
 IBM Advanced Interactive Executive
 for the Personal System/2
 (AIX PS/2)
 Interface Library Reference
 Version 1.1

 Document Number SC23-2051-0

Copyright IBM Corp. 1985, 1989

 --
 IBM Advanced Interactive Executive
 for the Personal System/2
 (AIX PS/2)

 Interface Library Reference

 Version 1.1

 Document Number SC23-2051-0

 --

Copyright IBM Corp. 1985, 1989

Edition Notice
 First Edition (March 1989)

 The information in this manual applies to IBM AIX VS Pascal (Program
 Number 5713-AEZ) and IBM AIX VS FORTRAN (Program Number 5713-AFA) for
 use with Version 1.1 of the IBM AIX PS/2 Operating System (Program
 Number 5713-AEQ), and it applies to all releases and modifications
 until otherwise indicated in new editions or Technical Newsletters.
 Changes are made periodically to the information herein; these changes
 will be incorporated in new editions of this publication.

 References in this publication to IBM products, programs, or services
 do not imply that IBM intends to make these available in all countries
 in which IBM operates. Any reference to an IBM program product in
 this publication is not intended to state or imply that only IBM's
 program product may be used. Any functionally equivalent program may
 be used instead.

 International Business Machines Corporation provides this manual "as
 is," without warranty of any kind, either express or implied,
 including, but not limited to, the implied warranties of
 merchantability and fitness for a particular purpose. IBM may make
 improvements and/or changes in the product(s) and/or the program(s)
 described in this manual at any time.

 Products are not stocked at the address given below. Requests for
 copies of this product and for technical information about the system
 should be made to your authorized IBM dealer or your IBM marketing
 representative.

 A reader's comment form is provided at the back of this publication.
 If the form has been removed, address comments to IBM Corporation,
 Department 35RB, 36 Apple Ridge Road, Danbury, Connecticut 06810. IBM
 may use or distribute, in any way it believes appropriate and without
 incurring any obligation to the sender, whatever information it
 receives in this manner.

 IBM is a registered trademark of International Business Machines
 Corporation.

 AIX is a trademark of International Business Machines Corporation.

 Personal System/2 and PS/2 are registered trademarks of IBM
 Corporation.

 ¦ Copyright International Business Machines Corporation 1985, 1989.
 All rights reserved.
 ¦ Copyright AT&T Technologies 1984
 Note to U.S. Government Users -- Documentation related to restricted
 rights -- Use, duplication or disclosure is subject to restrictions
 set forth in GSA ADP Schedule Contract with IBM Corp.

VS/AIX Interface Library
Edition Notice

¦ Copyright IBM Corp. 1985, 1989
EDITION - 1

About this Book
 This reference book contains information about the library of system calls
 available with IBM AIX VS Pascal and IBM AIX VS FORTRAN as implemented for
 use with the IBM AIX PS/2 Operating System.

 Subtopics
Who Should Read this Book
How to Use This Book
Highlighting
Related Publications

VS/AIX Interface Library
About this Book

¦ Copyright IBM Corp. 1985, 1989
PREFACE - 1

Who Should Read this Book

 This book is intended for programmers wishing to use AIX system
 subroutines in their own VS Pascal or VS FORTRAN application programs. It
 assumes familiarity with Pascal or FORTRAN and with either AIX or UNIX ()
 System V commands and system calls. For AIX PS/2 publications that deal
 with VS Pascal, VS FORTRAN, and AIX, see "Related Publications" on page
 PREFACE.4.

 Note: Neither VS FORTRAN nor VS Pascal supports multibyte characters.
 Programs written in these languages can only process single-byte
 characters like ASCII.

 It is recommended that such programs not be used with AIX system
 Release 1.3.

 () UNIX is a registered trademark of UNIX System Laboratories,
 Inc. in the U.S.A. and other countries.

VS/AIX Interface Library
Who Should Read this Book

¦ Copyright IBM Corp. 1985, 1989
PREFACE.1 - 1

How to Use This Book

 The information in this reference is divided into two sections and six
 appendixes. For an overview of the book and of the major functions
 available through the interface library, read the first
 section--Introduction to the Interface Library--which begins on page 1.0.
 This section also contains additional information of interest to
 programmers using the library.

 The second section--System Calls--which begins on page 2.0, contains the
 bulk of the reference material in this book. Most of the system calls in
 the interface library are described individually in separate subsections.
 In some instances, however, two or more related system calls are described
 in a single subsection. Subsections are alphabetically ordered by
 system-call name. All system calls are listed in the Table of Contents
 (individually or grouped) and in the Index. In addition, each descriptive
 subsection carries as a running title the name(s) of the system call(s)
 discussed in that section.

 The appendixes contain information about error codes and messages, Pascal
 definitions and declarations, and two important system subroutines: ftok
 and perror.

VS/AIX Interface Library
How to Use This Book

¦ Copyright IBM Corp. 1985, 1989
PREFACE.2 - 1

Highlighting

 This book uses several typographic conventions in its descriptions of the
 various system calls.

 � System-call names appear in the descriptive text in UPPERCASE
 BOLDFACE.

 � Program variables appear in the descriptive text in lowercase italics.

 � Constants appear in the descriptive text in UPPERCASE LETTERS

 � The syntax descriptions near the beginning of each subsection appea
 in a monospace typeface that suggests a computer printout.

 � The same "example" typeface is used to present the example programs at
 the end of each subsection.

 � In the brief descriptions preceding each example program, doubl
 quotation marks around one or more characters (for example, "s1")
 identifies a variable name arbitrarily picked for purposes of the
 particular example.

 � In the few direct references to an AIX system subroutine, the name o
 the subroutine appears in lowercase boldface.

VS/AIX Interface Library
Highlighting

¦ Copyright IBM Corp. 1985, 1989
PREFACE.3 - 1

Related Publications
 You may want to refer to the following IBM AIX publications for additional
 information:

 � AIX Operating System Commands Reference, SC23-2025, lists and
 describes the AIX Operating System commands.

 � AIX Operating System Programming Tools and Interfaces, SC23-2029,
 describes the programming environment of the AIX Operating System and
 includes information about the use of operating system tools to
 develop, compile, and debug programs.

 � AIX Operating System Technical Reference, Volumes 1 and 2 (SC23-2032
 and SC23-2033) describes the system calls and subroutines a programmer
 would use to write application programs. This book also provides
 information about the AIX Operating System file system, special files,
 miscellaneous files, and the writing of device drivers.

 � VS Pascal User's Guide, SC23-2053, describes how to develop and
 execute VS Pascal programs. This book also describes the procedures
 for compiling and executing programs that contain sections of code
 written in VS FORTRAN and C.

 � VS Pascal Reference, SC23-2054, describes the statements, data
 structures, and other features of the Pascal programming

 � VS FORTRAN User's Guide, SC23-2049, describes how to develop and
 execute VS FORTRAN programs. This book also describes the procedures
 for compiling and executing programs that contain sections of code
 written in VS Pascal and C.

 � VS FORTRAN Reference, SC23-2050, describes the statements, data
 structures, and other features of the FORTRAN 77 programming language.

