT set options on sockets

SO_SNDBUF sends buffer size.
SO_RCVBUF receives buffer size
SO _ERROR gets error status.
SO TYPE gets socket type

SO BROADCAST requests perm ssion to transmt broadcast nmessages
Note: In FORTRAN, the underscore is omtted (for exanple, "SODEBUG').
O In Pascal, optnane is of type integer
O In FORTRAN, optnane is of type | NTEGER

opt val
points to a buffer, in which the option values are returned by the
systemcal l.

O In Pascal, optval is of type st80.

O In FORTRAN, optval is of type CHARACTER*80. The termnating
character nust be a bl ank space.

optl en.
specifies the length of the buffer pointed to by optval.

O In Pascal, optlen is of type integer.
O In FORTRAN, optlen is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the
SETSOCKOPT systemroutine, which in these exanples sets the options for
socket s The | evel has been set to SOL_SOCKET and the option name to
SO_DEBUG

Pascal

procedure setsockoptl;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
| evel , optlen, optnane, s, green : integer,

optval : st80;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
2.78 -2

VS/AIX Interface Library
SETSOCKOPT set options on sockets

begin
s := p_socket (PF_UN X, SOCK _STREAM 0);
l evel := SOL_SOCKET,;
opt name : = SO _DEBUG
optval :="'";
optlen := 0;
green : = p_setsockopt (s, level, optname, otpval, optlen);
witeln ('Setsockopt returned: ', green : 2);
if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE SETSOCKOPT1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSETSOCKOPT, FSOCKET, LEVEL, OPTLEN, OPTNAME, S, GREEN
CHAR*80 OPTVAL

S = FSOCKET (PFUNI X, SKSTRM 0)

OPTNAME = SODEBUG

IF (S .EQ -1) CALL ERRORS

LEVEL = SCOLSOCKET

GREEN = FSETSOCKOPT (S, LEVEL, OPTNAME, 0, 0)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.78-3

VS/AIX Interface Library
SETTIMEOFDAY set the current time

2.79 SETTI MECFDAY set the current tine

Description
The SETTI MEOFDAY systemcall sets the current tine.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal ---------------ooooo oo e +

I
i p_settineofday (tp, tzp);
I
|
I

Par anet ers

tp
hol ds two integers:
1. the nunber of seconds that have el apsed since 00:00: 00 January 1,
1970 @I, plus
2. the nunber of mcroseconds that nust be added to the preceding
nunber to get the current tinme.
O In Pascal, tp is of type tineval, declared in the include file
ailtypes.inc.
O In FORTRAN, tp is of type INTEGER TP(2)
tzp

hol ds two integers:
1. the tine west of Greenwich in mnutes.
2. the type of DST correction to apply.

O In Pascal, tzp is of type tinmezone, declared in the include file
ail types.inc.

O In FORTRAN, tzp is of type |INTEGER TZP(2).
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
2.79-1

VS/AIX Interface Library
SETTIMEOFDAY set the current time

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the

SETTI MECFDAY systemroutine, which in these exanples sets the current
Geenwich tine and the current time to the values that tp and tzp are
gi ven when they are initialized.

Pascal

procedure settimeof dayl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

tp : tineval,;

tzp : tinmezone;

% ncl ude /usr/include/aildefs.inc

begin
tp.tv_sec : = 34567,
tp.tv_usec := 12345;
tzp.tz_m nut eswest := 93845;
green : = p_settineofday (tp, tzp);
witeln ('Settineofday returned: ', green : 2);
if (green = -1) then showerror;

end;

FORTRAN

SUBRQOUTI NE SETTI MEOFDAY1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER, FSETTI MEOFDAY, TP(2), TZP(2), GREEN
TP(1) = 123445

TP(2) = 567889

TZP(1) = 48604

GREEN = FSETTI MECFDAY (TP, TZP)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.79-2

VS/AIX Interface Library
SETUID, SETGID set user or group identifiers

2.80 SETU D, SETG D set user or group identifiers

Description
The SET systemcalls described in this section set the user or group IDs

to values specified in the call. Both the effective and the real I1Ds are

set.

Synt ax

+--- Pascal --------------oooooo oo e
p_setuid (uid);

p_setgid (gid);

o ——————-

FSETUI D (U D)

FSETG D (G D)

Par anet ers

i is used with SETUD. It is the new value of the user IDto be set.
O In Pascal, uid is of type integer.
O In FORTRAN, uid is of type I NTEGER

gid
is used with SETA@D. It is the new value of the new group ID to be
set.

O In Pascal, gidis of type integer.

O In FORTRAN, gid is of type |INTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of a call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the SETA D
systemroutine, which sets the real and effective group IDs. |In these

exanmples a value is obtained through a call to GETGA D and then sent to
SETdA D.

Pascal

| Copyright IBM Corp. 1985, 1989
280-1

VS/AIX Interface Library
SETUID, SETGID set user or group identifiers

procedure setgidi;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

red : ushrt;

% ncl ude /usr/include/aildefs.inc

begin
red := p_getqid,
blue := p_setgid (red);
witeln (blue);

end;

FORTRAN

SUBROUTI NE SETG D1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTECER*2 FGETA D, FSETA D, BLUE, RED
RED = FGETA D ()

BLUE = FSETG D (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.80-2

VS/AIX Interface Library
SETXVERS set the UNIX version string

2.81 SETXVERS set the UNI X version string

Description
The SETXVERS systemcall sets the value of the UNI X version string.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_setxvers (xvers);

Par anet ers

Xvers
is a pointer to the version string.

O In Pascal, xvers is of type st80.

O In FORTRAN, xvers is of type CHARACTER*80. The terninating
character of the string nust be a bl ank space.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SETXVERS
systemroutine, which in these exanples sets the value of the version
string to "NEW VERSI ON'.

Pascal

procedure setxversl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green: integer:
s, sl : st80;

% ncl ude /usr/include/aildefs.inc
begin

| Copyright IBM Corp. 1985, 1989
281-1

VS/AIX Interface Library
SETXVERS set the UNIX version string
s := 'NEW.VERSI ON ;
green := p_setxvers (s);
green = p_getxvers (sl, 10);
witeln (s);
end,

FORTRAN

SUBROUTI NE SETXVERS1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTECER, FSETXVERS, FGETXVERS, GREEN
CHARACTER*80 S, S1

S = ' NEW.VERSI ON *

GREEN = FSETXVERS (S)
GREEN = FGETXVERS (S1, 10)
PRINT *, Sl

END

| Copyright IBM Corp. 1985, 1989
2.81-2

VS/AIX Interface Library
SHMAT attach a shared-memory segment or mapped file

2.82 SHWVAT attach a shared-nenory segnent or mapped file

Description

The SHWVAT systemcall attaches one of the following to the address space

of the calling process:

0 a shared nenory segnent, o

O a nmapped file associated with a shared-nmenory identifier (returned b
SHMGET) , or

O afile descriptor (returned by OPEN)

Synt ax

+--- Pascal --------------oooooo oo e +

p_shmat (shm d, shmadr, shnflg);

+——————

__ +
- == FORTRAN - - - == === = = == mmm m e o e e e oo +
I I
1 |
! FSHMAT (SHM D, SHVADR SHWFLG) !
I I
l l
1 |
g +

Par anet er s

shm d
is either a shared-nenory identifier returned by SHVGET or a file
descriptor returned by OPEN
O In Pascal, shnid is of type integer

0 In FORTRAN, shnid is of type I NTEGER

shmadr
determ nes the address to which the shared-nenory segnent is attached.

O In Pascal, shmadr is of type integer.
O In FORTRAN, shmadr is of type | NTEGER

shnfl g
specifies a set of conditions governing the attachnent of a
shared- nenory segnment or a mapped file to an address space. The val ue
assigned to shnflg is that of one or nore of the options in the
following list. These are defined in the Pascal and FORTRAN constants
include files.

SHVRND rounds the address given by the shnmadr paraneter to the
next | ower segnent boundary if necessary.

SHVRDO specifies read-only node (the default is read-wite node).

O In Pascal, shnflag is of type integer.

U In FORTRAN, shnflg is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
282-1

VS/AIX Interface Library
SHMAT attach a shared-memory segment or mapped file

Return Val ues

The start address of the attached shared-nmenory segnent or napped file is
returned on successful conpletion of the call. The value -1 is returned
and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the SHVAT
systemroutine. |In these exanples, the shared-nenory identifier returned

by a SHVGET call is used to specify the shared-nmenory segnent that SHVAT
attaches to the address of the calling process.

Pascal

procedure shmatl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

orange : st80;
brown : char;

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/tnp/junk';
blue := I PCCRT + | RUSR
red := p_ftok (orange, brown);

green : = p_shnget (red, 512, blue);
blue := p_shmat (green, 0, 0);
witeln (blue);

end;

FORTRAN

SUBROUTI NE SHVAT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSHVAT, FSHMGET, FFTOK, BLUE, GREEN, RED
CHARACTER BROWN, ORANGE(80)

BROMW = ' ni

ORANGE = "/tnp/junk '

BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

GREEN = FSHMCGET (RED, 512, BLUE)

BLUE = FSHVAT (GREEN, 0, 0)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.82-2

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

2.83 SHMCTL i nvoke shared-nmenory-control operations

Description
The SHMCTL systemcall invokes three shared-nmenory-control operations.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_shntt!l (shmd, cnd, buf);

g +
e == FORTRAN - - - === === = == mmmm m o e o e e oo +
I I
1 |
! FSHMCTL (SHM D, CMD, BUF) !
| I
I I
1 |
g +

Par anet ers

shm d
is a shared-nenory-segnent identifier returned by the SHMGET call.

O In Pascal, shnid is of type integer.
O In FORTRAN, shnmid is of type | NTEGER

cnd
specifies the control operation to be performed. These operations are
defined in the Pascal and FORTRAN constants include files.

| PCRVD renoves the shared-nenory identifier specified by shnid
fromthe system and erases the shared-nmenory segnment and
associ ated data structure.

Note: This option can be executed only by a process that
has an effective user ID equal to that of the
super-user or to the value of shmpermuid in the
data structure.

| PCSET sets the value of the follow ng nenbers of the data
structure associated with shnmd to the correspondi ng val ue
found in the structure pointed to by the buf paraneter:

O shpermuid
O shper.gid
O shpermnode (low order nine bits only)

Note: This cnd option can be executed only by a process
that has an effective user 1D equal to that of
super-user or to the value of shmpermuid in the
data structure associated with the shnid paraneter.

| PCSTT pl aces the current value of each nenber of the data

| Copyright IBM Corp. 1985, 1989
283-1

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

structure associated with shmid in the structure pointed
to by the buf paranmeter. The current process nust have
read permi ssions on this shared-nmenory segnent or mapped
file.

O In Pascal, cnd is of type integer.

O In FORTRAN, cnd is of type | NTEGER

buf
is a pointer to the data structure to be nodified.

O In Pascal, buf is of type snus.
O In FORTRAN, buf is an array(12) of type | NTEGER

This array corresponds to the Pascal data structure--defined in the
aildefs.inc file (Appendix C)--as foll ows:

BUF(1) = shpermuid, shpermgid (2 bytes each)
BUF(2) = shpermcuid, shpermcgid (2 bytes each)
BUF(3) = shperm node, shperm seg (2 bytes each)
BUF(4) = shperm key
BUF(5) = shperm shseqsz
BUF(6) = shperm spar e0
BUF(7) = shperm shl pid
BUF(8) = shcpid
BUF(9) = shnattach, shcnattach (2 bytes each)
BUF(10) = shatine
BUF(11) = shdtine
BUF(12) = shctine

Return Val ues

The value 0 is returned upon successful conpletion of the call. The value

-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
SHMCTL systemroutine. |In these exanples, the cnd paraneter ("pink")
specifies an option that will place information about a shared-nmenory
segrment (identified by the shnmid parameter, or "green") in the data
structure pointed to by the buf parameter. In Pascal this structure is
the record pointed to by the variable "yellow'. |In FORTRAN, "YELLOW is
an array. The value printed is the process user |D.

| Copyright IBM Corp. 1985, 1989
2.83-2

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

Pascal

procedure shnctl 1;

const

% ncl ude/ usr/incl ude/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, pink, red : integer

orange : st 80;
brown : char;
yel l ow : snds;

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/tnp/junk';
blue := I PCCRT + | RUSR
red := p_ftok (orange, brown);
green : = p_shnget (red, 512, blue);
pi nk := | PCSTT;

red := p_shncttl (green, pink, yellow;
witeln (red);
end;

FORTRAN

SUBRQUTI NE SHMVCTL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSHMCTL, FSHMGET, FFTOK, BLUE, GREEN, PINK, RED, YELLOW 12)
CHARACTER BROWN, ORANGE(80)

BROMW = ' ni

ORANGE = '/tnp/junk '

BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

GREEN = FSHMCGET (RED, 512, bl ue)

PINK = | PCSTT

RED = FSHMCTL (GREEN, PINK, YELLOW
PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
283-3

VS/AIX Interface Library
SHMDT detach a shared-memory or mapped file segment

2.84 SHVDT detach a shared-nenory or nmapped file segnent

Description

The SHVDT system call detaches a shared-nenory segnent fromthe data
segnent of the calling process. Shared nenory segnents nust be explicitly
det ached usi ng SHMVDT.

Synt ax

+--- Pascal --------------oooooo oo e +

p_shndt (shnadr);

Par anmet ers

shrmadr
is the address at which the menory segnent is detached fromthe
address space of the calling process. It is the same address as that

at which the segnent was originally attached (see SHVAT on page 2.82)
O In Pascal, shmadr is of type integer.
O In FORTRAN, shmadr is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exanpl es
The Pascal procedure and FORTRAN subroutine on the next page call the
SHMDT system routine, which in these exanpl es detaches the shared-nmenory

segnent identified by the address returned by a call to SHVAT.

Pascal

procedure shndtl

const

% ncl ude/ usr/incl ude/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, grey, pink, red : integer;

orange : st 80;
brown : char;

| Copyright IBM Corp. 1985, 1989
284-1

VS/AIX Interface Library
SHMDT detach a shared-memory or mapped file segment

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/tnp/junk';
grey := | PCCRT + | RUSR;
red := p_ftok (orange, brown);
pink := p_shnget (red, 512, grey);
blue := p_shmat (pink, 0, 0);

green := p_shndt (blue);
witeln (green);
end;

FORTRAN

SUBROUTI NE SHMVDT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSHMDT, FSHVAT, FSHMGET, FFTOK, BLUE, GREEN
| NTEGER GREY, PINK, RED

CHARACTER BROWN, ORANGE(80)

BROM = ' ni

ORANGE = '/tnp/junk '

GREY = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

PINK = FSHMGET (RED, 512, GREY)

BLUE = FSHVAT (PINK, 0, 0)

GREEN = FSHVDT (BLUE)

PRI NT *, GREEN

END

| Copyright IBM Corp. 1985, 1989
2.84-2

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier

2.85 SHMGET get a shared-menory-segnent identifier

Description

The SHMGET systemcall returns a shared-nenory-segnent | D associated with
the specified key val ue.

Synt ax

+--- Pascal --------------oooooo oo e +

p_shnget (key, size, shnflg);

Par anet ers

key
is either the value 0 (I PCPVT) or an | PC key returned by the ftok
system subroutine. A shared-menory ID, its associated data structure,
and shared-nenory segnment, equal in bytes to the value of size is
created if:

O key is set equal to 0 (IPCPVT).
or

O key does not already have a shared-nenory ID associated with it
and the shnflg paraneter is set equal to the constant |PCCRT.

The initial values of the data structure associated with a newy
created shared-nmenory ID are listed later in this section under Return
Val ues

O In Pascal, key is of type integer.

O In FORTRAN, key is of type |INTEGER

is the nunber of bytes in the shared-nenory segnent.
O In Pascal, size is of type integer.
O In FORTRAN size is of type | NTEGER

shnfl g
specifies a set of conditions (options) governing the creation of a
shared-nenory data structure and the accessibility of the segnent.
The parameter value is that of one of the follow ng options or is
constructed fromtwo or nore of those options by logical ORing. The
options are defined as constants in the Pascal and FORTRAN constants
include files.

| Copyright IBM Corp. 1985, 1989
285-1

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier

| PCCRT creates a data structure if one does not exist.

| PCEXL causes SHVGET to fail if IPCCRT is also set and the data
structure al ready exists.

| RUSR permts the process that owns the data structure to read
it.

| WUSR permts the process that owns the data structure to nodify
it.

| RGRP permts the group associated with the data structure to
read it.

| WGRP permts the group associated with the data structure to
nmodify it.

| ROTH permts others to read the data structure.

| WOTH permts others to nodify the data structure.

O In Pascal, shnflg is of type integer.
U In FORTRAN, shnflg is of type |INTEGER

Return Val ues

A shared-nenory IDis returned upon successful conpletion of the call.
The data structure associated with a newy created ID (snds; see Appendi x
C) isinitialized. The value -1 is returned and an error code set in
errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the SHMGET

systemroutine, which in these exanples returns a shared-nmenory identifier
associ ated with the value of key ("red") returned by the call to the ftok
syst em subrouti ne.

Pascal

procedure shnyget 1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

orange : st 80;
brown : char;

% ncl ude /usr/include/aildefs.inc

begin
brown := "ni;
orange := '/tnp/junk';

| Copyright IBM Corp. 1985, 1989
285-2

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier
bl ue : = I PCCRT + | RUSR;
red := p_ftok (orange, brown);
green : = p_shnget (red, 512, blue);
witeln (green);
end,

FORTRAN

SUBROUTI NE SHMGET1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSHMGET, FFTOK, BLUE, GREEN, RED
CHARACTER BROWN, ORANGE(80)

BROM = ' ni

ORANGE = '/tnp/junk '

BLUE = | PCCRT + | RUSR

RED = FFTOK (ORANGE, BROWN)

GREEN = FSHMCGET (RED, 512, BLUE)

PRI NT *, GREEN

END

| Copyright IBM Corp. 1985, 1989
285-3

VS/AIX Interface Library
SHUTDOWN shut down part or all of a full-duplex connection

2.86 SHUTDOMWN shut down part or all of a full-duplex connection
Description

The SHUTDOWN system cal |l disables a specified connected socket from
sendi ng or receiving or both.

Synt ax

+--- Pascal --------------oooooo oo e +

I
I
| p_shutdown (s, how);
|
I

Par anet ers

> is the descriptor of the socket that is to be shut down.
O In Pascal, s is of type integer.
O In FORTRAN, s is of type | NTEGER

how

specifies one of three options:

0 prevents further receives.

1 prevents further sends.

2 prevents further receives and sends.
O In Pascal, howis of type integer.

O In FORTRAN, how is of type | NTECGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SHUTDOM
systemroutine, which in these exanples, with how set to O (zero),

di sabl es the specified socket fromreceiving.

Pascal

| Copyright IBM Corp. 1985, 1989
2.86-1

VS/AIX Interface Library
SHUTDOWN shut down part or all of a full-duplex connection

procedure shutdownl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

S, green : integer;

sV @ intz;

% ncl ude /usr/include/aildefs.inc

begin
s := p_socketpair (PF_UN X, SCCK DGRAM 0, sv);
if (s =-1) then showerror;
green : = p_shutdown (sv& rbk., 0);
witeln ('Shutdown returned: ', green : 2);
if (green = -1) then showerror;

end,

FORTRAN

SUBROUTI NE SHUTDOWNL

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSHUTDOWN, FSOCKETPAI R, S, GREEN, SV(2)
S = FSCCKETPAI R (PFUNI X, SKDGRAM, 0, SV)

IF (S .EQ -1) CALL ERRORS

GREEN = FSHUTDOWN (SV(1), 0)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.86-2

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

2.87 SI GACTI ON specify the action to be taken upon receipt of a signal
Description

The SI GACTI ON system call enables the calling process to exani ne or change
the action to be taken when it receives a specified signal.

The signals that can be specified in a SIGACTION call are listed in the
descriptions of the sig paraneter.

Synt ax
+--- Pascal ---------------oooooo oo e +

I
I
p_sigaction (sig, act, oact); :
|
I

+———————

__ +
L (O I 2 N B +
I I
I I
| This systemcall is not avail able in FORTRAN. |
| l
I I
I I
o m o o o o o o e e e e e e e e o e o e e o eama—ao-- +

Par anmet er s

Si
; is a number that specifies a particular signal. The signals that can
be specified in a SIGACTION call are listed here and are defined in
the Pascal constants include file. For nore information about these
signals, refer to Volune 1 of the Al X Operating System Techni cal
Ref er ence.
o m o o o o e e e e e e e e e e o o e e o eemaoao-- +
: i Signal l |
. Signal I Nunber i Event |
RS e e e o oo o m e m o |
I Sl GHUP - I Hangup |
RS e e e o oo o m e m o |
I SIG NT P2 | Interrupt :
RS e e e o oo o m e m o |
1 SIGQT 3 Quit |
RS e e e o oo o m e m o |
I SIGLL | 4r i Illegal instruction (not reset when |
: | | caught) |
RS e e e o oo o m e m o |
i Sl GTRAP HES) I Trace trap (not reset when caught) |
RS e e e o oo o m e m o |
i SIl@aor | 6 . Abort process (see FABORT on page 2.21) |
RS e e e oo o O |
| SI GEMT V7 i EMT instruction :
RS e e e oo o O |
| SI GFPE | 8 i Arithnmetic exception, floating-point |
| i | exception, or integer divide by zero. |
RS e e e oo o O |
I SIKIL) I Kill (cannot be caught or ignored) |
RS e e e oo o O |
| SI GBUS i 10 I Specification exception |
RS e e e oo o O |

| Copyright IBM Corp. 1985, 1989
2.87-1

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

SI GSEGV P11 I Segnmentation violation
______________ o
SI GSYS P12 | Bad paraneter to system call
______________ o
SI GPI PE ;13 I Wite on pipe when there is no process

I I to

| 1

i I read it
______________ o
SI GALRM | 14 i Alarm cl ock
______________ o
SI GTERM i 15 I Software term nation signal
______________ o
SI GURG | 16 i Urgent condition on I/0O channel
______________ o
SI GSTOP P17 I Stop (cannot be caught or ignored)
______________ o
SI GSTP | 18 I Interactive stop
______________ o
SI GCONT 119 i Continue if stopped (cannot be caught or

: I ignored)
______________ o
SI GCHLD i 20 I To parent on child stop or exit
______________ o
SIGPTTIN |21 i Background read attenpted from control

i I term nal
______________ o
SI GPTTQU | 22 i Background wite attenpted to control

i I term nal
______________ o
SId O | 23 I I'nput/output possible or conpleted
______________ o
Sl GXCPU | 24 | CPUtime imt exceeded (see setrlimt

: . in AIX Qperating System Techni cal

| | Reference)
______________ o
SI GXFSZ | 25 I File size limt exceeded (see setrlimt

: . in AIX Qperating System Techni cal

| | Reference)
______________ o
reserved | 26 |
______________ o
SI GvBG |27 I Input data has been stored in the HFT

i i nmonitor node ring buffer
______________ o
SI GW NCH | 28 I Wndow si ze change
______________ o
SI GPVR | 29 I Power-failure restart
______________ o
SI GUSR1 i 30 | User-defined signal 1
______________ o
S| GUSR2 ;31 | User-defined signal 2
______________ o
SI GPROF | 32 i Profiling tinme alarm (see GETITI ME on

| | page 2.31)
______________ o
SI GDANGER | 33 I System crash is inmmnent
______________ o
SI GPROF | 34 i Virtual tine alarm (see SETITIME on page

: I 2.75)
______________ T

| Copyright IBM Corp. 1985, 1989

2.87-2

VS/AIX Interface Library

SIGACTION specify the action to be taken upon receipt of a signal

| reserved | 35-58 | |
RS e e e o oo o m m e m o |
i SI GGRANT | 60 i Grant HFT nonitor access |
RS e e e o oo o m m e m o |
| SI GRETRACT | 61 i Rel i nqui sh HFT nonitor access |
I | 1 q |
o e e e oo o m e e o e o o o o o o e e e e e e e e ememeeoo - |
| SI GSOUND | 62 i An HFT sound control has conpleted |
| i | execution |
RS e e e o oo o m m e m o |
| reserved | 63 | |
o o o o o o e o e e e e e e e e o e o e mmmaao-- +

Note: For nore information about these signals,

System Techni cal Reference.

O In Pascal, sig is of type integer.

act

see Al X CQOperating

if not nil, points to a structure that describes the action to be

taken on receipt of the sig signal

O In Pascal, act is of type sigactptr.

oact

if not nil, points to a structure in which the signa
effect at the time of the S| GACTI ON system cal

O In Pascal, oact is of type sigactptr.

Ret urn Val ues
The value 0 is returned upon successfu

-1 is returned and an error code set in errno if the cal

O In Pascal, the return value is of type integer

Exampl es

action data in

is returned.

conpl etion of the call. The value

fails.

The Pascal procedure that follows calls the S| GACTI ON systemroutine,
which in this exanple returns data that was in effect at the tine the

interrupt signal (SIGNT) was issued.
par amet er oact .

Pascal

procedure sigactionl

const

% ncl ude /usr/include/ail pconsts.inc

type

% ncl ude /usr/include/ailtypes.inc
var

rc : integer;

oact : sigactptr;

% ncl ude /usr/include/aildefs.inc

begin
rc := p_sigaction (2, nil, oact);

| Copyright IBM Corp. 1985, 1989

2.87-3

The data is returned in the

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal
witeln (rc);
end,

| Copyright IBM Corp. 1985, 1989
2.87-4

VS/AIX Interface Library
SIGBLOCK block one or more signals

2.88 SI GBLOCK bl ock one or nore signals

Description

The SI GBLOCK systemcall bl ocks one or nore specified signals until a
subsequent S| GSETMASK "unbl ocks” them (see page 2.89 for a conplete |ist
of signals).

Synt ax

+--- Pascal ---------------oooooo oo +

p_sigbl ock (mask);

=

__ +
+o oo FFORTRAN = = = = === cccccccooooooeasseeeeeeaaaaaaaaannnoaaaaaannanaaaaens +
I I
1 |
| FS| GBLOCK (MASK) !
I I
l l
1 |
g +

Par anmet ers

mask
specifies the signal (s) to be blocked by logically OR ng the paraneter
value with the previous signal mask of the calling process.

Note: To set the mask val ue, use a nunber equal to 2 (two) raised to
the (signal -nunber - 1) power. For exanple, the mask val ue
that will block SIGNAL 31 is 2|0 (see page 2.92).

O In Pascal, mask is of type integer
O In FORTRAN, nask is of type | NTEGER

Return Val ues
The val ue that the signal nmask had prior to the SIGBLOCK call is returned
upon successful conpletion of the call

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine on the next page call the

S| GBLOCK system routine, which in these exanpl es bl ocks interrupt signals
and illegal instruction signals that may be sent to the calling process.
The return value printed out is equal to 2 (the previous nmasked bl ocked
signal value) after the second call.

Pascal

procedure sigbl ockl

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
2.88-1

VS/AIX Interface Library
SIGBLOCK block one or more signals
type
% ncl ude /usr/include/ailtypes.inc
var
blue, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
red := p_sigblock (2);
blue := p_sighlock (4);
witeln (blue);

end,

FORTRAN

SUBROUTI NE SI GBLOCK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSI GBLOCK, BLUE, RED

RED = FSI GBLOCK (2)

BLUE = FSI GBLOCK (4)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.88-2

VS/AIX Interface Library
SIGNAL specify the process response to a signal

2.89 SIGNAL specify the process response to a signal

Description

The SIGNAL systemcall sets the calling process to respond in one of three
ways to the receipt of a signal:

0 “"catch" the signal

O ignore the signal; o

O termnate its own execution (EXIT). Termnation is the default event

The signals that can be specified in a SIGNAL call are listed in the
descriptions of the sig and action paraneters.

Synt ax
+--- Pascal ---------------ooooo oo e +

p_signal (sig, action, func);

+——————

__ +
- == FORTRAN - - - == === = = == mmm m e o e e e oo +
I I
1 |
| FSIGNAL (SIG ACTION, FUNC) !
I I
l l
1 |
g +

Par anet ers

sig
is a number that specifies a particular signal. |If a repeated signal
arrives before the |ast one can be reset, it will not be caught (see

Notes, item 2).

The signals that can be specified in a SIGNAL call are listed on the
next two pages and are defined in the Pascal and FORTRAN constants
include files.

act
if not nil, points to a structure that describes the action to be
taken on receipt of the signal specified by the sig paraneter. The
signals that can be specified in a SIGNAL call are listed on the next
two pages and are defined in the Pascal and FORTRAN constants incl ude
files. For nore information about these signals, refer to Volunme 1 of
the Al X Qperating System Technical Reference.

o m o o o o e e e e e e e e e o e meaoaoo-o +
| ! Signal ! :
i Signal I Nunber i Event i
R TR o a o - o m emaam o |
i SI GHUP I i Hangup |
R TR o a o - o m emaam o |
i SIGNT S I Interrupt |
R TR o a o - o m emaam o |
1 SIGQT 3 P Quit l
R TR o a o - o m emaam o |
SIG LL 4* II'legal instruction (not reset when |

I

1

caught)

| Copyright IBM Corp. 1985, 1989
2.89-1

VS/AIX Interface Library
SIGNAL specify the process response to a signal

____________ e
SI GTRAP i 5 | Trace trap (not reset when caught)
____________ e
SIld or | 6 . Abort process (see FABORT on page 2.21)
____________ o
SI GEMI' V7 i EMT instruction
____________ o
SI GFPE | 8 i Arithnmetic exception, floating-point

| | exception, or integer divide by zero.
____________ o
SI &I L HE) i Kill (cannot be caught or ignored)
____________ o
SI GBUS i 10 | Specification exception
____________ o
SI GSEGV P11 | Segmentation violation
____________ o
SI GSYS 112 | Bad paraneter to system call
____________ o
SI GPI PE 113 i Wite on pipe when there is no process

i | toread it
____________ o
SI GALRM | 14 i Alarm cl ock
____________ o
SI GTERM i 15 | Software term nation signal
____________ o
SI GURG 1 16 i Urgent condition on I/0O channel
____________ o
SI GSTOP P17 | Stop (cannot be caught or ignored)
____________ o
SI GSTP | 18 I Interactive stop
____________ o
SI GCONT 119 i Continue if stopped (cannot be caught or

: i ignored)
____________ o
SI GCHLD i 20 i To parent on child stop or exit
____________ o
SIGPTTIN | 21 i Background read attenpted from control

i | term nal
____________ o
SIGPTTQU | 22 i Background wite attenpted to control

i i term nal
____________ o
SId O 1 23 i I'nput/output possible or conpleted
____________ o
SI GXCPU | 24 Il CPUtinme limt exceeded (see setrlimt

: i, in AIX Qperating System Techni cal

i | Reference)
____________ o
Sl GXFSZ | 25 I File size limt exceeded (see setrlimt

: i, in AIX Qperating System Techni cal

i | Reference)
____________ o
reserved | 26 |
____________ o

I I

| I
____________ o
SI GvBG |27 i Input data has been stored in the

i i HFT-nonitor-node ring buffer
____________ o
SIGWNCH | 28 i Wndow si ze change

| Copyright IBM Corp. 1985, 1989
2.89-2

VS/AIX Interface Library
SIGNAL specify the process response to a signal

e e - oo a o - o |
i SI GPWR 129 | Power-failure restart |
e e - oo a o - o |
| SI GUSR1L i 30 | User-defined signal 1 :
e e - oo a o - o |
| Sl GUSR2 | 31 | User-defined signal 2 :
e e - oo a o - o |
| reserved | 35-38 | |
o m o m o o e e e e e e e e e o o e mea—ao-o +
O In Pascal, action is of type integer.

O In FORTRAN, action is of type | NTEGER

func
is used when a signal is to be caught and action is set equal to
SIGFNC. This paraneter directs the receiving process of the signal to
execute the function specified. The func paraneter is given the value
nil in Pascal and O (zero) in FORTRAN if the value of action is Sl GDFL
or SIAGN

When calling a function from Pascal or FORTRAN, the function nane
shoul d be the paraneter.

O In Pascal, func is a function name.
O In FORTRAN, func is a function name.

Ret urn Val ues

The previous value of action is returned for the specified sig upon
successful conpletion of the call. The value -1 is returned and an error
code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutines on the next page call the

SI GNAL systemroutine. In this exanple, sig is assigned a value of 2
(SIGNT, interrupt signal). The action paraneter is given the prescribed
action SIGA G\, which causes the process to ignore the interrupt signa
(that is, it does not terminate). The func parameter is sent as nil since
no function address is needed in this instance.

Pascal

procedure signal 1l

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red, yellow : integer;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
289-3

VS/AIX Interface Library
SIGNAL specify the process response to a signal

begin

blue := 1;

red : = 2;

yellow : = p_signal (red, blue, nil);

witeln (yellow)
end;

FORTRAN

SUBRQUTI NE S| GNAL1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSI GNAL, BLUE, RED, YELLOW
BLUE = 1

RED = 2

YELLOW = FSI GNAL (RED, BLUE, 0)

PRI NT *, YELLOW

END

Not es
1. The SIKIL signal cannot be caught and it cannot be ignored.

2. The S| GVEC systemcall provides an enhanced signal -handling capacity
that avoids this difficulty (see page 2.95).

| Copyright IBM Corp. 1985, 1989
2.89-4

VS/AIX Interface Library
SIGPAUSE release a blocked signal and wait for an interrupt

2.90 SI GPAUSE rel ease a bl ocked signal and wait for an interrupt
Description

The SI GPAUSE systemcall resets the signal nask of the calling process and
causes the calling process to wait for a signal to arrive. The arrival of
the signal termnates the call and restores the signal mask to its

previ ous val ue.

Note: This systemcall allows the nmasking of signals 1-31

Synt ax

+--- Pascal --------------oooooo oo e +

p_si gpause (signmask);

+———————

__ +
- == FORTRAN - - - = = === = = == mmm m o e o e e e +
I I
1 |
| FS| GPAUSE (SI GVASK) !
I I
l l
1 |
g +

Par anmet er s

si gmask
is the value to which the signal mask of the calling process is set
when the call is issued.
O In Pascal, sigmask is of type integer.

0 In FORTRAN, sigmask is of type I NTEGER

Return Val ues

If the signal is caught by the calling process and control is returned
fromthe signal handler, the calling process resunes execution after the
S| GPAUSE system cal |, which always returns the value -1 and sets an error
code in errno.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exanpl es
The Pascal procedure and FORTRAN subroutine on the next page call the
SI GPAUSE systemroutine. In these exanples, the first call is to the

ALARM system routine, which sends a signal to the calling process after 10
seconds. The call to S| GPAUSE sets the signal nask to the value of the
si gset mask paraneter ("blue") to block interrupts.

Pascal

procedure sigpausel;

const
% ncl ude /usr/include/ail pconsts.inc

| Copyright IBM Corp. 1985, 1989
290-1

VS/AIX Interface Library
SIGPAUSE release a blocked signal and wait for an interrupt

type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, orange, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
orange : = 10;
green := p_alarm (orange);
blue := 2;
red : = p_sigpause (blue)
end,

FORTRAN

SUBRQUTI NE SI GPAUSE1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSI GPAUSE, FALARM BLUE, GREEN, ORANGE, RED
ORANGE = 10

GREEN = FALARM (ORANCE)

BLUE = 2

RED = FSI GPAUSE (BLUE)

END

| Copyright IBM Corp. 1985, 1989
290-2

VS/AIX Interface Library
SIGPROCMASK set the current signal mask

2.91 SI GPROCMASK set the current signal mask

Description

The

SI GPROCMVASK system cal |l changes the signal mask of the calling

process.

Synt ax

$-- -

Pascal ---oooooo

p_si gprocmask (how, set, oset);

Par anet ers

how

set

oset

specifies the manner in which the signal mask (the set of signals to
be blocked) is defined. It may have one of three val ues:

SIGBLOCK the resulting set is a union of the current set of signals
and the signal set pointed to by the set paraneter.

SI G UNBLOCK the resulting set is the intersection of the current set
of signals and the conpl ement of the signal set pointed to
by the set paraneter.

S| GSETMASK the resulting set is the set of signals pointed to by the
set paraneter.

O In Pascal, howis of type integer.

O In FORTRAN, how is of type | NTEGER

points to a set of signals to be used to change the currently bl ocked
set.

O In Pascal, set is of type sigset_t.

O In FORTRAN, set is an array of 4 elenents of type INTEGER This

array corresponds to a Pascal data struncture defined in the
ailtypes.inc file (see Appendix C) as follows:

SET(1) = set.setsize
SET(2) = set.sigs[1]
SET(3) = set.sigs[?2]
SET(4) = signsk.sigs[3]
is not nil, points to the space in which the call stores the signa

| Copyright IBM Corp. 1985, 1989
291-1

VS/AIX Interface Library
SIGPROCMASK set the current signal mask

mask in effect at that tinme.

O In Pascal, oset is of type sigset_t.

O In FORTRAN, oset is an array of 4 elements of type INTEGER. This
array corresponds to a Pascal data struncture defined in the
ailtypes.inc file (see Appendix C) as follows:

OSET(1) = set.setsize

OSET(2) = set.sigs[1]

OSET(3) = set.sigs[?2]

OSET(4) = signsk. sigs[3]
Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the

SI GPROCVASK system routine, which in these exanpl es bl ocks signal 14
(alarmclock). The call to SIGBLOCK returns the previous mask val ue,

whi ch should be what it has just been set to (8192). This mask value is
al so printed out.

Pascal

procedure sigprocmaskl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

orange, pink, red : integer

bl ue : sigset _t;
% ncl ude /usr/include/aildefs.inc

begin
blue.setsize := 1; := 8192;
bl ue.sigs[1] := 8192;
red : = p_sigprocrmask (SI G SETMASK, bl ue, pink);
witeln (red);
orange := p_sigbhlock (0);
witeln (orange);
end,

FORTRAN

SUBROUTI NE S| GPROCIVASK1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSI GPROCMASK, FSI GBLOCK, BLUE(4), ORANGE, PINK, RED
BLUE(1) =1

BLUE(2) = 8192

RED = FSI GPROCVASK (SI G_SETMASK, BLUE, PI NK)

| Copyright IBM Corp. 1985, 1989
291-2

VS/AIX Interface Library
SIGPROCMASK set the current signal mask
PRI NT *, RED
ORANGE = FSI GBLOCK (0)
PRI NT *, ORANGE
END

| Copyright IBM Corp. 1985, 1989
291-3

VS/AIX Interface Library
SIGSETMASK set the signal mask of the current process

2.92 SIGSETMASK set the signal nask of the current process
Description
The SI GSETMASK system call sets the signal nask of the current process to

a particular value, thereby specifying which signal will be bl ocked from
receiving (that is, which signal the calling process w Il block).

Synt ax
+--- Pascal --------------oooooo oo e +

I
I
p_sigset mask (nmask); |
|
I

Par anet ers

mask
specifies the signal(s) to be bl ocked.

Note: To set the mask, use a nunber equal to 2 (two) raised to the
(signal -nunber - 1) power. For exanple, the mask value that wll
bl ock SIGNAL 31 is 2, 0.

O In Pascal, mask is of type integer
O In FORTRAN, nask is of type | NTEGER

Ret urn Val ues
The val ue that the signal nmask had before SI GBLOCK was called is returned
on successful conpletion of the S| GSETMASK cal |

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the

S| GSETMASK system routine, which in these exanpl es bl ocks signal 14 (alarm
clock). The call to SIGBLOCK returns the previous mask val ue, which
shoul d be what it has just been set to (8192). This mask value is also
printed out ("orange").