VS/AIX Interface Library
Related Publications

¦ Copyright IBM Corp. 1985, 1989
PREFACE.4 - 1

Table of Contents
 TITLE Title Page
 COVER Book Cover
 EDITION Edition Notice
 PREFACE About this Book
 PREFACE.1 Who Should Read this Book
 PREFACE.2 How to Use This Book
 PREFACE.3 Highlighting
 PREFACE.4 Related Publications
 CONTENTS Table of Contents
 1.0 Introduction to the Interface Library
 1.1 What It Is
 1.2 What You Need
 1.3 What It Does
 1.4 How This Manual is Organized
 1.4.1 Process Control
 1.4.2 Process Identification
 1.4.3 Process Tracking
 1.4.4 Input-Output
 1.4.5 File Maintenance
 1.4.6 Signals
 1.4.7 Semaphores
 1.4.8 Messages
 1.4.9 Shared Memory
 1.4.10 Sockets
 1.4.11 System Utilities
 1.5 The ftok System Subroutine
 1.6 Using the Interface Library with VS Pascal
 1.6.1 Declarations
 1.6.2 Linkage
 1.7 Using the Interface Library with VS FORTRAN
 1.7.1 Declarations
 1.7.2 Linkage
 1.8 Return Values, Error Codes, and Error Messages
 2.0 System Calls
 2.1 ACCEPT accept a connection to a socket
 2.2 ACCESS check file accessibility
 2.3 ACCT turn process accounting on or off
 2.4 ADJTIME synchronize the system clock
 2.5 ALARM schedule an alarm signal
 2.6 BIND bind a name to a socket
 2.7 BRK, SBRK change data-segment space allocation
 2.8 CHDIR change the current directory
 2.9 CHHIDDEN convert a hidden or normal directory
 2.10 CHMOD change file-access permissions
 2.11 CHOWN, CHOWNX change ownership of a file
 2.12 CHROOT change the root directory
 2.13 CLOSE close a file
 2.14 CONNECT initiate a connection to a socket
 2.15 CREAT create a new file
 2.16 DISCLAIM "disclaim" the contents of an area of memory
 2.17 DUP, DUP2 return a second file-descriptor
 2.18 EXECL, EXECLE, EXECLP execute a program
 2.19 EXECV, EXECVE, EXECVP execute a program
 2.20 EXIT, _EXIT terminate a process
 2.21 FABORT abort the changes to a file
 2.22 FCLEAR clear space in a file
 2.23 FCNTL control an open-file descriptor
 2.24 FORK create a process
 2.25 FSYNC, FCOMMIT write to permanent storage

VS/AIX Interface Library
Table of Contents

¦ Copyright IBM Corp. 1985, 1989
CONTENTS - 1

 2.26 FTRUNCATE truncate a file
 2.27 GETDTABLESIZE get the size of a process-descriptor table
 2.28 GETGROUPS get a group access list
 2.29 GETHOSTID get a host ID
 2.30 GETHOSTNAME get a local host name
 2.31 GETITIMER get the current value of an internal timer
 2.32 GETLOCAL get the alias for <LOCAL>
 2.33 GETPEERNAME get the name of a "peer" socket
 2.34 GETPGRP, GETPID, GETPPID get a process-group or process identifier
 2.35 GETSOCKNAME get a socket name
 2.36 GETSOCKOPT get socket options
 2.37 GETTIMEOFDAY get the current time
 2.38 GETUID, GETEUID, GETGID, GETEGID get a user or group identifier
 2.39 GETXVERS get the UNIX version string
 2.40 IOCTL control the input and output of a device
 2.41 KILL, KILLPG send a signal to a process or a process group
 2.42 LINK link to a file
 2.43 LISTEN "listen" for a connection to a socket
 2.44 LOCKF lock or unlock a region of a file
 2.45 LSEEK set a read or write pointer
 2.46 MKDIR create a directory
 2.47 MKNOD create a directory or special file
 2.48 MOUNT, UMOUNT mount or unmount a file system
 2.49 MSGCTL invoke message-control operations
 2.50 MSGGET get or create a message queue
 2.51 MSGRCV, MSGXRCV read and store a message
 2.52 MSGSND send a message to a queue
 2.53 NICE set a process priority
 2.54 OPEN open a file for reading or writing
 2.55 PAUSE wait for a signal
 2.56 PIPE create an interprocess channel
 2.57 PLOCK lock or unlock a process, text, or data
 2.58 PROFIL generate an execution-time profile
 2.59 PTRACE trace the execution of a child process
 2.60 READ, READX read from a file
 2.61 READLINK read the value of a symbolic link
 2.62 READV read input into multiple buffers
 2.63 REBOOT reinitialize or halt system operation
 2.64 RECV, RECVMSG, RECVFROM receive a message from a socket
 2.65 RENAME rename a directory
 2.66 RMDIR remove a directory
 2.67 SELECT check the status of file descriptors and message queues
 2.68 SEMCTL invoke semaphore-control operations
 2.69 SEMGET get or create a semaphore-set ID
 2.70 SEMOP perform semaphore operations
 2.71 SEND, SENDMSG, SENDTO send a message from a socket
 2.72 SETGROUPS set a group access list
 2.73 SETHOSTID set an identifier for the host machine
 2.74 SETHOSTNAME set the name of the current host
 2.75 SETITIMER set the value of an internal timer
 2.76 SETLOCAL set the alias for <LOCAL>
 2.77 SETPGRP, SETPGID set a process group ID
 2.78 SETSOCKOPT set options on sockets
 2.79 SETTIMEOFDAY set the current time
 2.80 SETUID, SETGID set user or group identifiers
 2.81 SETXVERS set the UNIX version string
 2.82 SHMAT attach a shared-memory segment or mapped file
 2.83 SHMCTL invoke shared-memory-control operations
 2.84 SHMDT detach a shared-memory or mapped file segment
 2.85 SHMGET get a shared-memory-segment identifier

VS/AIX Interface Library
Table of Contents

¦ Copyright IBM Corp. 1985, 1989
CONTENTS - 2

 2.86 SHUTDOWN shut down part or all of a full-duplex connection
 2.87 SIGACTION specify the action to be taken upon receipt of a signal
 2.88 SIGBLOCK block one or more signals
 2.89 SIGNAL specify the process response to a signal
 2.90 SIGPAUSE release a blocked signal and wait for an interrupt
 2.91 SIGPROCMASK set the current signal mask
 2.92 SIGSETMASK set the signal mask of the current process
 2.93 SIGSTACK set and get a signal-stack context
 2.94 SIGSUSPEND reset the signal mask and wait for an interrupt
 2.95 SIGVEC select signal-handling facilities
 2.96 SOCKET create an endpoint for communication
 2.97 SOCKETPAIR create a pair of connected sockets
 2.98 STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file
 2.99 STIME set the system clock
 2.100 SYMLINK create a symbolic link to a file
 2.101 SYNC update a file system
 2.102 TIME get the system time
 2.103 TIMES get the process times
 2.104 ULIMIT get and set process limits
 2.105 UMASK get and set a file-creation-mode mask
 2.106 UNAME, UNAMEX get the name of the current operating system
 2.107 UNLINK delete a directory entry
 2.108 USRINFO get and set user information
 2.109 USTAT get file-system information
 2.110 UTIME set the file times
 2.111 UTIMES set the file times
 2.112 WAIT, WAIT3 wait for a child process to terminate
 2.113 WRITE, WRITEX write to a file
 2.114 WRITEV write output from multiple buffers
 A.0 Appendix A. Error Codes and Error Messages
 B.0 Appendix B. Pascal Constants
 C.0 Appendix C. Pascal Type Declarations
 D.0 Appendix D. Pascal Procedure and Function Declarations
 E.0 Appendix E. The ftok System Subroutine
 F.0 Appendix F. The perror System Subroutine
 INDEX Index

VS/AIX Interface Library
Table of Contents

¦ Copyright IBM Corp. 1985, 1989
CONTENTS - 3

 1.0 Introduction to the Interface Library

 Subtopics
 1.1 What It Is
 1.2 What You Need
 1.3 What It Does
 1.4 How This Manual is Organized
 1.5 The ftok System Subroutine
 1.6 Using the Interface Library with VS Pascal
 1.7 Using the Interface Library with VS FORTRAN
 1.8 Return Values, Error Codes, and Error Messages

VS/AIX Interface Library
Introduction to the Interface Library

¦ Copyright IBM Corp. 1985, 1989
1.0 - 1

 1.1 What It Is

 The VS Language/Operating System Interface Library is an
 application-program interface that provides access to the system calls of
 the AIX Operating System from programs written either in AIX VS Pascal or
 in AIX VS FORTRAN. These system calls, which are a part of the AIX
 Operating System, invoke a variety of system routines whose functions
 include file maintenance, input and output, and interprocess (1)
 communication.