Pascal

procedure sigsetmaskl;

const
% ncl ude /usr/include/ail pconsts.inc

type
% ncl ude /usr/include/ailtypes.inc

| Copyright IBM Corp. 1985, 1989
292-1

VS/AIX Interface Library
SIGSETMASK set the signal mask of the current process

var
bl ue, orange, red : integer;

% ncl ude /usr/include/aildefs.inc

begin
bl ue : = 8192;
red : = p_sigsetmask (blue);

witeln (red);
orange := p_sigblock (0);
witeln (orange);

end,

FORTRAN

SUBRQOUTI NE SI GSETMASK1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSI GSETMASK, FSI GBLOCK, BLUE, ORANGE, RED
BLUE = 8192

RED = FSI GSETMASK (BLUE)

PRI NT *, RED

ORANGE = FSI GBLOCK (0)

PRI NT *, ORANGE

END

| Copyright IBM Corp. 1985, 1989
292-2

VS/AIX Interface Library
SIGSTACK set and get a signal-stack context

2.93 SIGSTACK set and get a signal -stack context

Description

The SI GSTACK systemcall defines an alternate stack on which signals are
to be processed.

Warning: A signal stack does not automatically increase in size as a
norrmal stack does. |[If the stack overflows, unpredictable results may
occur.

Synt ax

+--- Pascal --------------oooooo oo e +

I
I
p_sigstack (instack, outstack); i
I
I
I
I

This systemcall is not avail able in FORTRAN |

Par anet ers

i nst ack
points to a signal-stack data structure if the paraneter value is not
nil. |If the paraneter value is nil, then the signal-stack state is
not set.

O instack is of type stackptr.

out st ack
points to a signal-stack data structure if the paraneter value is not
nil. If the paraneter value is nil, the previous signal-stack state

is not reported.
O outstack is of type stackptr.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

0 The return value is of type integer

Exampl es

The Pascal procedure on the next page calls the S| GSTACK system routi ne.
In this exanple the val ues being passed to SI GSTACK are the instack
("yellow') and outstack ("green") paranmeters. The exanple nerely shows
the proper call: it neither sets a new stack nor stores the old (both
paraneters are set to nil).

Pascal

procedure sigstackl;

| Copyright IBM Corp. 1985, 1989
293-1

VS/AIX Interface Library
SIGSTACK set and get a signal-stack context

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

green, yellow : stackptr;
% ncl ude /usr/include/aildefs.inc

begin
new (yel |l ow);
new (green);
new (yel | ow@ ss_sp);
new (green@ ss_sp);
yell ow@ss_sp : = nil
green@ss_sp := nil;
red := p_sigstack (green, yellow;
witeln (red);
end,

| Copyright IBM Corp. 1985, 1989
293-2

VS/AIX Interface Library
SIGSUSPEND reset the signal mask and wait for an interrupt

2.94 SI GSUSPEND reset the signal mask and wait for an interrupt
Description

The SI GSUSPEND system call resets the signal nmask of the calling process
and causes the calling process to wait for a signal to arrive. The
arrival of the signal terminates the call and restores the signal mask to
its previous val ue.

Synt ax

+--- Pascal ----------mmmm s e e +

p_si gsuspend (signsk);

g +
== FORTRAN - - == === === = e e mmm e o e e e e et e +
I I
1 |
I FS| GSUSPEND (SI GVBK) !
| I
I I
1 |
g +

Par anet ers

si gnsk
is the value to which the signals mask of the calling process is set
when the call is issued.
O In Pascal, signmsk is of type sigset_t.

O In FORTRAN, signsk is an array of 4 elenments of type | NTEGER
This array corresponds to a Pascal data struncture defined in the
ailtypes.inc file (see Appendix C) as follows:

SI GVBK(1) = signsk. setsize
SI GVBK(2) = signsk. sigs[1]
SI GVBK(3) = si gnsk. si gs[2]
S| GVBK(4) = signsk. sigs[3]

Return Val ues

If the signal is caught by the calling process and control is returned
fromthe signal handler, the calling process resunes execution after the
S| GSUSPEND system call, which always returns the value -1 and sets an
error code in errno.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the

SI GSUSPEND systemroutine. In these exanples, the first call is to the
ALARM system routine, which sends a signal to the calling process after 10
seconds. The call to S| GSUSPEND sets the signal nask to the value of the
si gmsk paranmeter ("blue") to block interrupts.

| Copyright IBM Corp. 1985, 1989
294 -1

VS/AIX Interface Library
SIGSUSPEND reset the signal mask and wait for an interrupt

Pascal

procedure sigsuspendl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green, orange, red : integer

blue : sigset _t;

% ncl ude /usr/include/aildefs.inc

begin
orange : = 10;
green := p_alarm (orange);
blue : = setsize := 1;
blue :=sig[1l] := 3;
red : = p_sigsuspend (blue)
end,
FORTRAN

SUBROUTI NE SI GSUSPEND1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSI GSUSPEND, FALARM BLUE(4), GREEN, ORANGE, RED

ORANGE = 10

GREEN = FALARM (ORANGE)
BLUE(1) = 1

BLUE(2) = 3

RED = FSI GSUSPEND (BLUE)
END

| Copyright IBM Corp. 1985, 1989
294 -2

VS/AIX Interface Library
SIGVEC select signal-handling facilities

2.95 SI GVEC sel ect signal-handling facilities

Description
The S| GVEC systemcall allows the user to select standard or enhanced
signal -handling facilities. Like the SIGNAL call, it specifies the action

to be taken on receipt of a given signal.

Warni ng: The SIGVEC call does not check the validity of the sv_handl er
pointer. If this pointer is pointing outside the address space of the
process, a menory-fault nmessage is returned to the process when the system
attenpts to use the signal handler.

Synt ax

+--- Pascal --------------oo-oooo oo +

I I
I |
| p_sigvec (sig, invec, outvec); |
| l
I I
I I

This systemcall is not avail able in FORTRAN |

Par anmet ers

sig
is the identifying nunber of a signal (See page 2.89 for a conplete
list of signals.).
O sigis of type integer.

i nvec
specifies a handler routine and mask for use in delivering a signa
when the parameter value is not nil. Wen the paraneter value is nil

the signal -handler information is not set. The value of the sv_onstak
field of the invec record specifies one of three options:

0 t he enhanced signal and the process signal on the process stack
are used.

1 t he enhanced signal and the process signal on a separate stack are
used.

2 standard signal processing is used.

O invec is of type sigvecptr.

outvec
points to a record where the previous handling information for the
signal in the structure is stored, when it is not nil. Information
for the signal is stored in the S| GVEC data structure pointed to by
outvec. |If the value of the outvec paraneter is nil, the previous

signal -handl er information is not reported.

O outvec is of type sigvecptr.

| Copyright IBM Corp. 1985, 1989
295-1

VS/AIX Interface Library
SIGVEC select signal-handling facilities

Ret urn Val ues
There is no return value froma successful SIGVEC call.

Exanpl es

The Pascal procedure that follows calls the SIGVEC systemroutine. 1In

t hese exanples, the value passed to SIGVEC by the paraneter sig
("yellow'), specifies signal (2) and the invec and outvec paraneters
("blue"™ and "red", respectively). The default action is specified by the
vari abl e "orange"; the invec and outvec paraneters are set equal to 'nil’
because they are not necessary for this action

Pascal

procedure sigvecl;

const

% ncl ude usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : sigvecptr;

green, orange, yellow : integer

% ncl ude /usr/include/aildefs.inc

begin
yellow : = 2;
orange := Sl GDFL;
new (bl ue);
new (red);
red := nil;
blue@sv_handler := nil;
bl ue@sv_mask := 0;
bl ue@sv_onstack := 0;
green : = p_sigvec (yellow, orange, blue, red)
end;

| Copyright IBM Corp. 1985, 1989
295-2

VS/AIX Interface Library
SOCKET create an endpoint for communication

2.96 SOCKET create an endpoint for comrunication

Description

The SOCKET system call creates an endpoint for communi cation and returns
descri ptor.

Synt ax

+--- Pascal --------------oooooo oo e

p_socket (domain, ttype, protocol)

Par anet ers

domai n
specifies one of two "donmai ns" of communi cati on:

PF_UNI X Al X path names

PF INET ARPA internet addresses.

Note: In FORTRAN, the underscore is omtted (for exanple, "PFUN X').
O In Pascal, domain is of type integer.

O In FORTRAN, domain is of type | NTEGER

ttype
specifies one of two types of comrunication semanti cs:

SOCK_STREAM sequenced streanms with a transm ssi on mechani smfor
out - of - band dat a.

Not e: I n FORTRAN, use SKSTRM

SOCK_DGRAM dat agr ans, or connectionl ess nessages, of a fixed maxi mum
I ength (usually small).

Note: I n FORTRAN, use SKDGRAM
O In Pascal, ttype is of type integer.
O In FORTRAN, ttype is of type | NTEGER

pr ot ocol
specifies a particular protocol to be used with the socket.

O In Pascal, protocol is of type integer.

O In FORTRAN, protocol is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
296-1

VS/AIX Interface Library
SOCKET create an endpoint for communication

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value

-1 is returned and an error code set in errno if the call fails.
O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SOCKET
systemroutine, which in these exanples is issued with domain set to
"PF_UNI X*, type to "SOCK STREAM', and protocol to 0. A socket descriptor
is returned in "green".

Pascal

procedure socket1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer,;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_socket (PF_UN X, SOCK STREAM 0);
witeln ('Socket returned: ', green : 2);
if (green = -1) then showerror;
end,
FORTRAN

SUBRQUTI NE SOCKET1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSOCKET, GREEN

GREEN = FSOCKET (PFUNI X, SKSTRM 0)
IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.96-2

VS/AIX Interface Library
SOCKETPAIR create a pair of connected sockets

2.97 SOCKETPAIR create a pair of connected sockets

Description
The SOCKETPAIR systemcall creates an unnaned pair of connected sockets.

Synt ax
+--- Pascal --------------oooooo oo e

p_socketpair (domain, type, protocol, sv)

Par anet ers

domai n
specifies one of two "donmai ns" of communi cati on:

PF_UNI X Al X path names
PF INET ARPA internet addresses.

Note: I n FORTRAN, the underscore is omtted (for exanple,
" PFUNI X") .

O In Pascal, domain is of type integer.

O In FORTRAN, domain is of type | NTEGER

type
specifies one of two types of comrunication semanti cs:

SOCK_STREAM sequenced streanms with a transm ssi on mechani smfor
out - of - band dat a.

Not e: I n FORTRAN, use SKSTRM

SOCK_DGRAM dat agr ans, or connectionl ess nessages of a fixed maxi num
I ength (usually small).

Note: I n FORTRAN, use SKDGRAM
O In Pascal, type is of type integer.
O In FORTRAN, type is of type | NTEGER

pr ot ocol
specifies a particular protocol to be used with the socketpair.

O In Pascal, protocol is of type integer.

O In FORTRAN, protocol is of type | NTEGER

| Copyright IBM Corp. 1985, 1989
297-1

VS/AIX Interface Library
SOCKETPAIR create a pair of connected sockets

sV
is an array in which two descriptors are returned upon conpl etion of
the call.

O In Pascal, sv is of type int2 (defined as an array[1l..2] of
integer in the ailtypes.inc file; see Appendix C

O In FORTRAN, sv is an array of type integer with two el enents.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the
SOCKETPAI R system routine, which in these exanples is issued with domain
set to "PF_UNI X' and type to "SOCK_STREAM'. The protocol paraneter is
optional. The socketpair descriptors are returned in sv[1l] and sv[2].

Pascal

procedure socketpairil;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer,;

SV @ int2;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_socketpair (PF_UN X, SOCK _STREAM 0, sv);
if (green = -1) then showerror;
end;
FORTRAN

SUBROUTI NE SOCKETPAI R1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FSOCKETPAI R, SV(2), GREEN

GREEN = FSOCKETPAI R (PFUNI X, SKSTRM 0, SV)
PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS

END

| Copyright IBM Corp. 1985, 1989
2.97-2

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

2.98 STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status
Descri ption

These calls obtain status information about files, including hidden
directories and synbolic |inks.

0 STATX and FSTATX obtain status infornation about a specified file,
hi dden directory, or synbolic |ink.

0 STAT and FSTAT obtain status information about a specified file.
0 LSTAT obtains status information about a specified synbolic |ink.

0 FULLSTAT and FFULLSTAT obtain status information about a specified
file.

Not e: STATX and FSTATX replace five systemcalls: STAT, FSTAT, LSTAT,
FULLSTAT, and FFULLSTAT. Al five calls have been included in this
manual for reasons of conpatibility (see Notes at the end of this
section).

Note: Only the file owner and the super-user may issue these calls.

Synt ax

+--- Pascal -----------------ooo oo e +

p_statx (path, buf, len, cnd);
p_fstatx (fildes, buf, len, cnd);

p_stat (path, buf);

p_Istat (path, buf);
p_fullstat (path, cnd, buf);

] I
1 I
] I
1 I
] 1
1 1
] I
1 I
] 1
1 1
] I
1 I
] I
1 I
] I
1 I
| p_fstat (fildes, buf); |
] I
1 I
] I
1 I
] I
1 I
] 1
1 1
] I
1 I
| p_ffullstat (fildes, cnd, buf); i
] I
1 I
] I
1 I

FFSTATX (PATH, BUF, LEN, CMD)
FFFSTATX (FI LDES, BUF, LEN, CMD)
FFSTAT (PATH, BUF)

FFFSTAT (FI LDES, BUF)

FLSTAT (PATH, BUF)

FFFULLSTAT (PATH, CMD, BUF)

| Copyright IBM Corp. 1985, 1989
298 -1

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

FFFFULLSTAT (FI LDES, CMD, BUF)

Par anet ers

pat h
is used only in the STATX, STAT and LSTAT systemcalls. It specifies
the file whose status is to be checked.

O In Pascal, path is a string variable or constant of type st80.
O In FORTRAN, path is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

fildes
is used only in the FSTATX, FSTAT, FULLSTAT, and FFULLSTAT system
calls. 1t is a descriptor obtained froma successful FCNTL, OPEN

Pl PE, SOCKET, or SOCKETPAIR system cal |
O In Pascal, fildes is of type integer.
0 In FORTRAN, fildes is of type | NTECER

buf
is required for all five systemcalls. It points to a buffer where
status information about the specified file is returned.

O In Pascal, buf is of type statrec.

O In FORTRAN, buf is the nane of an array of 30 elenents of type
I NTEGER. This array corresponds to the Pascal data
structure--defined in the ailtypes.inc file (Appendix C)--as
fol |l ows:

BUF(1) buf . st _dev
BUF(2) = buf.st_ino
BUF(3) = buf.st_node
BUF(4) = buf.st_nlink
BUF(5) = buf.st_uid
BUF(6) = buf.st_gid
BUF(7) = buf.st_rdev
BUF(8) = buf.st_size

BUF(9) = buf.st_atine

BUF(10) = buf.st_ntine
BUF(11) = buf.st_ctine
BUF(12) = buf.fst.uid_raw

| Copyright IBM Corp. 1985, 1989
298 -2

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

BUF(13) buf.fst.gid_raw
BUF(14) = buf.fst_type
BUF(15) = buf.uid_rev_tag
BUF(16) = buf.gid_rev_tag
BUF(17) = buf.fst_other_gid_|ist
BUF(18) = buf.fst_other_gid_count
BUF(19) = buf.fst_vfs
BUF(20) = buf.fst_nid
BUF(21) = buf.fst_flag
BUF(20) = buf.fst_i_gen
BUF(23...BUF(30) = buf.fst_reserved[1]...buf.fst_reserved]8]
| en
specifies the amount of information to be returned.
O In Pascal, |len is of type integer.

O In FORTRAN, len is of type | NTEGER

cnd
determ nes the interpretation of path:

STX_LINK specifies that path identifies a synbolic |ink
STX_H DDEN specifies that path identifies a hidden directory.

STX_MOUNT specifies that path identifies a nounted-over file or
directory.

Note: I n FORTRAN, the underscore is omtted (for exanple,
" STXLI NK") .

O In Pascal, fildes is of type integer.

O In FORTRAN, fildes is of type | NTEGER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the STATX
systemroutine. In these exanples, information about the file specified

by the path paranmeter ("blue") is returned in the buf paraneter

| Copyright IBM Corp. 1985, 1989
298-3

VS/AIX Interface Library

STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

file fusr/includel/aildefs.inc

("yellow'). The value of the file node for
is the value printed out.
Pascal
procedure statxl1;
const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
red : integer;
bl ue : st80;
yel l ow : statrec;
% ncl ude /usr/include/aildefs.inc
begin
blue := "/usr/include/aildefs.inc';
red := p_statx (blue, yellow STATSIZE, 0);
witeln (yell ow@ st_node);
end;
FORTRAN
SUBROUTI NE STATX1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFSTATX, RED, YELLOW 18)
CHARACTER* 80 BLUE
BLUE = ' /usr/include/aildef.inc
RED = FFSTATX (BLUE, YELLOW STATSIZE, 0)
PRI NT *, YELLOW 3)
END
Not es

The followi ng interfaces provide conpatibility with prograns witten for
Al X/ RT or other versions of the UNI X operating system

0 stat (path, stbuf) is equivalent to
statx (path, buf, STATSIZE, O
O Istat (path, buf)
is equivalent to
statx (path, buf, STATSIZE, STX LI NK)
O fstat (fildes, buf)
is equivalent to
fstatx (fildes, buf, STATSIZE, O
O fullstat (path, cnd, buf)

| Copyright IBM Corp. 1985, 1989

298-4

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

is equivalent to

statx (path, buf, FULLSTATSIZE, cnd)
O ffullstat (fildes, cnd, buf)

is equivalent to

statx (fildes, buf, FULLSTATSIZE, cnd)

| Copyright IBM Corp. 1985, 1989
298-5

VS/AIX Interface Library
STIME set the system clock

2.99 STIME set the system cl ock

Description

The STIME systemcall sets the systemlis internal clock to a tine and date
that are calculated froma value specified in the call.

Note: Only users with an effective user ID of super-user may issue this

call.

Synt ax

+--- Pascal ---------------oooooo oo e +
I I
I I
i p_stime (ip); i
| l
I I
I I
o m m e o e m o +
+--- FORTRAN -==c-cccmcemc e e cemc e ncecccccnane- +
I I
I I
| FSTIME (TP) :
| l
I I
I I
o m m e o e m o +

Par anet ers

tp
is the nunber of seconds that have el apsed since 00:00: 00 January 1,
1970 GMI. G ven this nunber, the routine calculates the tinme and date
and resets the systems internal clock accordingly.

O In Pascal, tp is of type integer.
O In FORTRAN, tp is of type |INTEGER

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call is issued by
anyone other than the super-user or if it fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

The Pascal procedure and FORTRAN subroutine on the next page call the

STI ME systemroutine. The value of "cronos" is the interval (in seconds)
bet ween 00: 00: 00 January 1, 1970 GMI and the tinme to which the system
clock is to be set. The return value of the call is in the variable
"titan".

Pascal

procedure stinel;

const
% ncl ude /usr/include/ail pconsts.inc

type

| Copyright IBM Corp. 1985, 1989
299-1

VS/AIX Interface Library
STIME set the system clock

% ncl ude /usr/include/ailtypes.inc
var

cronos, titan : integer;

% ncl ude /usr/include/aildefs.inc

begin
cronos : = 31536000;
titan = p_stinme (cronos);
witeln (titan);
end;
FORTRAN

SUBRQUTI NE STI ME1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSTI ME, CRONGCS, TI TAN

CRONGCS = 31536000

TITAN = FSTI ME (CRONCS)
PRINT *, TITAN

END

| Copyright IBM Corp. 1985, 1989
299-2

VS/AIX Interface Library
SYMLINK create a symbolic link to a file

2.100 SYMLINK create a synbolic link to a file

Description
The SYMLI NK systemcall creates a synbolic link to a file.