 Note: Neither VS FORTRAN nor VS Pascal supports multibyte characters.
 Programs written in these languages can only process single-byte
 characters like ASCII.

 It is recommended that such programs not be used with AIX Release
 1.3. Nevertheless, this manual can provide valuable information on
 AIX systems calls for someone who wants to use them in C programs.

 Information on using system calls in a C program can be found in:

 � AIX Technical Reference

 � AIX Programming Tools and Interfaces

 (1) As used in this manual, the term process refers to a program
 running under the AIX Operating System, together with the
 environment it runs in.

VS/AIX Interface Library
What It Is

¦ Copyright IBM Corp. 1985, 1989
1.1 - 1

 1.2 What You Need

 � The AIX Operating System installed on your PS/

 � AIX PS/2 VS Pascal or AIX PS/2 VS FORTRAN installed according to th
 directions given in the Program Directory that accompanied the
 language.

VS/AIX Interface Library
What You Need

¦ Copyright IBM Corp. 1985, 1989
1.2 - 1

 1.3 What It Does

 The VS Language/Operating System Interface Library makes it easy to use
 the AIX system calls directly from programs written in VS Pascal or VS
 FORTRAN by changing the calls's associated data structures, naming
 conventions, and data types to conform to those required by the system.
 The Interface Library takes care of many of the details of interfacing to
 the actual system calls without the need for C-language or
 assembly-language "wrappers."

VS/AIX Interface Library
What It Does

¦ Copyright IBM Corp. 1985, 1989
1.3 - 1

 1.4 How This Manual is Organized

 The system-call descriptions are listed alphabetically by system-call
 name, beginning on page 2.1. Information on a particular call can be
 found by looking for the call name in the Table of Contents. (Because
 some sections describe more than one system call, the listing in the Table
 of Contents is not perfectly alphabetical, though all of the calls are
 listed.) Individual calls can also be found by consulting the Index,
 either under the name of the individual system call or under one of the
 following functional categories.

 � process contro
 � process identificatio
 � process trackin
 � input and outpu
 � file maintenanc
 � signal
 � semaphore
 � message
 � shared memor
 � socket
 � system utilitie

 The calls are grouped by functional category as follows:

 Subtopics
 1.4.1 Process Control
 1.4.2 Process Identification
 1.4.3 Process Tracking
 1.4.4 Input-Output
 1.4.5 File Maintenance
 1.4.6 Signals
 1.4.7 Semaphores
 1.4.8 Messages
 1.4.9 Shared Memory
 1.4.10 Sockets
 1.4.11 System Utilities

VS/AIX Interface Library
How This Manual is Organized

¦ Copyright IBM Corp. 1985, 1989
1.4 - 1

 1.4.1 Process Control

 BRK, SBRK (change data-segment space allocation)

 EXECL, EXECLE, EXECLP (execute a program)

 EXECV, EXECVE, EXECVP (execute a program)

 EXIT, _EXIT (terminate a process)

 FORK (create a new process)

 NICE (set a process priority)

 PLOCK (lock or unlock a process, text, or data)

 WAIT, WAIT3 (wait for a child process to terminate)

VS/AIX Interface Library
Process Control

¦ Copyright IBM Corp. 1985, 1989
1.4.1 - 1

 1.4.2 Process Identification

 GETDTABLESIZE (get size of process-descriptor table)

 GETGROUPS (get a group access list)

 GETHOSTID (get the host-machine identifier)

 GETHOSTNAME (get the host-machine name)

 GETLOCAL (get the alias for <LOCAL>)

 GETPGRP, GETPID, GETPPID (get a process-group or process
 identifier)

 GETUID, GETGID, GETEUID, GETEGID (get a user or a group
 identifier)

 SETGROUPS (set a group access list)

 SETHOSTID (set the host-machine identifier)

 SETHOSTNAME (set the host-machine name)

 SETLOCAL (set the alias for <LOCAL>)

 SETPGRP, SETPGID (set a process group ID)

 SETUID, SETGID (set user or group identifiers)

 ULIMIT (get and set process limits)

 USRINFO (get and set user information)

VS/AIX Interface Library
Process Identification

¦ Copyright IBM Corp. 1985, 1989
1.4.2 - 1

 1.4.3 Process Tracking

 ACCT (turn accounting process on or off)

 PROFIL (generate a time profile)

 PTRACE (trace the execution of a child process)

 TIMES (get the processing times)

VS/AIX Interface Library
Process Tracking

¦ Copyright IBM Corp. 1985, 1989
1.4.3 - 1

 1.4.4 Input-Output

 ACCESS (check file-access permissions)

 CLOSE (close a file)

 CREAT (create a new file)

 DUP, DUP2 (generate a second file-descriptor)

 FABORT (cancel changes to a file)

 FCLEAR (clear space in a file)

 FSYNC, FCOMMIT (write to permanent storage)

 FTRUNCATE (truncate a file)

 IOCTL (control the input and output of a device)

 LOCKF (lock or unlock a region of a file)

 LSEEK (set a read or write pointer)

 OPEN (open a file for reading or writing)

 PIPE (create an interprocess channel)

 READ, READX (read from a file)

 READV (read output into multiple buffers)

 SELECT (check I/O status of descriptors and message queues)

 WRITE, WRITEX (write to a file)

 WRITEV (write input from multiple buffers)

 Note: READV and WRITEV are not available in FORTAN.

VS/AIX Interface Library
Input-Output

¦ Copyright IBM Corp. 1985, 1989
1.4.4 - 1

 1.4.5 File Maintenance

 CHDIR (change the default directory)

 CHHIDDEN (convert a directory)

 CHMOD (change file-access permissions)

 CHOWN, CHOWNX (change file ownership)

 CHROOT (change a root directory)

 FCNTL (control an open-file descriptor)

 FABORT (cancel a change to a file)

 LINK (link to a file)

 MKDIR (create a directory)

 MKNOD (create a directory or a special file)

 MOUNT, UMOUNT (mount or unmount a file system)

 READLINK (read the value of a symbolic link)

 RENAME (rename a directory or file)

 RMDIR (remove a directory)

 STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT (return the
 status of a file)

 SYMLINK (create a symbolic link to a file)

 SYNC (update a file system)

 UMASK (set and get a file-creation-mode mask)

 UNLINK (delete a directory entry)

 USTAT (get file-system information)

 UTIME (set the file times)

 UTIMES (set the file times)

VS/AIX Interface Library
File Maintenance

¦ Copyright IBM Corp. 1985, 1989
1.4.5 - 1

 1.4.6 Signals

 ALARM (schedule an alarm signal)

 KILL, KILLPG (send a signal to a process or process group)

 PAUSE (wait for a signal)

 SIGACTION (specify a response to a signal)

 SIGBLOCK (block one or more signals)

 SIGNAL (specify the process response to a signal)

 SIGPAUSE (release a blocked signal and wait for an interrupt)

 SIGPROCMASK (set the signal mask of the current process)

 SIGSETMASK (set the signal mask of the current process)

 SIGSTACK (define an alternate stack)

 SIGSUSPEND (reset the signal mask and wait for an interrupt)

 SIGVEC (select signal-handling facilities)

 Note: SIGACTION, SIGSTACK, and SIGVEC are not available in FORTRAN.

VS/AIX Interface Library
Signals

¦ Copyright IBM Corp. 1985, 1989
1.4.6 - 1

 1.4.7 Semaphores

 SEMCTL (invoke semaphore-control operations)

 SEMGET (get or create a semaphore-set identifier)

 SEMOP (perform semaphore operations)

VS/AIX Interface Library
Semaphores

¦ Copyright IBM Corp. 1985, 1989
1.4.7 - 1

 1.4.8 Messages

 MSGCTL (invoke message-control operations)

 MSGGET (get or create a message queue)

 MSGRCV, MSGXRCV (read and store a message)

 MSGSND (send a message to a queue)

 RECV, RECVMSG, RECVFROM (receive a message from a socket)

 SEND, SENDTO, SENDMSG (send a message from a socket)

VS/AIX Interface Library
Messages

¦ Copyright IBM Corp. 1985, 1989
1.4.8 - 1

 1.4.9 Shared Memory

 SHMAT (attach a shared-memory segment or mapped file)

 SHMCTL (invoke shared-memory-control operations)

 SHMDT (detach a shared-memory or mapped-file segment)

 SHMGET (get a shared-memory-segment identifier)

VS/AIX Interface Library
Shared Memory

¦ Copyright IBM Corp. 1985, 1989
1.4.9 - 1

 1.4.10 Sockets

 ACCEPT (accept a connection to a socket)

 BIND (assign a name to a socket)

 CONNECT (make a connection between two sockets)

 GETPEERNAME (get the name of a connected socket)

 GETSOCKNAME (get the name of a connected socket)

 GETSOCKOPT (get the socket options)

 LISTEN ("listen" for a connection to a socket)

 SETSOCKOPT (set a socket's options)

 SHUTDOWN (disable sending or receiving functions)

 SOCKET (create a socket)

 SOCKETPAIR (create a pair of connected sockets)

VS/AIX Interface Library
Sockets

¦ Copyright IBM Corp. 1985, 1989
1.4.10 - 1

 1.4.11 System Utilities

 ADJTIME (synchronize the system clock)

 DISCLAIM ("disclaim" the content of an area of memory)

 GETITIMER (get the value of an internal timer)

 GETTIMEOFDAY (get the current time)

 GETXVERS (return the UNIX version string)

 REBOOT (restart the operating system)

 SETITIMER (set the value of an internal timer)

 SETTIMEOFDAY (set the current time)

 SETXVERS (set the UNIX version string)

 STIME (set the system clock)

 TIME (get the system time)

 UNAME, UNAMEX (get the name of the current operating system)

VS/AIX Interface Library
System Utilities

¦ Copyright IBM Corp. 1985, 1989
1.4.11 - 1

 1.5 The ftok System Subroutine

 The Interface Library gives the programmer access to AIX Operating System
 calls from VS Pascal or VS FORTRAN. An exception is ftok, an AIX
 Operating System subroutine that is often used by Pascal procedures and
 FORTRAN subroutines of the kind shown in the program examples elsewhere in
 this manual. For your convenience, therefore, a description of the ftok
 subroutine is given in Appendix E.

VS/AIX Interface Library
The ftok System Subroutine

¦ Copyright IBM Corp. 1985, 1989
1.5 - 1

 1.6 Using the Interface Library with VS Pascal

 Before you can use the Interface Library with a VS Pascal program, you
 must do two things:

 1. Declare the constants, data types, and external functions that will be
 used by the program.

 For your convenience, these declarations are provided in include files
 (see Appendixes B, C, D). The type declarations include those for the
 parameters and return values that appear in the descriptions of the
 calls. For purposes of illustration, predefined constants, types, and
 functions listed in the include files are also used in the programming
 examples.

 2. Link the Interface Library to the program, using the cc utility.

 Once these requirements are satisfied, you can use any number of AIX
 system calls in your program. For information concerning these calls, see
 "Related Publications" on page PREFACE.4.

 Subtopics
 1.6.1 Declarations
 1.6.2 Linkage

VS/AIX Interface Library
Using the Interface Library with VS Pascal

¦ Copyright IBM Corp. 1985, 1989
1.6 - 1

 1.6.1 Declarations

 The Interface Library provides three files that can be used for making
 Pascal declarations:

 1. constants:

 /usr/include/ailpconsts.inc

 2. data types:

 /usr/include/ailtypes.inc

 3. external functions:

 /usr/include/aildefs.inc

 To include any of these files in a VS Pascal program, use the %include
 compiler directive (see VS Pascal User's Guide). For the contents of the
 include files, see Appendixes B, C, and D. The following program
 illustrates how these files are used.

 program aildemo;

 const
 %include /usr/include/ailpconsts.inc

 type
 %include /usr/include/ailtypes.inc
 usrary = packed array[1..INFSIZ] of char;
 usrptr = @usrary;

 %include /usr/include/aildefs.inc

 function p_usrinf (cmd : integer; buf : usrptr;
 count : integer) : integer; external;

 procedure call1;
 var
 red : unam;
 blue : integer;

 begin
 blue := p_uname (red);
 writeln (red.sysname)
 end;

 procedure call2;
 var
 blue, red : integer;
 yellow : usrptr;

 begin
 new (yellow);
 blue := p_usrinf (GETINF, yellow, INFSIZ);
 for red := 1 to blue do
 write (yellow@[red]);
 writeln
 end;

VS/AIX Interface Library
Declarations

¦ Copyright IBM Corp. 1985, 1989
1.6.1 - 1

 begin
 call1;
 call2
 end.

VS/AIX Interface Library
Declarations

¦ Copyright IBM Corp. 1985, 1989
1.6.1 - 2

 1.6.2 Linkage

 You must link the Interface Library (/lib/libvspil.a) to your program.
 For example, to compile the aildemo program (assume the file name is
 aildemo.p), you would type the following command:

 cc -o aildemo aildemo.p -lm -lvspil -lvssys -lc

VS/AIX Interface Library
Linkage

¦ Copyright IBM Corp. 1985, 1989
1.6.2 - 1

 1.7 Using the Interface Library with VS FORTRAN

 Before you can use the Interface Library with a VS FORTRAN program, you
 must do two things:

 1. First, declare the constants that will be used by the program, so that
 it can be compiled.

 2. Second, link the Interface Library to the program, using the cc
 utility.

 Once these requirements are satisfied, you can use any number of AIX
 system calls in your program. For information concerning these calls, see
 "Related Publications" on page PREFACE.4.

 Subtopics
 1.7.1 Declarations
 1.7.2 Linkage

VS/AIX Interface Library
Using the Interface Library with VS FORTRAN

¦ Copyright IBM Corp. 1985, 1989
1.7 - 1

 1.7.1 Declarations

 The Interface Library provides one file that can be used for making
 FORTRAN declarations:

 (/usr/include/ailfconsts.inc)

 To include this file in your program, use the INCLUDE compiler directive
 (see VS FORTRAN User's Guide). For a description of the contents of the
 file, see
 Appendix B.