Synt ax
+--- Pascal ---------------o-ooo oo e +

p_symink (pathl, path2);

FSYMLI NK (PATH1, PATH2);

Par anet ers

pat hl
is the name of the existing file to which a link is created. |If pathl
is not a full pathnanme (that is, does not begin with "/"), it is
evaluated in the context of path2, not the current working directory.

O In Pascal, pathl is a string variable or constant of type st80.

O In FORTRAN, pathl is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

pat h2
is the nane of the file created.

O In Pascal, path2 is a string variable or constant of type st80.

O In FORTRAN, path2 is a string variable or constant of type
CHARACTER*80. The term nating character of the string must be a
bl ank space.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine on the next page call the
SYMLI NK system routine, which in these exanples creates a synbolic link to
a physical file (/usr/include/aildefs.inc) by creating /bushel/light/hide.

After the successful conpletion of the call, the two files are unlinked by
a call to UNLINK
Pascal

| Copyright IBM Corp. 1985, 1989
2.100-1

VS/AIX Interface Library
SYMLINK create a symbolic link to a file

procedure syminkl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

pat hl, path2 : st80;

% ncl ude /usr/include/aildefs.inc

begin
pathl := '"/usr/include/aildefs.inc';
pat h2 := '/bushel /i ght/hide'
green := p_symink (pathl, path2);
witeln (*Symink returned: ', green : 2);
if (green = -1) then showerror;
green := p_unlink (path2);

end,

FORTRAN

SUBROUTI NE SYM.I NK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FSYMLI NK, FUNLI NK, GREEN
CHARACTER*80 P1, P2

P1 = '/usr/include/aildefs.inc '
P2 = '/bushel/light/hide "’

GREEN = FSYMLI NK (P1, P2)

PRI NT *, GREEN

IF (GREEN . EQ -1) CALL ERRORS
GREEN = FUNLI NK (P2)

END

| Copyright IBM Corp. 1985, 1989
2.100 -2

VS/AIX Interface Library
SYNC update a file system

2.101 SYNC update a file system

Description

The SYNC systemcall wites nodified information in core nenory to disk,
i ncl udi ng nodi fied super-bl ocks, i-nodes, and del ayed block 1/0QO

Synt ax

+--- Pascal --------------oooooo oo e
I

I

| p_sync;

|

I

I

e e e e e e e mm e e ememmmemsmmemmemmeemmmmemsmmemsmmmmasmmmemmmmemmmemmmmmmmmmmmm———-——a

=== FORTRAN = - == == = == = s = s o s s s e o e oo

FESYNC ()

Par anet ers

This systemcall has no paraneters.

Ret urn Val ues
The wite operation nmay be schedul ed but is not necessarily conplete upon

return fromthe SYNC call, and no value is returned

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the SYNC
systemroutine. In these exanples, all information in nmenory that should

be on disk is witten to disk.

Pascal

procedure syncl

const

% ncl ude /usr/include/ail pconsts.inc
var

blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
blue := p_sync
end;

FORTRAN

SUBRQUTI NE SYNC1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FFSYNC, BLUE

BLUE = FFSYNC ()

END

| Copyright IBM Corp. 1985, 1989
2101-1

VS/AIX Interface Library
TIME get the system time

2.102 TIME get the systemtine

Description

The TIME systemcall returns the length of the interval (in seconds) from
00: 00: 00 Jan. 1, 1970 GMI to the current (system tine.

Synt ax

+--- Pascal --------------oooooo oo e +

p_time (tloc);

e o e meemaa - +
o0 FORTRAN - - === == = o = s o s n e +
I I
I I
' FTIME (TLOO) !
l l
I I
I I
g +

Par anet ers

tloc
is a variable that receives the length of the interval (in seconds
from00:00:00 Jan. 1, 1970 GMI to the current tine) upon return from
the call.

O In Pascal, tloc is of type integer.
O In FORTRAN, tloc is of type | NTEGER

Ret urn Val ues

The current time is returned upon successful conpletion of the call. When
the value returned is other than O (zero), it is also stored in the

| ocation to which t|l oc points.

O In Pascal, the return value is of type integer

O In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the TIME
systemroutine. The length of the interval, expressed in seconds, is
returned in the variable "perdu”. The return value of the call is in the
vari able "tenps".

Pascal

procedure tinel

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

tenps, perdu : integer;

| Copyright IBM Corp. 1985, 1989
2102 -1

VS/AIX Interface Library
TIME get the system time

% ncl ude /usr/include/aildefs.inc

begin
tenps := p_tinme (perdu);
witeln (perdu);

end;

FORTRAN

SUBRQUTI NE TI ME1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FTI ME, TEMPS, PERDU

TEMPS = FTI ME (PERDU)

PRI NT *, PERDU

END

| Copyright IBM Corp. 1985, 1989
2.102 -2

VS/AIX Interface Library
TIMES get the process times

2.103 TIMES get the process tines

Description

The TIMES systemcall returns time-accounting information about the
current process and about the terminated child processes of the current
process.

Synt ax

+--- Pascal --------------oooooo oo e +

p_tinmes (buf);

g +
o=« FORTRAN - - == === === e m e e e e e e e e e e e e +
I I
1 |
' FTIMES (BUF) !
I I
I I
1 |
g +

Par anmet ers

buf
is a pointer to a data structure in which information about the
current process tines is placed.

O In Pascal, buf is of type tns.
O In FORTRAN, buf is an array(4) of type INTEGER This array

corresponds to the Pascal data structure--defined in in the
ailtypes.inc file (Appendix C)--as foll ows:

BUF(1) = buf.tms_utine
BUF(2) = buf.tnms_stine
BUF(3) = buf.tns_cutine
BUF(4) = buf.tns_cstine

Ret urn Val ues

The el apsed time froma systemdefined reference date to the current
process tine is returned upon successful conpletion of the call. The
value -1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow issue a TIMES
systemcall. A child process is created by a call to FORK. The return
value is in the variable "green". The call to TIMES stores information in
the buffer "colors". Both exanples print the value in the tns_stine

field, which is the CPUtine used by the systemon behalf of the calling
pr ocess.

| Copyright IBM Corp. 1985, 1989
2.103-1

VS/AIX Interface Library
TIMES get the process times

Pascal

procedure tinmesl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

bl ue, green, red : integer

colors : tns;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_fork;
if green = 0 then
red := p_execl ('/bin/sh', "sh', '"-¢' , 'date', '")
el se
begin
blue := 0 ;
green := p_wait (blue);
red := p_times (colors);
witeln ("stine ', colors.tnms_stine);
end
end,
FORTRAN

SUBRQOUTI NE TI MES1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FTI MES, FEXECL, FFORK, FWAIT
| NTEGER BLUE, COLORS(4), GREEN, RED
GREEN = FFORK ()

IF (GREEN . EQ 0) THEN

RED = FEXECL ('/bin/sh ', "sh ', '"-c'
ELSE
BLUE = 0

GREEN = FWAI T (BLUE)

RED = FTI MES (COLORS)

PRINT *, 'stine ', COLORS(2)
ENDI F
END

| Copyright IBM Corp. 1985, 1989
2.103-2

"dat e

VS/AIX Interface Library
ULIMIT get and set process limits

2.104 ULIMT get and set process |limts

Description

The ULIMT systemcall controls the Iimts of a process file.

Note: Only users with an effective user |ID of super-user
call.

Synt ax

+--- Pascal --------------oooooo oo e

pulimt (cmd, newim;

Par anet ers

may issue this

cnd
is a constant or a variable that can have one of the follow ng val ues:
1 gets the process file-size limt.
2 sets the limt of the file size of the process to the value of
newl i m (see next parameter).
Note: Any process nmay decrease the limt, but only a process
with an effective user I D of super-user may increase the
[imt.
3 retrieves the maxi mum possi bl e break value (see BRK on page 2.7).
O In Pascal, cnd is of type integer.
O In FORTRAN, cnd is of type | NTEGER
new i m

is used only with cnd option 2 to increnent the limt.

O In Pascal, newwimis of type integer.
O In FORTRAN, newlimis of type | NTEGER

Ret urn Val ues

A nonnegative value is returned upon successful conpletion of the call.

The value -1 is returned and an error code set in errno if the call

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exanpl es

| Copyright IBM Corp. 1985, 1989
2104 -1

fails.

VS/AIX Interface Library
ULIMIT get and set process limits

The Pascal procedure and FORTRAN subroutine that follow call the ULIMT
systemroutine, which in these exanples returns the nmaxi num possi bl e break
val ue (specified by the cnd paranmeter value of 3) in the variable "blue".

Pascal

procedure ulimti;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue : integer;

% ncl ude /usr/include/aildefs.inc

begin
blue :=p_ulimt (3, 0);
witeln (blue);

end;

FORTRAN

SUBROUTI NE ULI M T1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FULIM T, BLUE

BLUE = FULIMT (3, 0)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.104 -2

VS/AIX Interface Library
UMASK get and set a file-creation-mode mask

2.105 UVASK get and set a file-creation-node mask

Description

The UMASK systemcall sets a mask that is used whenever a file is created
by a CREAT or MKNOD call. The access node of the newly created file (see
CHMOD on page 2.10) is set to the value of cmask. Only the | ow order nine

bits of the mask (the protection bits) participate.
Synt ax
+--- Pascal ---------------oooooo oo

p_umask (cnask);

Par anmet ers

cmask
is the bool ean conpl ement of the new file's access node.

O In Pascal, cnask is of type integer
O In FORTRAN, cmask is of type | NTEGER

Ret urn Val ues

The previous value of the mask is returned upon successful conpletion of
the call. The initial value of the mask is O (zero), specifying"no
restrictions.”

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the UVASK
systemroutine with the value of the cnask parameter ("red") equal to O
(zero). This value specifies the elimnation of all restrictions on the
file-creation node. The value printed out is the previous value of the
mask.

Pascal

procedure umaskl

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

| Copyright IBM Corp. 1985, 1989
2.105-1

VS/AIX Interface Library
UMASK get and set a file-creation-mode mask

% ncl ude /usr/include/aildefs.inc

begin
red := 0;
blue := p_umask (red);
witeln (blue);

end;

FORTRAN

SUBROUTI NE UMASK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUVASK, BLUE, RED

RED = 0

BLUE = FUVASK (RED)

PRI NT *, BLUE

END

| Copyright IBM Corp. 1985, 1989
2.105-2

VS/AIX Interface Library
UNAME, UNAMEX get the name of the current operating system

2.106 UNAME, UNAMEX get the nanme of the current operating system

Description
The UNAME and UNAMEX systemcalls retrieve and store information that

identifies the current operating system They store this information in
data structure specified in the call.
The UNAMEX call is used in |local area networks where a binary node is
appropri ate.
Synt ax
+--- Pascal --------------oooooo oo e
I
I
| p_unane (namne);
I
I
| p_unanex (xnane);
|
I
I
e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
R = O 4 I 2 B
I
I
| FUNCTI ON FUNAME (NAME)
I
I
| FUNCTI ON FUNAMEX (XNAME)
I
|
I
e e e e e e e mm e mmemmmemsmmeemmemmeEmmmememmmemmmmeammmemmmmemmmemmmmmmmmmmmm———-——a
Par anet er s
name
is used only with the UNAME call. It points to the appropriate data
structure (unam.
O In Pascal, nanme is of type unam
O In FORTRAN, nanme is an array(5) of type CHARACTER*32.
xname
is used only with the UNAMEX call. It points to the appropriate data

structure (xunam.
O In Pascal, xname is of type xunam
0O |In FORTRAN, xnane is an array(4) of type | NTEGER

Return Val ues

A nonnegative number is returned upon successful conpletion of the call
(see Notes). The value -1 is returned and an error code set in errno if
the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER
Exampl es

The Pascal procedure and FORTRAN subroutine that follow print the nane of
the current operating system The return value for UNAME is in the

| Copyright IBM Corp. 1985, 1989
2.106 -1

VS/AIX Interface Library
UNAME, UNAMEX get the name of the current operating system
variable "nenp". Qher information returned concerning the current
operating systemis located in the four remaining fields of the record
"verne".

The UNAMEX call, which is used in a |ocal-area-network environnent,
returns the binary node nunmber in a variable paraneter of type xunam

Pascal

procedure unamel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

neno : integer;

verne : unam

% ncl ude /usr/include/aildefs.inc

begin
neno : = p_unane (verne);
witeln (verne.sysnane);
end,
FORTRAN

SUBROUTI NE UNAMEL

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUNAME, NEMO

CHARACTER* 32 VERNE(5)

NEMO = FUNAME (VERNE)

PRI NT *, VERNE(1)

END

Not es
If the unanx.nid field of the paraneter's return value is a negative
nunber, add 4 294 967 296 to that nunber to obtain the correct val ue.

| Copyright IBM Corp. 1985, 1989
2.106 - 2

VS/AIX Interface Library
UNLINK delete a directory entry

2.107 UNLINK delete a directory entry

Description
The UNLINK systemcall deletes the directory entry of a specified file.

Synt ax
+--- Pascal --------------oooooo oo e +

p_unlink (path);

Par anmet ers

pat h
is the nane of the file to be del eted.

O In Pascal, path is a string variable or constant of type st80,
O In FORTRAN, path is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type | NTEGER

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the UNLINK
systemroutine, which in these exanples renoves the directory entry
specified in the path paranmeter ("blue"), assumng that file /tnp/Xxxx
exi sts.

Pascal

procedure unlinkl;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

yell ow : integer;

bl ue : st80;

% ncl ude /usr/include/aildefs.inc

| Copyright IBM Corp. 1985, 1989
2.107 -1

VS/AIX Interface Library
UNLINK delete a directory entry

begin
blue :="/tmp/ xxx";
yellow := p_unlink (blue);
witeln (yellow);
end,
FORTRAN

SUBROUTI NE UNLI NK1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUNLI NK, YELLOW

CHARACTER* 80 BLUE

BLUE = '/tnmp/ xxx '

YELLOW = FUNLI NK (BLUE)

PRI NT *, YELLOW

END

| Copyright IBM Corp. 1985, 1989
2.107 -2

VS/AIX Interface Library
USRINFO get and set user information

2.108 USRI NFO get and set user information

Description

The USRI NFO system call gets and sets informati on about the owner of the
cal ling process.

Synt ax

+--- Pascal --------------oooooo oo e

p_usrinfo (cnd, buf, count);

Par anet ers

cnd
is a constant or a variable with two possible argunents (SETU NF or

CETU NF) as defined in the Pascal and FORTRAN constants include files.

O In Pascal, cnd is of type integer.
O In FORTRAN, cnd is of type | NTECGER

buf
is a pointer to a user buffer. The length of this buffer, in bytes,
is usually equal to the constant | NFSIZ(64).
O In Pascal, buf is of type charinfsiz.

O In FORTRAN, buf is a user-defined array of type CHARACTER

is the nunmber of bytes to be copied fromor to the user buffer.
O In Pascal, count is of type integer.

O In FORTRAN, count is of type | NTEGER

Ret urn Val ues

A nonnegative number indicating the nunber of bytes read is returned upon
successful conpletion of the call. The value -1 is returned and an error
code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the USRI NFO
systemroutine, which gets information about the owner of the current
process. |In these exanples, the information is witten to the array

| Copyright IBM Corp. 1985, 1989
2.108 -1

VS/AIX Interface Library
USRINFO get and set user information
pointed to (Pascal) or specified by (FORTRAN) the variable "yellow'. The
nunber of bytes witten to the array is returned in the variable "blue"
Note that, in Pascal, "yellow' is the user-defined array (of type usrary)
pointed to by usrptr.

Pascal

procedure usrinfol;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

yel l ow : chari nfsi z;

begin
blue := p_usrinfo (CETINF, vyellow, INFSIZ);
witeln (blue);

for red := 1 to blue do
wite (yellowred]);
witeln;
end;
FORTRAN

SUBROUTI NE USRI NFOL

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FUSRI NFO, BLUE

CHARACTER* 64 YELLOW

BLUE = FUSRI NFO (GETI NF, YELLOW | NFSI 2)
PRI NT *, BLUE

PRI NT *, YELLOW (1 : BLUE)

END

| Copyright IBM Corp. 1985, 1989
2.108 - 2

VS/AIX Interface Library
USTAT get file-system information

2.109 USTAT get file-systeminformation

Description

The USTAT systemcall retrieves and stores information about a nounted
file system

Synt ax

+--- Pascal --------------oooooo oo e +

p_ustat (dev, buf);

Par anet er s

dev
is the ID of the device corresponding to the elenment strdev of the
data structure returned by STAT.
O In Pascal, dev is of type integer.

O In FORTRAN, dev is of type |INTEGER

buf
is the pointer to the data structure that holds the retrieved
i nformati on.
O In Pascal, buf if of type ustatrec.

O In FORTRAN, buf is divided into two paraneters:
- abuf is an array(2) of type | NTEGER
- bbuf is an array(2,6) of type CHARACTER
Ret urn Val ues
The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es
The Pascal procedure and FORTRAN subroutine that follow call the USTAT
systemroutine. In these exanples, information about the device specified

by the dev parameter ("blue") is returned in the buf paranmeter ("yellow').
The val ue assigned to dev(1l) specifies /dev/hdl. Normally this paraneter
value is obtained froma field of the information returned by a STAT call.
Pascal

| Copyright IBM Corp. 1985, 1989
2.109-1

VS/AIX Interface Library
USTAT get file-system information

procedure ustat1;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

blue, red : integer;

yell ow : ustatrec;

% ncl ude /usr/include/aildefs.inc

begin
blue := 1,
red := p_ustat (blue, yellow;
witeln (red);

end;

FORTRAN

SUBROUTI NE USTAT1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUSTAT, BLUE, GREEN(2), RED
CHARACTER YELLOW 2, 6)

BLUE = 1

RED = FUSTAT (BLUE, GREEN, YELLOW
PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
2.109 -2

VS/AIX Interface Library
UTIME set the file times

2.110 UTIME set the file tinmes

Description
The UTI ME systemcall sets the access and nodification tinmes of a
specified file. The 'i-node changed' tinme of the file is set to the

current tine.

Note: Only users with an effective user ID of super-user may issue this
call.

Synt ax
+--- Pascal --------------oooooo oo e +

p_utinme (path, times);

+———————

__ +
+= oo FFORTRAN = = == === cccccccooooomeeaseeeecnannnnnnnnnncaaaanannanaaaaens +
I I
1 |
' FUTIME (PATH, TI MES) !
I I
I I
1 |
g +

Par anet ers

pat h
is the nane of the file whose tines are to be set.

O In Pascal, path is a string variable or a constant of type st80.
O In FORTRAN, path is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

times
is a pointer to a two-elenent array. The first elenent holds the new
accessed tine. The second el ement holds the new updated tine.

O In Pascal, tinmes is of type utinptr.

O In FORTRAN, times is the name of an array consisting of two
el ements of type | NTEGER

Note: If times is given the value nil in Pascal or -1 in FORTRAN, the

access and nodification times of the file in path are set equa
to the current tine.

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exanpl es
The Pascal procedure and FORTRAN subroutine that follow call the UTIME

| Copyright IBM Corp. 1985, 1989
2.110-1

systemroutine.

VS/AIX Interface Library
UTIME set the file times

In these exanpl es, the access and nodification tinmes of

the file specified by the path paranmeter ("blue") are set to the current

tinme.

Pascal

procedure utinel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

red : integer;

bl ue : st80;

yellow : utinptr;

% ncl ude /usr/include/aildefs.inc

begin
blue := "/usr/include/ailtypes.inc';
yellow := nil;

red := p_utine (blue, yellow;
witeln (red);
end;

FORTRAN

SUBROUTI NE UTI ME1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUTI ME, RED, YELLOW 2)
CHARACTER*80 BLUE

BLUE = '/usr/include/ailtypes.inc
YELLON 1) = -1

RED = FUTI ME (BLUE, YELLOW

PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989

2.110-2

VS/AIX Interface Library
UTIMES set the file times

2.111 UTIMES set the file tines

Description

The UTI MES systemcall sets the accessed and updated tinmes of a specified
file to specified val ues.