 The program on the next page illustrates how this file is used.

 PROGRAM AILDEMO
 CALL FIRST
 CALL SECOND
 END

 SUBROUTINE FIRST
 CHARACTER*9 RED(5)
 INTEGER BLUE, UNAME
 BLUE = UNAME (RED)
 PRINT *, RED(1)
 END

 SUBROUTINE SECOND
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER RED, BLUE, USRINF
 CHARACTER*INFSIZ YELLOW
 BLUE = USRINFO (GETINF, YELLOW, INFSIZ)
 WRITE *, YELLOW
 END

VS/AIX Interface Library
Declarations

¦ Copyright IBM Corp. 1985, 1989
1.7.1 - 1

 1.7.2 Linkage

 You must link the Interface Library (/lib/libvsfil.a) to your program.
 For example, to compile the AILDEMO program (assume the file name is
 aildemo.f), you would type the following command:

 cc -o aildemo aildemo.f -lm -lvsfil -lvsfor -lvssys -lc

VS/AIX Interface Library
Linkage

¦ Copyright IBM Corp. 1985, 1989
1.7.2 - 1

 1.8 Return Values, Error Codes, and Error Messages

 Most of the AIX system calls from Pascal and FORTRAN return a value. See
 the individual system-call descriptions for details regarding these
 values.

 A return value of -1 indicates that an error has occurred. When a system
 call generates an error, an error code is set in the external variable
 errno. Two routines are available for retrieving this value:

 1. A call to the p_ercode function in Pascal or the ERCODE subroutine in
 FORTRAN returns the value of the external variable errno.

 2. A call to the perror system subroutine prints out an error message
 (for a description of perror, see Appendix F).

VS/AIX Interface Library
Return Values, Error Codes, and Error Messages

¦ Copyright IBM Corp. 1985, 1989
1.8 - 1

 2.0 System Calls

 Each system-call description in this section summarizes the function of
 the system routine being called, the syntax of the call, its parameters,
 and any return values. It also contains examples of a call made from both
 VS Pascal and VS FORTRAN programs.

 Each description contains the first five subsections listed below, and
 occasionally the sixth.

 Description briefly describes the function of the system routine that is
 being called.

 Syntax shows the correct coding required for making a given system
 call from Pascal and FORTRAN programs.

 Parameters briefly defines the function and type (for example, integer)
 of any parameters required by a given system call.

 Return Values briefly describes the value returned by a given system call
 when it has been successfully completed and when it has
 failed.

 Examples contains short examples of Pascal and FORTRAN coding that
 invoke the system call or calls described in the section.

 Notes provides, where it is appropriate, additional information of
 importance to the programmer. ("Notes" also appear
 occasionally in other parts of a descriptive section, but
 they are not then displayed as subsection headings, though
 they are printed in bold-faced type.

 Subtopics
 2.1 ACCEPT accept a connection to a socket
 2.2 ACCESS check file accessibility
 2.3 ACCT turn process accounting on or off
 2.4 ADJTIME synchronize the system clock
 2.5 ALARM schedule an alarm signal
 2.6 BIND bind a name to a socket
 2.7 BRK, SBRK change data-segment space allocation
 2.8 CHDIR change the current directory
 2.9 CHHIDDEN convert a hidden or normal directory
 2.10 CHMOD change file-access permissions
 2.11 CHOWN, CHOWNX change ownership of a file
 2.12 CHROOT change the root directory
 2.13 CLOSE close a file
 2.14 CONNECT initiate a connection to a socket
 2.15 CREAT create a new file
 2.16 DISCLAIM "disclaim" the contents of an area of memory
 2.17 DUP, DUP2 return a second file-descriptor
 2.18 EXECL, EXECLE, EXECLP execute a program
 2.19 EXECV, EXECVE, EXECVP execute a program
 2.20 EXIT, _EXIT terminate a process
 2.21 FABORT abort the changes to a file
 2.22 FCLEAR clear space in a file
 2.23 FCNTL control an open-file descriptor
 2.24 FORK create a process
 2.25 FSYNC, FCOMMIT write to permanent storage
 2.26 FTRUNCATE truncate a file
 2.27 GETDTABLESIZE get the size of a process-descriptor table

VS/AIX Interface Library
System Calls

¦ Copyright IBM Corp. 1985, 1989
2.0 - 1

 2.28 GETGROUPS get a group access list
 2.29 GETHOSTID get a host ID
 2.30 GETHOSTNAME get a local host name
 2.31 GETITIMER get the current value of an internal timer
 2.32 GETLOCAL get the alias for <LOCAL>
 2.33 GETPEERNAME get the name of a "peer" socket
 2.34 GETPGRP, GETPID, GETPPID get a process-group or process identifier
 2.35 GETSOCKNAME get a socket name
 2.36 GETSOCKOPT get socket options
 2.37 GETTIMEOFDAY get the current time
 2.38 GETUID, GETEUID, GETGID, GETEGID get a user or group identifier
 2.39 GETXVERS get the UNIX version string
 2.40 IOCTL control the input and output of a device
 2.41 KILL, KILLPG send a signal to a process or a process group
 2.42 LINK link to a file
 2.43 LISTEN "listen" for a connection to a socket
 2.44 LOCKF lock or unlock a region of a file
 2.45 LSEEK set a read or write pointer
 2.46 MKDIR create a directory
 2.47 MKNOD create a directory or special file
 2.48 MOUNT, UMOUNT mount or unmount a file system
 2.49 MSGCTL invoke message-control operations
 2.50 MSGGET get or create a message queue
 2.51 MSGRCV, MSGXRCV read and store a message
 2.52 MSGSND send a message to a queue
 2.53 NICE set a process priority
 2.54 OPEN open a file for reading or writing
 2.55 PAUSE wait for a signal
 2.56 PIPE create an interprocess channel
 2.57 PLOCK lock or unlock a process, text, or data
 2.58 PROFIL generate an execution-time profile
 2.59 PTRACE trace the execution of a child process
 2.60 READ, READX read from a file
 2.61 READLINK read the value of a symbolic link
 2.62 READV read input into multiple buffers
 2.63 REBOOT reinitialize or halt system operation
 2.64 RECV, RECVMSG, RECVFROM receive a message from a socket
 2.65 RENAME rename a directory
 2.66 RMDIR remove a directory
 2.67 SELECT check the status of file descriptors and message queues
 2.68 SEMCTL invoke semaphore-control operations
 2.69 SEMGET get or create a semaphore-set ID
 2.70 SEMOP perform semaphore operations
 2.71 SEND, SENDMSG, SENDTO send a message from a socket
 2.72 SETGROUPS set a group access list
 2.73 SETHOSTID set an identifier for the host machine
 2.74 SETHOSTNAME set the name of the current host
 2.75 SETITIMER set the value of an internal timer
 2.76 SETLOCAL set the alias for <LOCAL>
 2.77 SETPGRP, SETPGID set a process group ID
 2.78 SETSOCKOPT set options on sockets
 2.79 SETTIMEOFDAY set the current time
 2.80 SETUID, SETGID set user or group identifiers
 2.81 SETXVERS set the UNIX version string
 2.82 SHMAT attach a shared-memory segment or mapped file
 2.83 SHMCTL invoke shared-memory-control operations
 2.84 SHMDT detach a shared-memory or mapped file segment
 2.85 SHMGET get a shared-memory-segment identifier
 2.86 SHUTDOWN shut down part or all of a full-duplex connection
 2.87 SIGACTION specify the action to be taken upon receipt of a signal

VS/AIX Interface Library
System Calls

¦ Copyright IBM Corp. 1985, 1989
2.0 - 2

 2.88 SIGBLOCK block one or more signals
 2.89 SIGNAL specify the process response to a signal
 2.90 SIGPAUSE release a blocked signal and wait for an interrupt
 2.91 SIGPROCMASK set the current signal mask
 2.92 SIGSETMASK set the signal mask of the current process
 2.93 SIGSTACK set and get a signal-stack context
 2.94 SIGSUSPEND reset the signal mask and wait for an interrupt
 2.95 SIGVEC select signal-handling facilities
 2.96 SOCKET create an endpoint for communication
 2.97 SOCKETPAIR create a pair of connected sockets
 2.98 STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file
 2.99 STIME set the system clock
 2.100 SYMLINK create a symbolic link to a file
 2.101 SYNC update a file system
 2.102 TIME get the system time
 2.103 TIMES get the process times
 2.104 ULIMIT get and set process limits
 2.105 UMASK get and set a file-creation-mode mask
 2.106 UNAME, UNAMEX get the name of the current operating system
 2.107 UNLINK delete a directory entry
 2.108 USRINFO get and set user information
 2.109 USTAT get file-system information
 2.110 UTIME set the file times
 2.111 UTIMES set the file times
 2.112 WAIT, WAIT3 wait for a child process to terminate
 2.113 WRITE, WRITEX write to a file
 2.114 WRITEV write output from multiple buffers

VS/AIX Interface Library
System Calls

¦ Copyright IBM Corp. 1985, 1989
2.0 - 3

 2.1 ACCEPT accept a connection to a socket

 Description
 The ACCEPT system call extracts the first connection from the queue of
 pending connections, creates a new connection with the same properties as
 s, and allocates a new file descriptor to that socket.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_accept (s, addr, addrlen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FACCEPT (S, ADDR1, ADDR2, ADDRLEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call, was bound to an address with a BIND system call, and is
 "listening" for connections after a LISTEN system call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 addr, ADDR1, ADDR2
 are result parameters that receive the address of the connecting
 entity as it is known to the communications layer. The exact format
 of addr is determined by the domain in which the communication occurs.

 � In Pascal, addr is of type sockaddrptr (declared in the include
 file ailtypes.inc).

 � In FORTRAN, addr1 is of type INTEGER and corresponds to
 sockaddr.sa_family in Pascal.

 � In FORTRAN, addr2 is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 addrlen
 initially contains the amount of space pointed to by the "addr"
 parameters. On return, it contains the actual length of the address
 returned.

 � In Pascal, addrlen is of type integer.

 � In FORTRAN, addrlen is of type INTEGER.

 Return Values
 The value returned upon successful completion of the call is the
 nonnegative socket-descriptor of the accepted socket. The value -1 is

VS/AIX Interface Library
ACCEPT accept a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.1 - 1

 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the ACCEPT
 system routine, which in these examples receives in the variable "green",
 the nonnegative socket-descriptor of the accepted socket.

 Pascal

 procedure accept1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 addrlen, s, green : integer;
 addr : sockaddrptr;

 %include /usr/include/aildefs.inc

 begin
 new (addr);
 s := p_socket(PF_UNIX, SOCK_STREAM, 0);
 if (s = -1) then showerror;
 addrlen := 20;
 green := p_accept (s, addr, addrlen);
 writeln ('Accept returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE ACCEPT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FACCEPT, FSOCKET, ADDR1, S, GREEN
 CHARACTER*14 ADDR2
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (S .EQ. -1) CALL ERRORS

 GREEN = FACCEPT (S, ADDR1, ADDR2, 20)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
ACCEPT accept a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.1 - 2

 2.2 ACCESS check file accessibility

 Description
 The ACCESS system call checks a file's accessibility against a specified
 access mode.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_access (path, amode); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FACCESS (PATH, AMODE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file to be checked.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 amode
 is the access mode of the file specified by path. The parameter value
 is that of one of the parameter options or is constructed from two or
 more of those options by logical ORing. The options are defined as
 constants in the Pascal and FORTRAN constants include files.

 F_OK searches for a file

 X_OK tests for execute permission

 W_OK tests for write permission

 R_OK tests for read permission

 Note: In FORTRAN, the underscore is omitted (for example, "FOK").

 Note: Specifying access mode 0 (zero) tests whether the directories
 leading to a file can be searched and whether the file exists.

 � In Pascal, amode is a variable or constant of type integer.

 � In FORTRAN, amode is a variable or constant of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

VS/AIX Interface Library
ACCESS check file accessibility

¦ Copyright IBM Corp. 1985, 1989
2.2 - 1

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the ACCESS
 system routine. The accessibility of the file specified by path ("blue")
 is tested. The specified file is found and tested for execution, write,
 and read permissions as specified by the ORed value 7, defined in the
 variable "red".

 Pascal

 procedure access1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green, red : integer;
 blue : st80;

 %include /usr/include/aildefs.inc

 begin
 red := X_OK + W_OK + R_OK;
 blue := '/tmp/myfile';
 green := p_access (blue, red);
 writeln (green);
 end;

 FORTRAN

 SUBROUTINE ACCESS1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FACCESS, GREEN, RED
 CHARACTER*80 BLUE
 RED = XOK + WOK + ROK;
 BLUE = '/tmp/myfile '
 GREEN = FACCESS (BLUE, RED)
 PRINT *, GREEN
 END

VS/AIX Interface Library
ACCESS check file accessibility

¦ Copyright IBM Corp. 1985, 1989
2.2 - 2

 2.3 ACCT turn process accounting on or off

 Description
 The ACCT call writes records in a specified "accounting file" whenever a
 process is terminated. Records of the terminated process are appended to
 the accounting file.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_acct (path); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FACCT (PATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file to which all accounting records are written.
 Passing the file name as an argument in the call activates the
 accounting function. Passing a null string turns the accounting
 function off.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the ACCT
 routine. The accounting function is turned on and the records are
 appended to the files specified by path. The return value of the call is
 in "blue".
 Pascal

 procedure acct1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
ACCT turn process accounting on or off

¦ Copyright IBM Corp. 1985, 1989
2.3 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;
 red : st80;

 %include /usr/include/aildefs.inc

 begin
 red := '/tmp/acct';
 blue := p_acct (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE ACCT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FACCT, BLUE
 CHARACTER*80 RED
 RED = '/tmp/acct '
 BLUE = FACCT (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
ACCT turn process accounting on or off

¦ Copyright IBM Corp. 1985, 1989
2.3 - 2

 2.4 ADJTIME synchronize the system clock

 Description
 The ADJTIME system call makes small adjustments to the system time (as
 returned by the GETTIMEOFDAY call), advancing or slowing it by a specified
 amount.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_adjtime (delta, olddelta); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FADJTIME (DELTA, OLDDELTA) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 delta
 specifies the amount of time (in seconds and microseconds) by which
 the system time is to be adjusted. If the value specified is
 negative, the system clock is slowed down by advancing the time at
 less than the normal rate until synchronization is achieved.

 � In Pascal, delta is of type timeval.

 � In FORTRAN delta is an array containing two elements of type
 INTEGER.

 olddelta
 returns the number of seconds and microseconds to adjust the time from
 the earlier call.