Synt ax

+--- Pascal --------------oooooo oo e +

p_utimes (ffile, tvp);

Par anet ers

ffile
is the nane of the file whose tines are to be set.

O In Pascal, ffile is a string variable or a constant of type st80.
O In FORTRAN, path is a string variable or constant of type

CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

tvp
contains the updated tines.
O In Pascal, tvp is of type tineval2 (an array of two tineval
records).
O In FORTRAN, tvp is an integer array of four elenents. This array

corresponds to the Pascal data structure--defined in the
ailtypes.inc file (Appendix C)--as foll ows:

TVP(1) = tvp[l].tv_sec
TVP(2) = tvp[l].tv_usec
TVP(3) = tvp[2].tv_sec
TVP(4) = tvp[2].tv_usec

Ret urn Val ues

The value 0 is returned upon successful conpletion of the call. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

| Copyright IBM Corp. 1985, 1989
2111-1

VS/AIX Interface Library
UTIMES set the file times

The Pascal procedure and FORTRAN subroutine that follow call the UTIMES
systemroutine.

Pascal

procedure utimesli;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc
var

green : integer;

ffile : st80;

tvp : tinmeval 2;
% ncl ude /usr/include/aildefs.inc

begin
ffile :="/tnp/junk";
green :- p_open (ffile, CREATE, 0);
tvp[1l].tv_sec := 1;
tvp[1l].tv_usec : = 2;
tvp[2].tv_sec := 3;
tvp[2].tv_usec := 4;
green := p_utinmes (ffile, tvp);
if green = -1 then
witeln ("Uimes: ERROR)
el se
witeln ("Uines: ok ');
green := p_unlink (ffile);
end,

FORTRAN

SUBRQUTI NE UTI MES1

I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FUTI MES, FOPEN, TVP(4), CREEN
CHARACTER*80 FFI LE

FFILE = " /tnp/junk '

GREEN = FOPEN (FFI LE, CREATE, 0)

TVP(1) =1
TVP(2) = 2
TVP(3) = 3
TVP(4) = 4

GREEN = FUTI MES (FFI LE, TVP)
IF (GREEN . EQL. -1) THEN
PRI NT *, " UTI MES: ERROR

CALL ERRORS
ELSE

PRINT *, ' UTI MES: X
ENDI F

END

| Copyright IBM Corp. 1985, 1989
2111-2

VS/AIX Interface Library
WAIT, WAIT3 walit for a child process to terminate

2.112 WAIT, WAIT3 wait for a child process to termnate

Description

The WAI T and WAI T3 systemcalls cause the calling process to delay until a
signal is received or until one of the child processes term nates or stops
in a trace node. However, the routine does not delay the calling process
if a child process that has not been waited for has already stopped or
term nated before the call was issued.

WAl T3 returns nmore information than WAl T.

Synt ax

+--- Pascal ----------mmmm e e +

p_wait (stinfo);

p_wait3 (status, options, usage)

o ———————

__ +
+o oo FFORTRAN = = = = === cccccccooooooeasseeeeeeaaaaaaaaannnoaaaaaannanaaaaens +
I I
1 |
' FWAI T (STINFO !
I I
1 |
| FWAI T3 (STATUS, OPTIONS, USAGE) !
I I
l l
1 |
g +

Par anet er s
stinfo
is the termnation status returned by one of the child processes to
t he parent process.
O In Pascal, the termnation status is of type integer.
O In FORTRAN, the term nation status is of type | NTEGER
status
is the termnation status returned by one of the children of the
cal ling process.
O In Pascal, status is of type integer.

g In FORTRAN, the status is of type | NTEGER

opti ons
specifies either or (by logical ORing) both of two conditions of
executi on:

WNOHANG causes WAI T3 not to delay if no processes are ready to
report their status.

WUNTRACED causes WAI T3 to return information when children of the
cal ling process have stopped.

O In Pascal, options is of type integer.

| Copyright IBM Corp. 1985, 1989
2112-1

VS/AIX Interface Library
WAIT, WAIT3 wait for a child process to terminate

O In FORTRAN, the options is of type | NTEGER

usage
describes the total resources used on all sites by the term nated
process.
O In Pascal, usage is of type rusageptr.

O In FORTRAN, rusage is of type | NTEGER USAGE(23).

Ret urn Val ues
The process ID of a stopped or termnated child process is returned upon

successful conpletion of the WAIT systemcall. The value 0 is returned
upon successful completion of the WAIT3 systemcall. The value -1 is
returned and an error code set in errno if either call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the WAIT
systemroutine as well as two others that are commonly used in the context
of a wait call: FORK and EXECL.

In both exanples, the result is the creation of a new process that is a
copy of the parent process. The WAIT call allows the inner |oop of the
child process to conpl ete execution before the parent process proceeds
further. Wthout the WAIT call, it is likely that the child process
cannot conplete the inner |oop before the parent issues the EXECL call and
prints the date. The WAIT call guarantees that the child process wll
conmplete the | oop before the EXECL call is issued.

Pascal

procedure waitl;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
var
bl ue, green, orange, pink, purple, red, yellow : integer;

% ncl ude /usr/include/aildefs.inc

begin
green : = p_fork;
if green = 0 then
begin

for orange := 1 to 40 do
witeln ("child process');
purple := p_exit (pink)
end,
blue := p_wait (red);
witeln (blue);
yellow : = p_execl ('/bin/sh', "sh', '"-c', 'date', '")
end,

| Copyright IBM Corp. 1985, 1989
2112-2

FORTRAN

10

VS/AIX Interface Library
WAIT, WAIT3 walit for a child process to terminate

SUBRQUTI NE WAI T1
I NCLUDE (/usr/include/ailfconsts.inc)
| NTEGER FWAI T, FEXECL, FEXI T, FFORK, BLUE, GREEN, ORANCE
| NTEGER PI NK, PURPLE, RED, YELLOW
GREEN = FFORK ()
IF (GREEN . EQ 0) THEN

DO 10 ORANGE = 1, 40

PRINT *, ' CH LD PROCESS

CONTI NUE

PURPLE = FEXI T (Pl NK)

ENDI F

BLUE = FWAI T (RED)

PRI NT *, BLUE

YELLOW = FEXECL ('/bin/sh ', "sh ', '-¢c ', 'date ', ' ')
END

| Copyright IBM Corp. 1985, 1989
2112 -3

VS/AIX Interface Library
WRITE, WRITEX write to a file

2.113 WRITE, WRITEX wite to a file

Description

The WRI TE systemcall wites a specified nunber of bytes froma specified
area to a specified file.

The WRI TEX system call invokes additional comuni cations facilities.

Synt ax

+--- Pascal --------mmmmm st i e m e ma oo

pwite (fildes, buffer, nbytes);

p_witex (fildes, buffer, nbytes, ext);

e e e e e e e e m e e mmm e MM mmmeememmmmmememsmmemmmmeammmemmmmmemmmemmmmmmmmmmmm—————a
+--- Pascal external function definitions -------------------------------
I

I

| function p_wite (fildes : integer; buffer : witptr;

| nbytes : integer) : integer; external;

I

I

| function p_witex (fildes : integer; buffer : witptr;

| nbytes, ext : integer) : integer; external;

:

I

I

e e e e e e e me e e MM m e MM mmmemmemmEmmmememsmmemmmmeammmmmmmmemmmemmmmmmmmmmmm———-———

FWRI TE (FI LDES, BUFFER, NBYTES)

FWRI TEX (FI LDES, BUFFER, NBYTES, EXT)

Par anmet ers

fil des
is the descriptor of the file to be witten to and is returned by a

successful CREAT, DUP, DUP2, FCNTL, OPEN, PIPE, SOCKET, or SOCKETPAIR

systemcal | .
O In Pascal, fildes is of type integer.
0 In FORTRAN, fildes is of type | NTEGER

buf fer
is a pointer to a buffer of nbytes contiguous bytes that are witten
to the output file. The nunber of characters actually witten is
returned. It should be regarded as an error if the return val ue
differs fromthe number requested.

O In Pascal, buffer is a pointer of type witptr. (Witptr is a
poi nter to a user-defined packed array of type char.)

O In FORTRAN, buffer is a user-defined array of type CHARACTER

| Copyright IBM Corp. 1985, 1989
2.113-1

VS/AIX Interface Library
WRITE, WRITEX write to a file

nbyt es
is the nunber of bytes to be witten to the specified file.

O In Pascal, nbytes is of type integer.
O In FORTRAN, nbytes is of type | NTEGER

ext
is a parameter of the WRITEX call. It provides a value or a pointer
to a conmuni cations area for specific devices.

O In Pascal, ext is of type integer.
O In FORTRAN, ext is of type |INTEGER

In Pascal and FORTRAN, ext is device-dependent (see Al X Techni cal
Ref er ence) .

Return Val ues
The return value is the nunber of bytes witten to the specified file.
The value -1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer
d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subroutine that follow call the WRI TE
systemroutine, which wites a specified nunber of bytes to a file that
has been opened for witing. In these exanples, 35 bytes are witten to
the file /tnp/junk fromthe Pascal packed array "yellow' and fromthe
FORTRAN array "YELLOW .

Pascal

procedure witel;

const

% ncl ude /usr/include/ail pconsts.inc
type

% ncl ude /usr/include/ailtypes.inc

witary = packed array[1l..35] of char;
witptr = @uwitary;

var
bl ue, orange, red : integer;

yellow : witptr;

function p_wite (fildes : integer; buf : witptr;
nbytes : integer) : integer; external;
begin
new(yel | ow) ;

vellow@:= "test file for the WRITE systemcal | ';
blue := p_open (' /tnp/junk', WRONLY, O0);

red : = 35;

orange := p wite (blue, yellow, red);

witeln (orange);

| Copyright IBM Corp. 1985, 1989
2.113-2

VS/AIX Interface Library
WRITE, WRITEX write to a file

end;

FORTRAN

SUBROUTI NE WRI TE1

I NCLUDE (/usr/include/ailfconsts.inc)

| NTEGER FWRI TE, FOPEN, BLUE, ORANGE, RED
CHARACTER*35 YELLOW

BLUE = FOPEN ('/tnp/junk ', WRONLY, O0)
YELLOW = "test file for the WRITE systemcall '
RED = 35

ORANGE = FWRI TE (BLUE, YELLOW RED)

PRI NT *, ORANCE

END

| Copyright IBM Corp. 1985, 1989
2.113-3

VS/AIX Interface Library
WRITEV write output from multiple buffers

2.114 WVRITEV wite output fromnultiple buffers

Description

The WRI TEV systemcall obtains data froma specified set of buffers and
wites it to a specified object.

Synt ax

+--- Pascal --------------oooooo oo e +

p_witev (d, iov, iovcnt);

o m m ot o o e o o e o e o e o e e e e e o e e o e e e e e e e e e e e e e e e e e e eem oo +
+--- Pascal external function definition -------------------------------- +
I I
I I
| function p_witev (d : integer; var iov : iovarr; :
: iovcnt : integer) : integer; external; |
| l
I I
I I
I I
I I
o s m o e o o e o o e o e e e o e e e e e o e memoo— - +
oo FORTRAN -------mmmmmmmmm oo m oo oo oooo--o----o- +

This systemcall is not avail able in FORTRAN |

Par anmet ers

d
is a file descriptor or a socket descriptor.
O In Pascal, d is of type integer.
O In FORTRAN, d is of type |INTEGER
i ov
is an array of buffers.
O In Pascal, iov is an array of records of type iovrec
(user-defined).
i ovent

is the nunber of buffers of the type specified by iov
O In Pascal, iovcnt is of type integer.

Ret urn Val ues

The nunber of bytes witten is returned upon successful conpletion of the

call. The value -1 is returned and an error code set in errno if the call
fails.
O In Pascal, the return value is of type integer

| Copyright IBM Corp. 1985, 1989
2114 -1

VS/AIX Interface Library
WRITEV write output from multiple buffers

Exampl es

In the Pascal procedure that follows, five iovec records are initialized
W th base addresses and a buffer length of 10. The buffers are filled
W th "123456789" strings. File descriptor "s" is created by an OPEN
systemcall, and WRITEV is called to wite information to file "s" from
the five buffers pointed to by iov.

Pascal

procedure witevl;

const
% ncl ude /usr/include/ail pconsts.inc
type
% ncl ude /usr/include/ailtypes.inc
buf = packed array[1l..10] of char;
buf ptr = ~buf;
iovrec = record

iov_len : integer;
i ov_base : bufptr;
end,
iovarr = array[1l..5] of iovrec;
var
i, s, green : integer;
arr : stb5;
iov : iovarr;

% ncl ude /usr/include/aildefs.inc

function p_witev (d : integer; var iov : iovarr
iovcnt : integer) : integer; external;
begin
for i :=11to 5 do
begin
iov[i].iov_len := 10;
iov[i].iov_baseM := '123456789'
end,
s := p_open ('/tmp/junk', RDWR + CREATE, 0);
green := p_witev (s, iov, 5);

if (green <> -1) then
witeln ("Witev returned: OK')

el se
witeln ("Witev returned: ERROR)
if (green = -1) then showerror;
s = p_unlink ("/tnp/junk');
end,

| Copyright IBM Corp. 1985, 1989
2114 -2

VS/AIX Interface Library
Appendix A. Error Codes and Error Messages

A. 0 Appendix A Error Codes and Error Messages

Thi s appendi x describes the errors that can occur when a systemcall is
i ssued. Some subroutines that invoke systemcalls indicate errors in a
simlar way.

Systemcalls indicate the occurrence of an error by returning a special
value. This value is alnpost always -1, but you should check the
description of the particular systemcall to be sure. A nunber
identifying the error condition is stored in an external variable called
errno (see "Return Values, Error Codes, and Error Messages" in Chapter 1
for information on how to access errno). This variable is not cleared
when a systemcall is successful, so its value is neaningful only after
one error has occurred and before anot her.

The errno. h header file declares the errno variable and defines the nane
of each error condition

For each error code the following |list gives the code nunmber, the synbolic
nanme defined in the errno.h, header file, and the associated error
message. (For additional information, see perror in Al X Operating System
Techni cal Reference.)

EPERM Not the owner

ENOENT No such file or directory
ESRCH No such process

EINTR Interrupted system cal
EIO I/Oerror

ENXI O No such device or address
E2BI G Argunent list too |ong
ENOEXEC Exec format error

EBADF Bad file nunber

10 ECHILD No child process

11 EAGAIN No nore processes

12 ENOMVEM Not enough space

13 EACCES Perm ssion denied

14 EFAULT Bad address

15 ENOTBLK Bl ock device required
16 EBUSY Mount device busy

17 EEXIST File exists

18 EXDEV Cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argunent

23 ENFILE File table overflow

24 EMFILE Too many open files

25 ENOITY Not a typewiter

26 ETXTBSY Text file busy

27 EFBIG File too |arge

28 ENOSPC No space left on device
29 ESPIPE 11l egal seek

30 EROFS Read-only file system

31 EMINK Too many |inks

32 EPIPE Broken pipe

33 EDOM WMath argunent

34 ERANGE Result too large

35 ENOVBG No nessage of desired type
36 EIDRM ldentifier renoved

37 ECHRNG Channel nunber out of range

O©CoOoO~NOOOUITA~, WNEF

| Copyright IBM Corp. 1985, 1989
AO-1

38
39
40
41
42
43
44
45

VS/AIX Interface Library
Appendix A. Error Codes and Error Messages

EL2NSYNC Level 2 not synchroni zed
EL3HLT Level 3 halted

EL3RST Level 3 reset

ELNRNG Li nk nunber out of range
EUNATCH Protocol driver not attached
ENOCSI No CSI structure avail abl e
EL2HLT Level 2 halted

EDEADLK Potential deadl ock

| Copyright IBM Corp. 1985, 1989
AO0-2

VS/AIX Interface Library
Appendix B. Pascal Constants

B. 0 Appendi x B. Pascal Constants

The followi ng definitions of constants are required for Pascal calling
sequences.

ACCESS
FOK=0 { search for a file }
XK =1 { test for execute permssion }
WOK =2 { test for wite permnission }
RO =4 { test for read permssion }

DI SCLAI M
ZERO MEM = 0
FCNTL

F_DUPFD
F_GETFD
F_SETFD
F_GETFL
F_SETFL
F_GETLK
F_SETLK
F_SETLKW
F_OPENLOCK
F_GETOM
F_SETOM

POoO~NOOOITA~,WNEFO

F_RDLCK
F_WRLCK
F_UNLCK

(I
WN P

FULLSTAT and FFULLSTAT

FLSTAT = 0
FLSTRV = 1
FLSTOT = 2
FS VWP = 1

GETGRP

NGROUP = 26 { maxi num nunber of group access entries allowed }

GETI TI MER and SETI TI MER

| TI MER_REAL
I TI MER_VI RTUAL
| TI MER_PROF

0
1
2
GETSOCKOPT and SETSOCKOPT

SO_DEBUG =1

| Copyright IBM Corp. 1985, 1989
BO-1

SO _ACCEPTCONN
SO_REUSEADDR
SO KEEPALI VE
SO_DONTROUTE
SO _BROADCAST

SO_USELOGOPBACK

SO LI NGER
SO _00BI NLI NE
SOL_SOCKET

| OCTL

| OCTYP
I OCl NF

65280
65281

{ device types

DDLP = '
DDTAPE = ' M
DDTTY ='T
DDDI SK = 'R
DDRTC = 'c'
DDPSEU = ' Z
DDNET = ' N
DDEN = 'E
DDEM78 = ' e

{
{
{
{
{
{
{
{
{

VS/AIX Interface Library
Appendix B. Pascal Constants

16

32

64
128
256
65530

line printer }

mag tape }

termnal }

di sk }

real -time (cal endar) clock }
pseudo-devi ce }

net wor ks }

Et hernet interface }

3278/ 79 emul ator }

{ tape-drive types }

STREAM

1
STRSTP = 2

{ flags }

DFI XED
DFRAND
DFFAST

01
02
04

LOCKF

F_ULOCK
F_LOCK
F_TLOCK
F_TEST

WNPEFLO

LSEEK

SEEK_SET
SEEK_CUR
SEEK_END

(1|
N RO

MOUNT
MC_MOUNTS = 0
MOUNT and UMOUNT
{fl ags}
MNTRDO = 1

{ streaming tape drive }
{ start-stop tape drive }

{
{

non-renovabl e }
random access possible }

| Copyright IBM Corp. 1985, 1989
B.0-2

VS/AIX Interface Library
Appendix B. Pascal Constants

MNTRVMB = 2
MNTDEV = 4
MNTREM = 256
{ types }
MNTAI X = 0
MNTDS =1
MSGGET
IXOTH =1 { other: execute, search permssion }
IWOTH = 2 { other: wite perm ssion }
IROTH = 4 { other: read permssion }
IRWKO =7 { other: execute, read, wite perm ssion }
I XGRP = 8 { group: execute, search permssion }
IWGRP = 16 { group: wite permnission }
| RGRP = 32 { group: read permssion }
| RMKG = 56 { group: execute, read, wite perm ssion }
| XUSR = 64 { owner: execute, search permssion }
IWUSR = 128 { owner: write perm ssion }
| RUSR = 256 { owner: read permssion }
| RMKU = 448 { owner: execute, read, wite perm ssion }
| PCCRT = 512 { create entry if key doesn't exist }
| PCEXL = 1024 { fail if key exists }
| PCALC = 32768 { use if identifier exists }
ENFMI = 1SA D { enabl es enforcenent-node record | ocking }
MBGRCV

| PCNWI = 2048 { specify response to non-existent nessage;
also used in SEMOP as a semflg value }
| PCNER = 4096 { truncate a message that is too |long }