 � In Pascal, olddelta is of type timeval.

 � In FORTRAN olddelta is an array containing two elements of type
 INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the ADJTIME
 system routine.

VS/AIX Interface Library
ADJTIME synchronize the system clock

¦ Copyright IBM Corp. 1985, 1989
2.4 - 1

 Pascal

 procedure adjtime1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 delta, olddelta : timeval;

 %include /usr/include/aildefs.inc

 begin
 delta.tv_sec := 20;
 delta.tv_usec := 30;
 green := p_adjtime (delta, olddelta);
 writeln ('Adjtime returned: ', green: 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE ADJTIME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FADJTIME, DELTA(2), OLDDELTA(2), GREEN
 DELTA(1) = 20
 DELTA(2) = 30
 GREEN = FADJTIME (DELTA, OLDDELTA)
 IF (GREEN .EQ. -1) THEN
 PRINT *, 'ADJTIME: ERROR'
 CALL ERRORS
 ELSE
 PRINT *, 'ADJTIME: OK'
 ENDIF
 END

VS/AIX Interface Library
ADJTIME synchronize the system clock

¦ Copyright IBM Corp. 1985, 1989
2.4 - 2

 2.5 ALARM schedule an alarm signal

 Description
 The ALARM system call sends a SIGALARM signal to the calling process in a
 specified number of seconds. In effect, it sets an "alarm" clock. Unless
 caught or ignored, the signal terminates the calling process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_alarm (sec); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FALARM (SEC) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sec
 is the number of seconds before the alarm signal is sent to the
 calling process (see Notes at the end of this section).

 � In Pascal, sec is of type usign.

 � In FORTRAN, sec is of type INTEGER.

 Return Values
 The return value of this call is the amount of clock time remaining from
 the previous ALARM call. The return value is the amount of time that
 previously remained on the alarm clock of the calling process before it
 is reset to the new time (see Notes).

 � In Pascal, the return value is of type usign

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the ALARM
 system routine, which in these examples instructs the alarm clock to
 signal the calling process after 100 seconds have elapsed.

 Pascal

 procedure alarm1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : usign;

VS/AIX Interface Library
ALARM schedule an alarm signal

¦ Copyright IBM Corp. 1985, 1989
2.5 - 1

 %include /usr/include/aildefs.inc

 begin
 red := 100;
 blue := p_alarm (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE ALARM1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FALARM, BLUE, RED
 RED = 100
 BLUE = FALARM (RED)
 PRINT *, BLUE
 END

 Notes
 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values of type
 usign that fall in the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from that
 value before issuing the call (the result will always be negative).

VS/AIX Interface Library
ALARM schedule an alarm signal

¦ Copyright IBM Corp. 1985, 1989
2.5 - 2

 2.6 BIND bind a name to a socket

 Description
 The BIND system call assigns a name to a socket.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_bind (s, name, namelen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FBIND (S, FAMILY, NAME, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER, corresponding to
 sockaddr.sa_familyt in Pascal.

 name
 is a unique name to be assigned to the socket.

 � In Pascal, name is of type sockaddrptr (declared in the include
 file ailtypes.inc).

 � In FORTRAN, name is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 family
 is the address family specified in the SOCKET system call.

 � Used only in FORTRAN, family is of type INTEGER and corresponds to
 sockaddr.sa_family in Pascal.

 namelen
 is the length of the name parameter. On return, it contains the
 actual length of the address returned.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

VS/AIX Interface Library
BIND bind a name to a socket

¦ Copyright IBM Corp. 1985, 1989
2.6 - 1

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the BIND
 system routine, which in these examples assigns the name 'socket' to
 socket descriptor "s".

 Pascal

 procedure bind1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 namelen, s, green : integer;
 name : sockaddrptr;

 %include /usr/include/aildefs.inc

 begin
 new (name);
 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 if (s = -1) then showerror;
 name^.sa_data := 'socket';
 name^.sa_family := PF_UNIX;
 namelen := 10;
 green := p_bind (s, name, namelen);
 writeln ('Bind returned: ', green : 2);
 if (green = -1) then showerror;
 green := p_unlink(name);
 end;

 FORTRAN

 SUBROUTINE BIND1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FBIND, FSOCKET, FUNLINK, S, GREEN
 CHARACTER*14 NAME
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (S .EQ. -1) CALL ERRORS
 NAME = 'SOCKET '
 GREEN = FBIND (S, PFUNIX, NAME, 10)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 GREEN = FUNLINK (NAME)
 END

 Notes
 Sockets in the AF_UNIX address family create a name in the file system
 name space that must be deleted by the calling process (using UNLINK) when
 it is no longer needed.

VS/AIX Interface Library
BIND bind a name to a socket

¦ Copyright IBM Corp. 1985, 1989
2.6 - 2

 2.7 BRK, SBRK change data-segment space allocation

 Description
 The BRK and SBRK system calls dynamically change the amount of space
 allocated to the data segment of the calling process.

 The BRK system call sets the breakpoint value to that specified in the
 call and changes the space allocation accordingly.

 The SBRK system call adds to the breakpoint value the number of bytes
 specified in the call and changes the space allocation accordingly.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_brk (endds); ¦
 ¦ ¦
 ¦ p_sbrk (incr); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FBRK (ENDDS) ¦
 ¦ ¦
 ¦ FSBRK (INCR) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 endds
 is used only with the BRK call. It specifies the new breakpoint that
 is to be set.

 � In Pascal, endds is of type integer.

 � In FORTRAN, endds is of type INTEGER.

 incr
 is used only with the SBRK call. It specifies the number of bytes to
 be added to or subtracted from the space allocated to the program data
 segment.

 � In Pascal, incr is of type integer.

 � In FORTRAN, incr is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the BRK call.

 The previous break value is returned upon successful completion of the
 SBRK call.

 The value -1 is returned and an error code set in errno if either call
 fails.

VS/AIX Interface Library
BRK, SBRK change data-segment space allocation

¦ Copyright IBM Corp. 1985, 1989
2.7 - 1

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow issue an SBRK
 system call to add 1000 bytes to the data segment of the calling program.
 The return value is in the variable "blue".

 Pascal

 procedure sbrk1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := 1000;
 blue := p_sbrk (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SBRK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSBRK, BLUE, RED
 RED = 1000
 BLUE = FSBRK (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
BRK, SBRK change data-segment space allocation

¦ Copyright IBM Corp. 1985, 1989
2.7 - 2

 2.8 CHDIR change the current directory

 Description
 The CHDIR system call replaces the current working directory with the
 directory specified in the call. The current working directory is the
 starting point for searches when "/" is not specified.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_chdir (path); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCHDIR (PATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the directory that becomes the current working
 directory when the call is issued. Assigning "dot dot" (..) to this
 variable specifies the parent of the current directory.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned when the directory is changed. The value -1 is
 returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CHDIR
 system routine. The directory specified in the call is /usr/games, which
 becomes the current working directory. The return value of the call is in
 the variable "folio". When the calling program terminates, the directory
 from which that program was executed once again becomes the current
 working directory.