OPEN
CREATE = 256 { open with file create; uses third OPEN arg }
TTRUNC = 4096 { open with truncation }
EXCL = 8192 { excl usive open }

OPEN and

g
&

RDONLY
VIRONLY
RDWR

NDELAY
APPEND
DEFERC

{ non-blocking I/0O}
{ append; wites guaranteed at the end) }

Woohr~NEFO

2

OPEN, CREAT, MKNOD, AND CHWMOD

| EXEC = 64 { owner: execute, search permssion }
IVWRI TE = 128 { owner: write perm ssion }

| READ = 256 { owner: read permssion }

| SVTX = 512 { save text even after use }

ISA@D = 1024 { set group id on execution }

ISUD = 2048 { set user id on execution }

IFIFO = 4096 { fifo }

| FCHR = 8192 { character special }

| Copyright IBM Corp. 1985, 1989
B.0-3

| FDI R
| FBLK
| FREG
| FMT

| FIVPX

PLOCK

UNLOCK

PROCLOCK

TXTLOCK
DATLOCK

16384
24576
32768
61440
| FCHR

ADNFO

{
{
{
{

+ |

VS/AIX Interface Library
Appendix B. Pascal Constants

directory }

bl ock special }

regul ar }

type of file }

SVTX { multipl exed character-special

file }

REBOOT { these flags are defined in the file newonsts.inc }

RBASKNAME
RBNOSYNC

RBHALT

SEMCTL

| PCRVD
| PCSET
| PCSTT
GINCNT
CGETPI D
CGETVAL
CGETALL
GIZCNT
SETVAL
SETALL

SEMOP

SEMNDO

OCoOoO~NOUI~WNEFO

1
4
8

4096

SENDTO, SENDMSG, SENDFROM RECV, RECVMSG and RECVFROM
{ these constants are defined in the file newconsts.inc)

MSG_COB =1
MSG_PEEK =2
MSG_DONTROUTE = 4
MSG_MAXI OVLEN = 16
SHVAT
SHWAP = 2048
SHVRDO = 4096
SHVRND = 8192
SHVCPY = 16384
SHMLBA = 268435456
SI GNAL
SIGBLOCK = 0
SIG UNBLOCK = 1
SI G SETMASK = 2
SI GHUP = 1
SI G NT = 2

{ hangup }
{ interrupt or rubout }

| Copyright IBM Corp. 1985, 1989
B.0-4

VS/AIX Interface Library
Appendix B. Pascal Constants

SIGQAT = 3 { quit (ASCIl FS) }

SIALL = 4 { illegal instruction (not reset when caught) }

SI GTRP = 5 { trace trap, not reset when caught }

SId or = 6 { 10T instruction (abort) }

SI GEMI = 7 { EMI instruction }

S| GFPE = 8 { floating point exception }

SI &I L = 9 { kill (cannot be caught or ignored) }

SI GBUS = 10 { bus error }

SI GSGV = 11 { segnmentation violation }

SI GSYS = 12 { bad argument to systemcall }

SIGPIP = 13 { wite on a pipe with no one to read it }

SI GALM = 14 { alarmcl ock }

SI GTRM = 15 { software term nation signal fromkill }

Sl a1 = 16 { user-defined signal 1}

S| GSTOP = 17

S| GTSTP = 18

S| GCONT = 19

S| GCHLD = 20

SI GTTIN = 21

SI GTTQU = 22

SId O = 23

Sl GXCPU = 24

S| GXFSZ = 25

SI GVBG = 27

S| GW NCH = 28

SI GPVWR = 29

S| GUSR1 = 30

SI GUSR2 = 31

S| GPROF = 32

SI GDANGER = 33

SIGVTALRM = 34

S| GGRANT = 60

SI GRETRACT = 61

SI GSOUND = 62

SI GDFL = 0 { for signal code paraneter default }

SId GN = 1 { for signal code paraneter ignore }

S| GADDR = 2 { for sigvec code paraneter handl er address }
SOCKET

PF UNIX =1

PF_INET = 2

SOCK_STREAM = 1

SOCK_DGRAM = 2

STATX and FSTATX

STX LINK =1
STX_MOUNT = 2
STX_HI DDEN = 4

STATSI ZE = 100

USRI NFO

| Copyright IBM Corp. 1985, 1989
B.0-5

CETINF = 1
SETINF = 2
INFSIZ = 64

WAI T3 { these

VINOHANG
VWUNTRACED

VS/AIX Interface Library
Appendix B. Pascal Constants

{ used as a paraneter in the systemcall }
{ used as a paraneter in the systemcall }
{ a constant equal to the size of the user buffer

in the system call

constants are defined in the file newconsts.inc }

1
2

| Copyright IBM Corp. 1985, 1989
B.0-6

}

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

C. 0 Appendi x C. Pascal Type Decl arations

The follow ng declarations of types are required for Pascal
sequences.

cal ling

cargv = array[1l..80] of cstrptr;
charinfsiz = packed array[1..64] of char;
charni ne = packed array[1..9] of char
charptr = @har;

char 160 = packed array[1..160] of char
char 32 = packed array[1..32] of char
char 45 = packed array[1..45] of char
cstring = packed array[1..81] of char
cstrptr = @string;

cstrl2 = packed array[1..13] of char
i ntngroup = packed array[1..26] of integer;
intptr = @nteger;

pasar gv = array[1l..80] of st80;

pi parray = array[1l..2] of integer

short = -32767..32767;

shrtptr = @&hort;

st12 = string(12);

st12ptr = @&t 12;

st 512 = string(255); {changed from 512 because of linmt}
st512ptr = @t512

st 80 = string(80);

st 80ptr = @&t 80;

ushrt = -32767..32767;

usi gn = i nt eger

FULLSTAT and FFULLSTAT

vset = (VD R, VCHR, VBLK, VREG VMPC, VFIFO VBAD, VUNDEF);

tagset = (CALLER OTHER, SOMVONE, NOONE)

vt ype = VDI R . VUNDEF

tagtype = CALLER. . NOONE

fullstatrec = record
st _dev i nt eger;
st_ino i nt eger;
st _node i nt eger;
st _nlink ushrt;
spare0 ushrt;
st _uid i nt eger;
st_gid i nt eger;
st _rdev i nt eger;
st _si ze i nt eger;
st _atine i nt eger;
sparel i nt eger;
st_mine i nt eger;
spare2 i nt eger;
st_ctine i nt eger;
st _spare3 i nt eger;
st _bl ksi ze i nt eger;
st _bl ocks i nt eger;
fst_i_gen i nt eger;
fst_vfs i nt eger;
fst_flag i nt eger;
st _cntcnt i nt eger;

| Copyright IBM Corp. 1985, 1989

Co0-1

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

st_fstore . integer;
st _version . integer;
st_css short;
st_ss short;
st_rdevsite short;
st _spared short;
fst_nid i nt eger;
fst_uid_raw usi gn;
fst_gid_raw . usign;
fst_uid_rev_tag : usign;
fst_gid_rev_tag : usign;
end;
fullstatptr = @ullstatrec;
fullstatarr = array[1l..30] of integer;

Message routines

msgxbuf = record
nime :
mui d
ngi d
mi d

i nt eger;
short;
short;
i nt eger;

npi d

mype :

n ext

short;
i nt eger;
st 80;

end;
nmegxptr = @rsgxbuf;

nsg = record
next
mattr
nxtsz :
m oc

end;
nsgptr
nsgary

short;
short;

@rsg;

nmsqi d_ds = record
nsg_perm
nmsg_first
nmsg_| ast

nsg_chytes ;

meg_gnum

nmsg_gbytes ;

nmsg_| spid
msg_lrpid
nsg_stinme
nsg_rtinme
nsg_ctinme
end;
@rsqi d_ds;

nmdspt r

record

ntype :

nt ext
end;

nmbuf ptr = @rsgbuf;

nmsgbuf

perm = record

nsgptr;
nmsgxbuf ;

array[1..100]

of nsg;

perm
nmsgptr;
megptr;
ushrt;
ushrt;
ushrt;
i nt eger;
i nt eger;
i nt eger;
i nt eger;
i nt eger;

i nt eger;
st 80;

uid

short;

| Copyright IBM Corp. 1985, 1989
Co0-2

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

gid : short;

cuid : short;

cgid : short;

node : short;

seq : short;

key : integer;
end;

Semaphore routines

sem = record
semval : short;
sempid : short;
semcnt : short;
senecnt : short;
end;

senptr = @em

sem d ds = record
sem perm : perm

sem base : senptr;

sem nsens : short;

seml cnt . short;

semotine : integer;

semctine : integer;
end;

sem dptr = @em d_ds;

semary = array [1..1000] of short;
semaryptr = @enary,
abc = 0..2;

senrec = record
case abc of
0 : (val : integer);
1: (buf : semdptr);
2 . (arry : semaryptr);
end;

senbuf = record
sem num : short;

semop : short;
semflg : short;
end,

senmopary = array[1..1000] of senbuf;

Shar ed- nenory routines

snds = record

shperm T operm
shsegsz . integer
shl pid . integer;
shcpi d . integer;
shnattach : short;
shcnattach : short;
shati me . integer;
shdti me . integer;
shctime : integer
spare0 . integer;

| Copyright IBM Corp. 1985, 1989
C0-3

VS/AIX Interface Library
Appendix C. Pascal Type Declarations
end,
sndsptr = @nds;

Signal routines

si gnal stack = record
Ss_sp : cstrptr;
ss_onstack : integer;
end,
stackptr = @i gnal stack

signal vec = record

sv_handler : intptr;

sv_mask . integer;

sv_onstack : integer;
end;

sigvecptr = @i gnal vec;

New signal calls

nsigtype = array[1l..3] of usign;

sigset _t = record
setsize : integer
sigs : nsigtype;
end;

sigset _tptr = @igset _t;

sigact = record

sa_mask . sigset_t;

sa_flags . integer;

sa_handl er : integer;
end;

si gact ptr = =sigact;

flock = record
| _type . short;
| whence : short;
| _start : integer;
| len . integer;
| _sysid : usign;
| _pid . short;
end;

flockptr = @1 ock;

Calls to SI GVEC

The following definitions are used strictly with a call to SIGVEC to
restore the process previous execution context, information pushed on the
stack when a signal is delivered. This is used by the kernel to restore
state foll ow ng execution of the signal handler. It is also made
available to the handler to allowit to properly restore state if a
non-standard exit is perforned.

FP_STATUS = i nt eger, { holds the follow ng information
bi t 1 : SIGFPE on exception
bit 2 . exception occurred
bit 3 : invalid operation occurred

| Copyright IBM Corp. 1985, 1989
C0-4

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

bi t 4 : exception on invalid operation
bit 5 : divide by zero occurred

bi t 6 : exception on divide by zero
bit 7 . overflow occurred

bit 8 . exception on overfl ow

bit 9 : underfl ow occurred

bit 10 : exception on underfl ow

bits 11-21 : reserved

bits 22&23 : conparison result

bits 24&25 : roundi ng node

bit 26 . inexact result occurred

bit 27 . exception on inexact result
bits 28&29 : reserved

bits 30-32 : machi ne conmuni cati ons type}

choice = 0..2;
fpreg = record
case choi ce of
0 : (hp : usign

Ip : usign);
2 : (freg : array[1..2] of real);
end;
fptrapinfo = integer,;

fptrap = record
i nfo . fptrapinfo;
designated_result : fpreg;
end,

f pvmach = record
fpregarray : array[1l..8] of fpreg;
statusreg : FP_STATUS ;
fptrapvar : fptrap;
end;

si gcontext = record

sc_onstack : integer; { Sigstack state to restore }
sc_mask . integer; { Signal nmask to restore }
sc_sp . integer; { sp to restore (ignored) }
sc_pc . integer; { pc to restore }
sc_ps . integer; { psl to restore (ignored) }
f pvnp . @pvmach; { pointer to virtual fp machine }

end;
contextptr = @i gcontext;

char 14
int4d

array[1..14] of char;
array[1l..4] of integer;

prof = record

p_l ow . integer;

p_hi gh . integer;

p_buf f : shrtptr;

p_bufsize : integer;

p_scal e . integer;
end,

timeval = record
tv_sec : integer
tv_usec : integer;

| Copyright IBM Corp. 1985, 1989
C0-5

VS/AIX Interface Library
C. Pascal Type Declarations

Appendix
end;
tinmeval ptr = @i neval ;
timeval 2 = array[1l..2] of tineval;
ti mezone = record
t z_m nut eswest i nt eger;
tz_dsttine i nt eger;
end;
timezoneptr = @i nezone,;
itimerval = record
it _interval timeval ;
it _value timeval ;
end;
itimerval ptr = @tinerval;
rusage = record
ru_utinme ti meval ;
ru_stinme timeval ;
r u_maxrss i nteger;
ru_i xXrss i nt eger;
ru_idrss i nt eger;
ru_isrss i nt eger;
ru nmainflt i nt eger;
ru_majflt i nt eger;
ru_nswap i nt eger;
ru_inblock : integer;
ru_out bl ock : integer;
ru_nsgsnd i nt eger;
ru_nsgrcv . integer;
ru_nsignals : integer;
ru_nvcsw i nt eger;
ru_cw i nt eger;
ru_steal i nt eger;
ru_swap i nt eger;
rufile i nt eger;
ru_demand i nt eger;
end;
rusageptr = @ usage;
i ovec = record
i ov_base : charptr;
iov_len i nt eger;
end;
i ovecptr = @ovec;
nmsghdr = record
msg_nanme cstring;
nmsg_nanel en i nt eger;
nsg_i ov i ovecptr;
nsg_i ovl en i nt eger;
nmsg_accrights cstring;
nmsg_accrightslen : integer;

end;
nmsghdrptr = @rsghdr;
int2 = array[1..2] of int
sockaddr = record
sa famly : us

| Copyright IBM Corp. 1985, 1989

eger;

hrt;

CO0-6

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

sa_data
end;
sockaddrptr = @ockaddr;

mri nfo = record
m ni d usi gn;
m obj ect cstring;
m st ub cstring;
m fl ag usi gn;
m dat e short;
end;
m nfoptr = @m nf o;
bheader = record
nid . integer;
reserved : integer;
si ze usi gn;
m nfo m nf o;
end;

bheaderptr = @header;

packed array[1..14]

of char;

Itable = record
ttype char;
id i nt eger;
node char;
nid . integer;
reserved : array[1l..4] of integer;
end;
Itableptr = @table;
idrow = record
W reid i nt eger;
localid : short;
pad short;
end;
dsxl ate = record
rivi short;
gid short;
uid short;
flag char;
padl . char;
numui ds : ushrt;
nungi ds : ushrt;
pad2 . short;
i drowl i dr ow,
end;
ds_state = record
i _state short; { input state }
i _kprocs : short; { input nunber of kprocs }
r_state short; { result state }
r_kprocs : short; { result nunber of kprocs }
reserved : array[1l..4] of integer; { reserved }
end;

dsstateptr = @is_state;

ddsi pc = record
i nkey i nt eger;
ni d i nt eger;

| Copyright IBM Corp. 1985, 1989
Cco0-7

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

out key : integer;
end;
STAT and FSTAT
statrec = record
st _dev i nt eger;
st_ino i nt eger;
st _node i nt eger;
st _nlink ushrt;
spare0 ushrt;
st_uid i nt eger;
st_gid i nt eger;
st _rdev i nt eger;
st _size i nt eger;
st_atine i nt eger;
sparel i nt eger;
st_ntine i nt eger;
spare2 i nt eger;
st_ctine i nt eger;
st _spare3 i nt eger;
st _bl ksize : integer;
st _bl ocks i nt eger;
st _gen i nt eger;
st _type i nt eger;
end;
statptr = @tatrec;
Time routines
tms = record
tms_utine i nt eger;
tms_stine : integer;
tms_cutinme : integer;
tnms_cstinme : integer;
end;
UNAME
unam = record
sysnane char 32;
nodenane : char 32;
rel ease char 32;
ver si on char 32;
machi ne char 32;
end;
unptr = @nam
xunam = record
nid usi gn;
reserved : array[1l..3] of integer;
end;
xunptr = @unam
USTAT
ustatrec = record
f _ tfree i nt eger;
f _tinode : wusign;
f _fname array[1..6] of char;

| Copyright IBM Corp. 1985, 1989
C0-8

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

f_fpack : array[1l..6] of char;
end,
ustatptr = @statrec;
devki nd = (disk, map, ether, nag);

devinfo = record
devtyp_flg : packed array[1l..2] of char;

{ devinfo and flags chars needed... }
{ ...for proper allignnent }
hold : short;
case devki nd of
di sk : (bytpsec : short; { bytes per sector }
secptrk : short; { sectors per track }
trkpcyl : short; { tracks per cylinder }
nunbl ks : integer); { blocks this partition }
map : (capab : char; { capabilities }
node : char; { current node }
hres : short; { horizontal resolution }
vres : short); { vertical resolution }
ether: (capabs : short; { capabilities }
haddr : array[l..6] of char); { hardware address }
mag : (typ : short) { what flavor of tape }

end;
devptr = @evinfo;

uTl ME
uti mbuf = record
actime : integer;
nmodtinme : integer;
end;

utinptr = @ti nbuf;

| Copyright IBM Corp. 1985, 1989
C0-9

VS/AIX Interface Library
Appendix D. Pascal Procedure and Function Declarations

D. 0 Appendi x D. Pascal Procedure and Function Declarations

The fol

functi
functi
functi
functi
functi

functi
functi

functi
functi
functi
functi
functi
functi
functi
functi
functi

functi
functi

functi
functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi

functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi

owi ng declarations are required for Pascal calling sequences.