 Pascal

 procedure chdir1;

 const
 %include /usr/include/ailpconsts.inc
 type

VS/AIX Interface Library
CHDIR change the current directory

¦ Copyright IBM Corp. 1985, 1989
2.8 - 1

 %include /usr/include/ailtypes.inc
 var
 folio : integer;
 red : st80;

 %include /usr/include/aildefs.inc

 begin
 red := '/usr/games';
 folio := p_chdir (red);
 writeln (folio);
 end;

 FORTRAN

 SUBROUTINE CHDIR1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCHDIR, FOLIO
 CHARACTER*80 RED
 RED = '/usr/games '
 FOLIO = FCHDIR (RED)
 PRINT *, FOLIO
 END

VS/AIX Interface Library
CHDIR change the current directory

¦ Copyright IBM Corp. 1985, 1989
2.8 - 2

 2.9 CHHIDDEN convert a hidden or normal directory

 Description
 The CHHIDDEN system call allows a super-user to convert a normal directory
 to a hidden one and vice versa.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_chhidden (dirname, hideflag); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCHHIDDEN (DIRNAME, HIDEFLAG); ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 dirname
 is the name of the directory to be converted.

 � In Pascal, dirname is a string variable or constant of type st80.

 � In FORTRAN, dirname is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 hideflag
 determines the "direction" of the conversion. A nonzero value
 converts a normal directory to a hidden one. The value 0 converts a
 hidden directory to a normal one.

 � In Pascal, hideflag is of type integer.

 � In FORTRAN, hideflag is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CHHIDDEN
 system routine, which in these examples makes the directory
 /bushel/light/hide a hidden directory (by adding an '@' at the end of the
 directory name). Upon successful completion of the system call, the
 directory is made "unhidden" by calling CHHIDDEN again, with hideflag set
 to 0.

VS/AIX Interface Library
CHHIDDEN convert a hidden or normal directory

¦ Copyright IBM Corp. 1985, 1989
2.9 - 1

 Pascal

 procedure chhidden1;

 const
 %include/usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 p1 : st80;

 %include /usr/include/aildefs.inc

 begin
 p1 := '/bushel/light/hide';
 green := p_mkdir (p1, 128);
 green := p_chhidden (p1, 5);
 writeln ('Chhidden returned: ', green : 2);
 if (green = -1) then showerror;
 green := p_chhidden (p1, 0);
 end;

 FORTRAN

 SUBROUTINE CHHIDDEN1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCHHIDDEN, FMKDIR, GREEN
 P1 = 'bushel/light/hide '
 GREEN = FMKDIR (P1, 128)
 GREEN = FCHHIDDEN (P1, 5)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 GREEN = FCHHIDDEN (P1, 0)
 END

VS/AIX Interface Library
CHHIDDEN convert a hidden or normal directory

¦ Copyright IBM Corp. 1985, 1989
2.9 - 2

 2.10 CHMOD change file-access permissions

 Description
 The CHMOD system call changes the access permissions, or access mode, of a
 specified file.

 Note: Only the owner of a file and the super-user can change the access
 mode of that file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_chmod (path, mode); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCHMOD (PATH, MODE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file whose access mode is being changed.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 mode
 is the new access mode for the file specified by path. The parameter
 value is either one of the parameter options shown here or it is
 constructed by logically ORing two or more of those options. The
 options are defined as constants in the Pascal and FORTRAN constants
 include files (Appendix B).

 Constant Access Attribute
 ____ ______________________________

 ISUID set user ID on execution

 ISGID set group ID on execution

 ISVTX save text image after execution

 ENFMT enables enforcement mode record locking

 IRUSR read by owner

 IWUSR write by owner

 IXUSR execute file (or search directory) by owner

VS/AIX Interface Library
CHMOD change file-access permissions

¦ Copyright IBM Corp. 1985, 1989
2.10 - 1

 IRGRP read by group

 IWGRP write by group

 IXGRP execute by group

 IROTH read by others

 IWOTH write by others

 IXOTH execute by others

 � In Pascal, mode is of type integer.

 � In FORTRAN, mode is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CHMOD
 system routine, which in these examples changes the access mode of
 "anyfile" to "read by others," specified by the attribute IROTH of the
 mode parameter ("red"). The file affected is assumed to be a valid file
 owned by the issuer of the call.

 Pascal

 procedure chmod1;

 const
 %include/usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 green : st80;

 %include /usr/include/aildefs.inc

 begin
 red := IROTH;
 green := 'anyfile';
 blue := p_chmod ('anyfile', red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE CHMOD1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCHMOD, BLUE, RED

VS/AIX Interface Library
CHMOD change file-access permissions

¦ Copyright IBM Corp. 1985, 1989
2.10 - 2

 CHARACTER*80 GREEN
 RED = IROTH
 GREEN = 'anyfile '
 BLUE = FCHMOD (GREEN, RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
CHMOD change file-access permissions

¦ Copyright IBM Corp. 1985, 1989
2.10 - 3

 2.11 CHOWN, CHOWNX change ownership of a file

 Description
 The CHOWN and CHOWNX system calls change the ownership of a specified file
 by changing the user and group IDs. The CHOWNX system call, however, can
 specify that one of the IDs remain unchanged.

 Note: Only the owner of a file and the super-user can use these system
 calls to change the ownership of that file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_chown (path, owner, group); ¦
 ¦ ¦
 ¦ p_chownx (path, owner, group, tflag); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCHOWN (PATH, OWNER, GROUP) ¦
 ¦ ¦
 ¦ FCHOWNX (PATH, OWNER, GROUP, TFLAG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file whose owner and group IDs are being changed.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 owner
 is the user ID of the new owner of the file specified by path.

 � In Pascal, owner is of type integer.

 � In FORTRAN, owner is of type INTEGER.

 group
 is the group ID of the new owner of the file specified by path.

 � In Pascal, group is of type integer.

 � In FORTRAN, group is of type INTEGER.

 tflag
 is a variable or constant, used only in the CHOWNX call, that
 specifies which of the two IDs is to remain unchanged. The options
 are defined in the Pascal and FORTRAN constants include files.

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

¦ Copyright IBM Corp. 1985, 1989
2.11 - 1

 T_OWNER_AS_IS ignores the ID specified in the owner parameter.

 T_GROUP_AS_IS ignores the ID specified in the group parameter.

 Note: In FORTRAN, the underscore is omitted (for
 example, "TOWNERASIS").

 � In Pascal, tflag is of type integer.

 � In FORTRAN, tflag is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CHOWN
 system routine, which in these examples assigns the ownership of "myfile"
 to the owner of root. The file affected is assumed to be a valid file
 owned by the issuer of the call.

 Pascal

 procedure chown1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 yellow : st80;

 %include /usr/include/aildefs.inc

 begin
 red := 0;
 green := 0;
 yellow := 'myfile';
 blue := p_chown ('myfile', red, green);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE CHOWN1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCHOWN, BLUE, GREEN, RED
 CHARACTER*80 YELLOW
 RED = 0
 GREEN = 0
 YELLOW = 'myfile '
 BLUE = FCHOWN (YELLOW, RED, GREEN)
 PRINT *, BLUE

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

¦ Copyright IBM Corp. 1985, 1989
2.11 - 2

 END

VS/AIX Interface Library
CHOWN, CHOWNX change ownership of a file

¦ Copyright IBM Corp. 1985, 1989
2.11 - 3

 2.12 CHROOT change the root directory

 Description
 The CHROOT system call changes a specified directory to the effective root
 directory (the starting point when searching for pathnames that begin with
 "/").

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_chroot (path); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCHROOT (PATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the directory that will be used as the home directory
 for file names beginning with "/".

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CHROOT
 system routine, which in these examples makes /usr/include the effective
 root directory for the life of the calling process.
 Pascal

 procedure chroot1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var

VS/AIX Interface Library
CHROOT change the root directory

¦ Copyright IBM