on
on
on
on
on

on
on

on
on
on
on
on
on
on
on
on

on
on

on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on
on

on
on
on
on
on
on
on
on
on
on
on
on

p_accept (s : integer; addr : sockaddrptr; var addrlen : integer)
p_access (path : st80; anpde : integer) : integer; external
p_acct (path : st80) : integer; external

p_adjtime (var delta, olddelta : tineval) : integer; external

p_alarm (sec : usign) : usign; external

p_bind (s : integer; nane : sockaddrptr; namelen : integer) : intec
p_brk (endds : integer) : integer; external

p_chdir (path : st80) : integer; external

p_chhi dden (path : st80; flag : integer) : integer; external
p_chnod (path : st80; node : integer) : integer; external;

p_chown (path : st80; owner, group : integer) : integer; external
p_chownx (path : st80; owner, group, tflag : integer) : integer; ex
p_chroot (path : st80) : integer; external

p_close (fildes : integer) : integer; external

p_connect (s : integer; nane : sockaddrptr; nanmelen : integer) : ir
p_creat (path : st80; node : integer) : integer; external;

p_dup (fildes : integer) : integer; external

p_dup2 (oldfd, newfd : integer) : integer; external;

p_ercode : integer; external;

p_execl (path, arg0, argl, arg2, arg3 : st80) : integer; external
p_execle (path, arg0, argl, arg2, arg3 : st80; envp : pasargv) : ir
p_execlp (filenanme, arg0, argl, arg2, arg3 : st80) : integer; exter
p_execv (path : st80; args : pasargv) : integer; external;

p_execve (path : st80; args, envp : pasargv) : integer; external
p_execvp (filenm: st80; args : pasargv) : integer; external

p_exit (status : integer) : integer; external

p__exit (status : integer) : integer; external

p_fabort (fildes : integer) : integer; external;

p_fclear (fildes : integer; nbytes : usign) : usign; external
p_fcommt (fildes : integer) : integer; external;

p_ffullstat (fildes, cnd : integer; var buf : fullstatrec) : intege
p_fork : integer; external;

p_fstat (fildes : integer; var buf : statrec) : integer; external
p_fstatx (fildes : integer; var buf : statrec; len, cnd : integer)
p_fsync (fildes : integer) : integer; external

p_ftok (path : st80; id : char) : integer; external;

p_ftruncate (fildes : integer; len : usign) : integer; external
p_fullstat (path : st80; cnmd : integer; var buf : fullstatrec) : ir
p_getdtabl esize : integer; external;

p_getegid : ushrt; external;
p_geteuid : ushrt; external;
p_getgid : ushrt; external;

p_getgroups (ngrp :integer; var gidset : intgroup) : integer; exter
p_gethostid : integer; external;

p_get hostname (var nane : st80; nanelen : integer) : integer; exter
p_getitinmer (which : integer; var vvalue : itinmerval) : integer; ex
p_getlocal (var localnane : st80; maxlength : integer) : integer; e
p_getpeername (s : integer; name : sockaddrptr; var nanelen : intec
p_getpgrp : integer; external;

p_getpid : integer; external;

| Copyright IBM Corp. 1985, 1989
D.0-1

VS/AIX Interface Library
Appendix D. Pascal Procedure and Function Declarations

function p_getppid : integer; external;

function p_getsocknane (s : integer; nane : sockaddrptr; var namelen : intec
function p_gettinmeofday (var tp : tinmevalptr; var tzp : tinezone) : integer
function p_getuid : ushrt; external;

function p_getxvers (var xvers : st80; length : integer) : integer; externa
function p_ioctl (fildes, request : integer; argp : devptr) : integer; exter
function p_kill (pid, sig : integer) : integer; external;

function p_killpg (pgrp, sig : integer) : integer; external;

function p_link (pathl, path2 : st80) : integer; external;

function p_listen (s, backlog : integer) : integer; external;

function p_loadtbl (cntl : Itableptr; buf : st80; size : integer) : integer
function p_l ockf (fildes, request, size : integer) : integer; external
function p_lseek (fildes, offset, whence : integer) : integer; external
function p_lstat (path : st80; var buf : statrec) : integer; external
function p_nkdir (var path : st80; node : integer) : integer; external
function p_nknod (path : st80; node, dev : integer) : integer; external
function p_nount (dev, dir : st80; rwilag : integer) : integer; external
function p_nsgctl (nmsqgid, cnd : integer; buf : ndsptr) : integer; external
function p_nsgget (key, nsgflg : integer) : integer; external;

function p_nmegrcv (nsqid : integer; nsgp : nbufptr; nsgsz, nsgtyp, msgflg
function p_nsgsnd (nmsqid : integer; nmsgp : nbufptr; nsgsz, nsgflg : integer)
function p_nsgxrcv (nsqid : integer; nsgpt : nsgxptr; nsgsz, negtyp, nsgflg
function p_nice (incr : integer) : integer; external

function p_open (oath : st80; oflag, node : integer) : integer; external
function p_pause : integer; external;

procedure p_perror (a : st80); external;

function p_pipe (var fildes : piparray) : integer; external;

function p_plock (op : integer) : integer; external

function p_profil (var buff : intptr; bufsiz, offset, scale : usign) : intecg
function p_ptrace (request, pid : integer; addr : intptr; data : integer; bt
function p_readlink (path : st80; var buf : st80; bufsiz : integer) : intege
function p_reboot (dev : integer) : integer; external

function p_recvisg (s : integer; nsg : nsghdrptr; flags : integer) : integer
function p_renane (var fronpath, topath : st80) : integer; external;
function p_rmdir (var path : st80) : integer; external

function p_sbrk (incr : integer) : integer; external

function p_select (nfds : integer; var read, wite, except : integer; tinmeot
function p_senttl (semd, semmum cnd : integer; var arg : senrec) : integer
function p_senget (key, nsens, senflg : integer) : integer; external
function p_senop (semd : integer; var sops : senopary; nsops : integer) : i
function p_sendnsg (s : integer; nsg : nsghdrptr; flags : integer) : integer
function p_setgid (uid : integer) : integer; external

function p_setgroups (ngrp :integer; var gidset : intgroup) : integer; exter
function p_sethostid (hostid : integer) : integer; external;

function p_sethostnane (var nane : st80; nanelen : integer) : integer; exter
function p_setitinmer (which : integer; var vvalue, ovalue : itimerval) : int
function p_setlocal (var localname : st80) : integer; external;

function p_setpgid (pid : integer; pgid : integer) : integer; external
function p_setpgrp (flag : integer) : integer; external

| Copyright IBM Corp. 1985, 1989
D.0-2

functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi
functi

functi
functi

functi
functi
functi
functi
functi
functi
functi
functi
functi
functi

functi
functi

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

on
on

on
on
on
on
on
on
on
on
on
on

on
on

VS/AIX Interface Library

Appendix D. Pascal Procedure and Function Declarations
p_settimeofday (var tp : tineval; var tzp : tinezone) : integer; ex
p_setuid (uid : integer) : integer; external
p_setxvers (xvers : st80) : integer; external
p_shmat (shm d, shmadr, shnflg : integer) : integer; external
p_shnttl (shmd, cnd : integer; buf : snds) : integer; external
p_shndt (shmadr : integer) : integer; external
p_shnget (key, size, shnflg : integer) : integer; external;
p_shutdown (s, how : integer) : integer; external;
p_sigaction (sig : integer; act,oact : sigactptr) : integer; exterr
p_sigblock (mask : integer) : integer; external;
p_signal (sig : integer; func : integer) : integer; external
p_sigpause (signsk : integer) : integer; external;
p_sigprocmask (how : integer; var sset, oset : sigset_t) : integer
p_sigsetmask (rmask : integer) : integer; external;
p_sigstack (instack, outstack : stackptr) : integer; external
p_sigsuspend (signask : sigset_t) : integer; external;
p_sigvec (sig, code : integer; invec,outvec : sigvecptr) : integer
p_socket (domain, ttype, protocol : integer) : integer; external
p_socketpair (domain, ttype, protocol : integer; var sv : int2)
p_stat (path : st80; var buf : statrec) : integer; external
p_statx (path : st80; var buf : statrec; len,cnd : integer) : intec
p_stime (tp : integer) : integer; external
p_symink (pathl, path2 : st80) : integer; external
p_sync : integer; external;
p_system (str : st80) : integer; external

p_tinme (var tloc : integer) : integer; external;
p_tinmes (var buf : tnms) : integer; external

pulimt (cmd, newWimt : integer) : integer; external;

p_urmask (cmask : integer) : integer; external

p_urount (dev : st80; flag : integer) : integer; external;
p_uname (var name : unan) : integer; external

p_unanmex (xname : xunam : integer; external

p_unlink (path : st80) : integer; external

p_usrinfo (cnd : integer; var buf : charinfsiz; count : integer)
p_ustat (dev : integer; var buf : ustatrec) : integer; external
p_utime (path : st80; times : utinptr) : integer; external;
p_utimes (ffile : st80; tvp : tinmeval2) : integer; external

p_wait (status : integer) : integer; external
p_wait3 (var status : integer; options : integer; usage : rusageptr

| Copyright IBM Corp. 1985, 1989
D.0-3

VS/AIX Interface Library
Appendix E. The ftok System Subroutine

E. 0 Appendix E. The ftok System Subroutine

Description

The ftok system subroutine returns a key that can be used to obtain
i nterprocess-communi cation identifiers.

Synt ax

+--- Pascal --------------oooooo oo e +

p_ftok (path, id);

FFTOK (PATH, 1D)

Par anet er s
pat h
is the path nane of an existing file that can be accessed by the
cal ling process.
O In Pascal, path is of type st80.
O In FORTRAN, path is a string or constant of type CHARACTER*80.
The term nating character of the string nmust be a bl ank space.
is a character that uniquely identifies a project.
O In Pascal, idis of type char
O In FORTRAN, id is of type CHARACTER

Ret urn Val ues

A key is returned upon successful conpletion of a call to ftok. The value
-1 is returned and an error code set in errno if the call fails.

O In Pascal, the return value is of type integer

d In FORTRAN, the return value is of type | NTEGER

Exampl es

The Pascal procedure and FORTRAN subrouti ne shown on the next page issue a
call to the ftok system subroutine, which returns a key associated with
the file /tnp/sample.

Pascal

procedure ftokl

| Copyright IBM Corp. 1985, 1989
EO-1

VS/AIX Interface Library
Appendix E. The ftok System Subroutine

type

% ncl ude /usr/include/ailtypes.inc
var

red : integer;

bl ue : st80;

green : char;

% ncl ude /usr/include/aildefs.inc

begin
green :="'2z";
blue :="'/tnp/sanple';

red := p_ftok (blue, green);
witeln (red)
end,

FORTRAN

SUBROUTI NE FTOK1

| NTEGER RED

CHARACTER*80 BLUE , GREEN
GREEN = ' Z'

BLUE = ' /tnp/sanple '

RED = FFTOK (BLUE, GREEN)
PRI NT *, RED

END

| Copyright IBM Corp. 1985, 1989
E.O-2

VS/AIX Interface Library
Appendix F. The perror System Subroutine

F.0 Appendix F. The perror System Subroutine
Description

The perror systemsubroutine wites a nessage explaining a systemcal
error.

Synt ax

Par anmet ers

pmsg
is a user-defined nessage that precedes the standard error nessage.

O In Pascal, pnsg is of type st80.

O In FORTRAN, pnsg is a string variable or constant of type
CHARACTER*80. The term nating character of the string nmust be a
bl ank space.

Ret urn Val ues

There is no return value froma successful perror call.

Exampl es

The Pascal procedure and FORTRAN subroutine shown on the next page print
an error code nunber and the associated error nessage if the path
paraneter (in the CHDIR call) specifies a nonexistent directory.

Pascal

% ncl ude /usr/include/aildefs.inc
procedure showerror;

var
result, code : integer;
pnsg : st 80;
begin
pmsg = ' MEANI NG OF ERRCR ;
result := p_chdir ('/usr/nonexist');
if result = -1 then
begin
code : = p_ercode;

witeln (code);

| Copyright IBM Corp. 1985, 1989
FO-1

VS/AIX Interface Library
Appendix F. The perror System Subroutine
p_perror (pnsg)
end
end,

FORTRAN

SUBROUTI NE ERRORS

| NTEGER RESULT, CODE, ERCODE
RESULT = CHDIR (' /usr/nonexist ')
IF (RESULT .EQ -1) THEN

CODE = ERCODE ()

PRI NT *, CODE

CALL FPERROR

ENDI F

END

| Copyright IBM Corp. 1985, 1989
FO-2

A

ACCEPT system cal
See al so sockets

2.1

VS/AIX Interface Library
Index

access attributes 2.10
access node 2.2 2.15
changing 2.10
checking 2.2

i n CREAT systemcall 2.15
in MKNOD system call 2.47
in OPEN systemcall 2.54

options 2.10

protection bits 2.105
ACCESS systemcall 2.2

See al so i nput - out put
accounting file 2.3
accounting function 2.3
ACCT systemcall 2.3

See al so process tracking
ADJTI ME systemcall 2.4

See al so systemutilities
advi sory | ocks 2.44
ALARM systemcall 2.5

See al so signals

al l ocati on, data-segnent space 2.7

alternate stack (in signal processing) 2.93

assigning a process priority 2.53

attaching a mapped file 2.82

attachi ng a shared-nenory segnent 2.82

B
BIND systemcall 2.6

See al so sockets
bl ocki ng a signal 2.88 2.92
br eakpoi nt, setting a 2.7
BRK systemcall 2.7

See al so process contro
C
calling up a file 2.15
calls

See systemcalls
catching a signal 2.89
changing a group ID 2.11
changing a nenory inmage 2.59

changi ng a process priority 2.53

changing a user ID 2.11

dat a- segment space allocation 2.7

changi ng
changi ng ownership of a file 2.11
changi ng the access node 2.10

changing the directory 2.8

channel , intercomuni cati on 2.56

CHDI R systemcall 2.8
See al so systemutilities
systemcalls

CHDIR 2.8
CHHI DDEN 2.9
CHVOD 2. 10
CHOMWN 2. 11
CHOMNX 2. 11
CHROOT 2. 12
FABORT 2.21
FCNTL 2. 23

| Copyright IBM Corp. 1985, 1989

INDEX - 1

VS/AIX Interface Library

Index

FFULLSTAT 2.98
FSTAT 2. 98
FSTATX 2.98
FULLSTAT 2. 98
LINK 2. 42
LSTAT 2. 98
MKDI R 2. 46
MKNOD 2. 47
MOUNT 2. 48
READLI NK 2. 61
RENAME 2. 65
RVMDI R 2. 66
STAT 2. 98
STATX 2.98
SYMLI NK 2. 100
SYNC 2. 101
UMASK 2. 105
UMOUNT 2. 48
UNLI NK 2. 107
USTAT 2. 109
UTI ME 2. 110
UTI MES 2. 111
checking file access 2.2
CHHI DDEN systemcall 2.9
See al so file nmaintenance
CHMOD systemcall 2.10
See al so file nmaintenance
CHOMN systemcall 2.11
See al so file nmaintenance
CHOMX systemcall 2.11
See al so file nmaintenance
CHROOT systemcall 2.12
See al so file nmaintenance
clearing a file 2.22
clearing a file lock 2.23
cl ock
"alarm' 2.5
systemcalls
ADJTI ME 2.4
DI SCLAIM 2. 16
GETITI MER 2. 31
GETTI MECFDAY 2. 37
GETXVERS 2. 39
REBOOT 2. 63
SETI TI MER 2. 75
SETTI MECFDAY 2. 79
SETXVERS 2. 81
STI ME 2. 99
TIME 2.102
UNAME 2. 106
UNAMVEX 2. 106
system setting 2.99
system synchronizing 2.4
CLCSE systemcall 2.13
See al so i nput - out put
cl ose-on-exec flag 2.23
closing a file 2.13
comuni cating with character devices 2.60
communi cati on
bet ween processes 2.56

| Copyright IBM Corp. 1985, 1989

INDEX - 2

VS/AIX Interface Library
Index

CONNECT systemcall 2.14
See al so sockets
connecting a socket 2.1 2.14
constant definitions B.0O
controlling a device 2.40
controlling an open-file descriptor 2.23
controlling block files 2.40
controlling character special files 2.40
controlling semaphores 2.68
converting a directory 2.9
CREAT systemcall 2.15
See al so i nput - out put
creating a directory 2.46 2.47

creating a file 2.15
creating a group access list 2.72
creating a nessage-queue ID 2.50
creating a pipe 2.56
creating a shared-nenory ID 2.85
creating a socket endpoint 2.96
creating a socket pair 2.97
creating a special file 2.47
creating a synbolic link 2.100
D
dat a

| ocking 2.57

passi ng, between processes 2.56

space allocation 2.7

unl ocki ng 2.57
dat a- segnent space allocation 2.7
decl arati ons

FORTRAN 1.7.1

Pascal 1.6.1

Pascal function D.O

Pascal procedure D. O

Pascal type C. O
defining an alternate stack 2.93
del aying a process 2.112
deleting an entry froma directory 2.107
descriptor table

See process identification
detaching a nmapped-file 2.84
det achi ng a shared-nenory segment 2.84
di rection

changing 2.8

creating 2.46 2.47

deleting an entry 2.107

MKNCD system cal | 2.47

renmovi ng 2. 66

renam ng 2.65

setting the root 2.12
directory conversion 2.9
di sabling a socket 2.86
DI SCLAI M system cal |l 2.16

See al so systemutilities
di scl aimng nenory 2.16
DUP systemcall 2.17

See al so i nput - out put
DUP2 systemcall 2.17

See al so i nput - out put
duplicating a file descriptor 2.17

| Copyright IBM Corp. 1985, 1989
INDEX - 3

VS/AIX Interface Library
Index

E
effective group ID
getting 2.38
setting 2.80
effective user ID
getting 2.38
setting 2.80
endpoi nt, socket 2.96
enforced | ocks 2.44
errno variable A0
errno. h header file A0
error codes 1.8 A0
error messages 1.8 A0
EXEC systemcalls
See al so process contro
EXECL 2.18
EXECLE 2. 18
EXECLP 2.18
EXECV 2. 19
EXECVE 2. 19
EXECVP 2. 19
executing a file 2.18 2.19
execution-tinme profile 2.58
EXIT systemcall 2.20
See al so process contro
_EXIT systemcall 2.20
See al so process conto
F
FABORT systemcall 2.21
See al so file nmaintenance
FCLEAR systemcall 2.22
See al so i nput - out put
FCNTL systemcall 2.23
See al so file nmaintenance
FCOM T systemcall 2.25
See al so i nput - out put
FFULLSTAT systemcall 2.98
See al so file naintenance
file access
See al so access node
See al so file naintenance
testing for file permssions 2.2
file descriptor, controlling 2.23
file maintenance
See al so access node
See also files
canceling a file change 2.21
changing a group ID 2.11
changing a user ID 2.11
changi ng the access node 2.10
clearing a file lock 2.23
controlling an open-file descriptor 2.23
creating a directory 2.47
creating a special file 2.47
deleting an entry froma directory 2.107
file ownership 2.11
getting a file lock 2.23
getting a file status flag 2.23
getting a process group ID 2.23
getting a process ID 2.23

| Copyright IBM Corp. 1985, 1989
INDEX - 4

VS/AIX Interface Library
Index

getting file-systeminformation 2.109
getting the close-on-exec flag 2.23
linking to a file 2.42
nmounting a file system 2. 48
opening a file lock 2.23
reading a synbolic link 2.61
renoving a directory 2.66
renoving a file system 2. 48
renamng a directory 2.65
setting a file lock 2.23
setting a file status flag 2.23
setting a process group ID 2.23
setting a process ID 2.23
setting file tines 2.111
setting recorded tinmes 2.110
setting the cl ose-on-exec flag 2.23
setting the root directory 2.12
status of a file 2.98
storing file-systeminformation 2.109
synmbolic link 2.98
unmounting a file system 2.48
updating a file system 2. 101
file perm ssions 2.2
file status 2.98
file status flag 2.23
file system nounting and unnounting 2.48
file system wupdating 2.101
file tines 2.98
fil e-access node
See access node
file-creation-nmode mask 2. 105
files
See also file maintenance
executing 2.18 2.19
file access 2.10
file maintenance 2.10
freeing space in 2.22
linking to 2.42
| ocking 2. 44
reading from 2. 60
truncating 2.26
witing to 2.113
zeroi ng 2.22
flag
See also file maintenance
cl ose-on-exec 2.23
status 2.23
FORK systemcall 2.24
See al so process contro
FORTRAN decl arations 1.7.1
freeing space in a file 2.22
FSTAT systemcall 2.98
See also file maintenance
FSTATX systemcall 2.98
See also file maintenance
FSYNC systemcall 2.25
See al so i nput - out put
ftok system subroutine E. O
FTRUNCATE systemcall 2.26
See al so i nput - out put

| Copyright IBM Corp. 1985, 1989
INDEX - 5

VS/AIX Interface Library

Index

FULLSTAT systemcall 2.98

See al so file nmaintenance
function declarations D.O
G
GETDTABLESI ZE system cal |l 2.27

See al so process identification
CETEG D systemcall 2.38

See al so process identification
CETEUI D systemcall 2.38

See al so process identification
CETA D systemcal |l 2. 38

See al so process identification
CETGROUPS systemcall 2.28

See al so process identification
CETHOSTI D systemcall 2.29

See al so process identification
CETHOSTNAME systemcall 2.30

See al so process identification
GETI TI MER systemcall 2.31

See al so systemutilities
CGETLOCAL systemcall 2.32

See al so process identification
CETPEERNAME systemcall 2.33

See al so sockets
CETPGRP systemcall 2.34

See al so process identification
CETPID systemcall 2.34

See al so process identification
CETPPID systemcall 2.34

See al so process identification
CETSOCKNAME systemcall 2.35

See al so sockets
CETSOCKOPT systemcall 2.36
GETTI MECFDAY system cal | 2. 37

See al so systemutilities
getting a file lock 2.23

getting a file status flag 2.23
getting a file-creation-nmode nmask 2.105
getting a group access list 2.28
getting a nessage-queue ID 2.50
getting a process group ID 2.23 2.34
getting a process ID 2.23 2.34
getting a process ID of a parent 2.34
getting a real group ID 2.38

getting a real user ID 2.38

getting a semaphore 2.69

getting a semaphore ID 2.69

getting a semaphore value 2.68
getting a shared-nmenory ID 2.85
getting a socket name 2.33 2.35

getting an alias 2.32

getting an effective user ID 2.38
getting descriptor-table size 2.27
getting file-systeminformation 2.109
getting process limts 2.104

getting process tines 2.103

getting socket options 2.36

getting the close-on-exec flag 2.23
getting the current host ID 2.30
getting the current-host 1D 2.29

| Copyright IBM Corp. 1985, 1989

INDEX - 6

VS/AIX Interface Library
Index

getting the tine 2.31 2.37

getting the UNI X version string 2.39
getting user information 2.108
CETU D systemcal |l 2. 38

See al so process identification

GETXVERS system call 2.39

See al so systemutilities

group access |ist

getting 2.28
setting 2.72

group 1D

effective 2.38
process 2. 34
real 2.38

"hi dden" attribute 2.9

identifiers (IDs)

See process identification

ignoring a signal 2.89
i nformation

file status 2.98

file system 2. 109
synmbolic link 2.98
user information 2.108

i nput - out put

calling up a file 2.15
checking file access 2.2
checki ng status 2.67
clearing a file 2.22
closing a file 2.13
comuni cating with character devices 2.60
controlling a device 2.40
controlling block files 2.40
controlling character special files 2.40
creating a file 2.15
duplicating a file descriptor 2.17
for reading 2.54
for witing 2.54
freeing space 2.22
noving a read pointer 2.45
noving a wite pointer 2.45
reading froma file 2.60
reading to a buffer 2.62
setting a read pointer 2.45
setting a wite pointer 2.44 2.45
systemcalls

ACCESS 2.2

CLCSE 2. 13

CREAT 2.15

DUP 2. 17

DUP2 2.17

FCLEAR 2. 22

FCOWM T 2. 25

FSYNC 2. 25

FTRUNCATE 2. 26

| OCTL 2. 40

LOCKF 2. 44

LSEEK 2. 45

OPEN 2. 54

| Copyright IBM Corp. 1985, 1989
INDEX - 7

VS/AIX Interface Library
Index

READ 2. 60
READV 2. 62
READX 2. 60
SELECT 2. 67
WRI TE 2. 113
WRI TEV 2. 114
WRI TEX 2. 113
truncating a file 2.26
witing frommultiple buffers 2.114
witing to permanent storage 2.25
i nt ercommuni cati on channel 2.56
interface library
FORTRAN decl aration files in 1.7.1
linking to FORTRAN 1.7.2
linking to Pascal 1.6.2
Pascal declaration files in 1.6.1
requi rements for operation 1.1
using with VS FORTRAN 1.7
using with VS Pascal 1.6
i nterprocess communi cation 2.56
| OCTL systemcall 2.40
See al so i nput - out put
K
KILL systemcall 2.41
See al so signals
KILLPG systemcal |l 2.41
See al so signals
L
LINK system cal |l 2.42
See also file maintenance
I'i nking
Interface Library to FORTRAN 1.7.2
Interface Library to Pascal 1.6.2
LI STEN system cal |l 2.43
See al so sockets
listening for socket connections 2.43
| ocal area network 2.106
LOCKF systemcall 2.44
See al so i nput - out put
locking a file 2.44

| ocks
advi sory 2.44
data 2.57

enforced 2.44
process 2.57
removi ng 2.57
text 2.57
LSEEK system call 2.45
See al so i nput - out put
LSTAT systemcall 2.98
See al so file nmaintenance
M
mapped file 2.82
attaching 2.82
detaching 2. 84
mask
See al so file naintenance
file-creation-node, getting 2.105
file-creation-node, setting 2.105
restoring 2.92

| Copyright IBM Corp. 1985, 1989
INDEX - 8

VS/AIX Interface Library
Index

setting a signal 2.92
signal 2.88
maxi mum si ze of a process file 2.104
nmenory
changing 2.59
| ocking 2.57
unl ocki ng 2.57
nmenory i nmage, changing 2.59
nessage queue
See al so nessages
creating an ID 2.50
getting an ID 2.50
setting 2.49
storing 2.49
nmessage- control operations 2.49
nessages
See also ?
See al so nessage queue
See al so signals
reading 2.51 2.64
receiving a nessage 2.64
sending 2.52 2.71
storing 2.51
systemcalls
MSGCTL 2. 49
MSGCGET 2. 50
MSGRCV 2. 51
MSGSND 2. 52
MBGXRCV 2. 51
RECV 2. 64
RECVFROM 2. 64
RECVMSG 2. 64
SEND 2. 71
SENDVBG 2. 71
SENDTO 2. 71
MKDI R system cal |l 2.46
See also file maintenance
MKNCD system cal |l 2.47
See also file maintenance
node
changi ng the access 2.10
checking the access 2.2
file-creation 2.105
noni toring the program counter 2.58
MOUNT system call 2.48
See also file maintenance
nmounting a file system 2. 48
MBGCTL systemcall 2.49
See al so nessages
MBGGET systemcall 2.50
See al so nessages
MBGRCV systemcall 2.51
See al so nessages
MBGSND system call 2.52
See al so nessages
MBGXRCV systemcall 2.51
See al so nessages
N
nam ng a socket 2.6
NI CE systemcall 2.53

| Copyright IBM Corp. 1985, 1989
INDEX - 9

VS/AIX Interface Library
Index

See al so process contro
O
OPEN systemcall 2.54
See al so i nput - out put
opening a file for reading 2.54
opening a file for witing 2.54
opening a file lock 2.23
operating system
getting the nane 2.106
restarting 2.63
setting 2.99
P
parent process |ID 2.34
Pascal constant definitions B.0
Pascal declarations 1.6.1
Pascal function declarations D.O
Pascal procedure declarations D.O
Pascal type declarations C O
path status 2.98
PAUSE systemcall 2.55
See al so signals
perm ssi ons
execute 2.2
read 2.2
testing for 2.2
wite 2.2
perror system subroutine 1.8 F. 0
Pl PE system call 2.56
See al so process contro
PLOCK systemcall 2.57
See al so process contro
priority of a process 2.53
procedure declarations D. O
process control
&l 2@CRR
BRK 2.7
EXECL 2.18
EXECLE 2. 18
EXECLP 2.18
EXECV 2. 19
EXECVE 2. 19
EXECVP 2. 19
FORK 2. 24
NI CE 2.53
Pl PE 2. 56
PLOCK 2. 57
SBRK 2.7
WAIT 2.112
WAI T3 2.112
creating a process 2.24
del aying a process 2.112
executing a process 2.18 2.19
EXIT systemcall 2.20
_EXIT systemcall 2.20
| ocki ng a process 2.57
priority 2.53
space allocation 2.7
systemcalls
termnating a process 2.20
unl ocki ng a process 2.57

| Copyright IBM Corp. 1985, 1989
INDEX - 10

VS/AIX Interface Library
Index

process group ID 2.34
getting 2.34
setting 2.77
process | D
getting 2.34
of a parent 2.34
setting 2.80
process identification
creating a group access list 2.72
getting a group access list 2.28
getting an alias 2.32
getting identification
effective group ID 2. 38
effective user 1D 2.38
host ID 2.29 2.30
process group ID 2.34
process ID 2.34
process ID of a parent 2.34
process limts 2.104
real group ID 2.38
real user ID 2.38
user information 2.108
setting an alias 2.76
setting identification
effective group ID 2.80
effective user 1D 2.80
group access list 2.72
host ID 2.73 2.74
process group ID 2.77
process limts 2.104
real group ID 2.80
real user ID 2.80
user information 2.108
storing a group access list 2.28
systemcalls
GETDTABLESI ZE 2. 27
GETEA D 2. 38
GETEUI D 2. 38
GETA D 2. 38
GETGROUPS 2. 28
GETHOSTI D 2. 29
GETHOSTNAME 2. 30
GETLOCAL 2. 32
GETPCRP 2. 34
GETPID 2. 34
GETPPI D 2. 34
GETU D 2. 38
SETGA D 2. 80
SETGROUPS 2. 72
SETHOSTID 2. 73
SETHOSTNAME 2. 74
SETLOCAL 2.76
SETPA D 2. 77
SETPCRP 2. 77
SETUI D 2. 80
ULIMT 2.104
USRI NFO 2. 108
process |limts 2.104
process | ock 2.57
process priority 2.53

| Copyright IBM Corp. 1985, 1989
INDEX - 11

VS/AIX Interface Library
Index

process tinmes 2.103
process tracking
i n debuggi ng 2.59
records of 2.3
systemcalls
ACCT 2.3
PROFIL 2.58
PTRACE 2. 59
TI MES 2.103
process, suspending 2.55
processes
accounting information 2.103
changing priority of 2.53
conmuni cati on between 2.56
controlling execution of child 2.59
creating 2.24
del aying 2.112
| ocking 2.57
records of termnated 2.3
suspendi ng 2.55
termnating 2.20
time profile of 2.58
unl ocki ng 2.57
processing a signal 2.93
PRCFI L systemcall 2.58
See al so process tracking
profile, execution-time 2.58
profiling function 2.58
program counter, nonitoring 2.58
protection bits 2.105
PTRACE systemcall 2.59
See al so process tracking
R
READ system cal |l 2.60
See al so i nput - out put
readi ng a nessage 2.51
reading a synbolic link 2.61
reading froma file 2.60
READLI NK system call 2.61
See also file maintenance
READV system call 2.62
See al so i nput - out put
READX system call 2.60
See al so i nput - out put
real group ID
getting 2.38
setting 2.80
real user 1D
getting 2.38
setting 2.80
REBOOT systemcall 2.63
See al so systemutilities
receiving a nessage 2.64
recorded tines 2.110
records of a process 2.3
RECV system call 2.64
See al so nessages
RECVFROM system cal | 2. 64
See al so nessages
RECVMSG system cal |l 2. 64

| Copyright IBM Corp. 1985, 1989
INDEX - 12

VS/AIX Interface Library
Index

See al so nessages
rel easing a signal 2.90 2.94
renoving a directory 2.66
renoving a file system 2. 48
renoving a | ock 2.57
renoving a process identifier 2.83
RENAME system call 2.65
See also file maintenance
renamng a directory 2.65
resetting a signal mask 2.90 2.94
responding to a signal 2.87
response to a signal, specifying 2.87 2.89
restarting the operating system 2. 63
restoring a signal mask 2.92
return values 1.8
RMVMDI R system call 2.66
See also file maintenance
root directory, setting 2.12
S
SBRK systemcall 2.7
See al so process contro
SELECT systemcall 2.67
See al so i nput - out put
semaphore operations 2.70
semaphore-control operations 2.68
semaphore-set 1D 2.69
semaphor es
See also ?
See al so nessages
See al so signals
control operations 2.68
getting a value 2.68
operations 2.70
options in call 2.68
setting a value 2.68
setting an 1D 2.69
systemcalls
SEMCTL 2. 68
SEMCGET 2. 69
SEMOP 2. 70
SEMCTL systemcall 2.68
See al so semaphores
SEMGET systemcall 2.69
See al so semaphores
SEMOP systemcall 2.70
See al so semaphores
SEND systemcall 2.71
See al so nessages
sendi ng a nessage 2.52 2.71
SENDVSG systemcall 2.71
See al so nessages
SENDTO systemcall 2.71
See al so nessages
SETA D systemcall 2.80
See al so process identification
SETGROUPS systemcall 2.72
See al so process identification
SETHOSTI D systemcall 2.73
See al so process identification
SETHOSTNAME systemcall 2.74

| Copyright IBM Corp. 1985, 1989
INDEX - 13

VS/AIX Interface Library
Index

See al so process identification
SETI TI MER system cal
See al so systemutilities
SETLOCAL systemcall 2
See al so process identification
SETPA D systemcal | 2.
See al so process identification
SETPGRP systemcal |l 2.
See al so process identification
SETSOCKOPT system cal
See al so sockets
SETTI MECFDAY systemcall 2.79
See al so systemutilities
a breakpoint 2.7

setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti
setti

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

DO DYDY

Si

gnal mask

2.75

.76

77

77

2.78

file lock 2.23

file status flag 2.23
file-creation-node mask 2.105
group access list 2.72
process group ID 2.23 2.77
process I D 2.23

process priority 2.53

read pointer
semaphore 1D 2. 69
semaphore val ue 2.68

2.45

2.92

a wite pointer 2.44 2.45
an alias 2.76
file times 2.98
internal tinmer
process limts 2.104
recorded times 2.110
socket options 2.78

t he
t he
t he
t he
t he
t he
user

cl ose-on-e
current-ho
root direc
systemcl o
tine 2.79
UNI X ver si
i nformati

SETU D systemcall 2.8
See al so process identification
SETXVERS systemcall 2
See al so systemutilities
shared nenory
See al so nessages
See al so semaphores
See al so signals
attachi ng addresses 2.82
creating an ID 2.85
det achi ng segnments 2.84
getting an ID 2.85
renoving a process identifier 2.83
systemcalls
SHVAT 2. 82
SHVCTL 2. 83
SHVDT 2. 84
SHMCGET 2. 85
shared- nenory segnment 2.82
shar ed- nenory-contro
SHVAT systemcall 2.82

s 2.75

xec flag 2.23
st 1D 2.73 2.74
tory 2.12

ck 2.99

2.99

on string 2.81
on 2.108

0

.81

operations 2.83

| Copyright IBM Corp. 1985, 1989
INDEX - 14

VS/AIX Interface Library
Index

See al so shared nenory
SHMCTL systemcall 2.83
See al so shared nenory
SHMDT systemcall 2.84
See al so shared-nenory
SHMGET systemcall 2.85
See al so shared nenory
SHUTDOMWN system call 2.86
See al so sockets
shutting down a socket 2.86
SI GACTI ON system cal |l 2.87
See al so signals
SI GBBLOCK systemcall 2.88
See al so signals
signal handling, selecting 2.91 2.95
signal nask 2.88
signal selection 2.91 2.95
SI GNAL systemcall 2.89
See al so signals
signal -handling facilities 2.91 2.95
signal s
bl ocki ng 2.88 2.92
catching 2.89
i gnoring 2.89
list 2.87 2.89
processing 2.91 2.93 2.95
rel easing 2.90 2.94
resetting a mask 2.90 2.94
responding to 2.87
restoring a mask 2.92
setting 2.92
signal -handling facilities 2.91 2.95
speci fying 2.88
speci fying a response 2.87 2.89
stack, alternate 2.93
systemcalls
ALARM 2. 5
KILL 2.41
KILLPG 2. 41
PAUSE 2. 55
S| GACTI ON 2. 87
S| GBLOCK 2. 88
SI GNAL 2. 89
S| GPAUSE 2. 90
S| GPROCVASK 2. 91
S| GSETMASK 2. 92
SI GSTACK 2. 93
S| GSUSPEND 2. 94
SI GVEC 2. 95
term nating a process 2.5 2.41
termnating a process group 2.41
unbl ocking 2.90 2.94
wai ting for 2.55
SI GPAUSE system call 2.90
See al so signals
SI GPROCVASK system call 2.91
See al so signals
SI GSETMASK system call 2.92
See al so signals
SI GSTACK systemcall 2.93

| Copyright IBM Corp. 1985, 1989
INDEX - 15

VS/AIX Interface Library
Index

See al so signals
S| GSUSPEND system cal | 2.94
See al so signals
SI GVEC systemcall 2.95
See al so signals
socket pair, creating 2.97
SOCKET systemcall 2.96
See al so sockets
SOCKETPAI R system cal | 2.97
See al so sockets
sockets
connecting 2.1 2.14
creating 2.97
di sabling 2.86
endpoint, creating 2.96
getting a nane 2.33 2.35
getting options 2.36
listening for 2.43
namng 2.6
pendi ng connections 2.43
setting options 2.78
shutting down 2.86
systemcalls
ACCEPT 2.1
BIND 2.6
CONNECT 2. 14
GETPEERNAME 2. 33
GETSOCKNAME 2. 35
GETSOCKOPT 2. 36
LI STEN 2. 43
SETSOCKOPT 2. 78
SHUTDOWN 2. 86
SOCKET 2. 96
SOCKETPAI R 2. 97
special file, creating 2.47
specifying a signal 2.88
stack, alternate signal 2.93
standard signal processing 2.91 2.95
STAT systemcall 2.98
See also file maintenance
status flags 2.23
status of a file 2.98
status of a path 2.98
status of a synbolic link 2.98
STATX systemcall 2.98
See also file maintenance
STIME systemcall 2.99
See al so systemutilities
storing a group access list 2.28
storing a nessage 2.51
storing file-systeminformation 2.109
suspendi ng a process 2.55
synmbolic |ink
creating 2.100
reading 2.61
symbolic |ink, status 2.98
SYMLI NK systemcall 2.100
See also file maintenance
SYNC systemcall 2.101
See also file maintenance

| Copyright IBM Corp. 1985, 1989
INDEX - 16

VS/AIX Interface Library
Index

synchroni zing the systemclock 2.4
synonynous file descriptors 2.17
systemcalls
file maintenance 1.4.5
i nput-output 1.4.4
i nterprocess comuni cation 1.4.6
See al so nessages
See al so semaphores
See al so shared nenory
See al so signals
process 1.4.1
See al so process contro
See al so process identification
See al so process tracking
return values 1.8
shared nenory 1.4.9
sockets 1.4.10
systemutilities 1.4.11
systemroutines
See systemcalls
syst em subrouti nes
ftok 1.5 E. O
perror 1.8 F.0
systemutilities
di sclaimng nenory 2.16
used in local area network 2.106
T
term nated process 2.3
term nating a process 2.5 2.20 2.41
termnating a process group 2.41
testing for file permssions 2.2

t ext
| ocking 2.57
unl ocki ng 2.57
tinme

access 2.110
accessed 2.111
accounting information 2.103
execution 2.58
getting the 2.31 2.37 2.102
i - node- changed 2. 110
nmodi fication 2.98 2.110
profile, generating 2.58 2.59
setting 2.99
setting the 2.75 2.79
synchroni zing 2.4
systemcalls 2.4 2.31 2.37 2.75 2.79 2.99 2.102
updated 2.98
time profile 2.58
TIME systemcall 2.102
See al so systemutilities
TI MES systemcall 2.103
See al so process tracking
truncating a file 2.26
turni ng accounting process on or off 2.3
type declarations C. O
U
ULIMT systemcall 2.104
See al so process identification
UVASK systemcall 2.105

| Copyright IBM Corp. 1985, 1989
INDEX - 17

VS/AIX Interface Library
Index

See al so file naintenance
UMOUNT system call 2.48

See al so file nmaintenance
UNAME systemcall 2.106

See al so systemutilities
UNAMVEX system call 2.106

See al so systemutilities
UNI X version string, getting 2.39
UNI X version string, setting 2.81
UNLI NK system cal | 2.107

See al so file naintenance
unnmounting a file system 2.48
updating a file system 2. 101
user ID

effective 2.38

real 2.38
user information 2.108
USRI NFO system cal |l 2.108

See al so process identification
USTAT systemcall 2.109

See al so file naintenance
UTI ME systemcall 2.110

See al so file nmaintenance
UTI MES systemcal |l 2.111

See al so file nmaintenance
w
WAIT systemcall 2.112

See al so process contro

used with FORK and EXECL 2.112
WAl T3 systemcall 2.112

See al so process contro
wai ting for a signal 2.55
waiting for an interrupt 2.90 2.94
VWRI TE systemcall 2.113

See al so i nput - out put
wite-enabled file system 2. 48
wite-protected file system 2.48
VWRI TEV systemcall 2.114

See al so i nput - out put
VWRI TEX systemcall 2.113

See al so i nput - out put
witing to a file 2.113
witing to permanent storage 2.25
writing updates to disk 2.101
Z
zeroing a file 2.22

| Copyright IBM Corp. 1985, 1989
INDEX - 18

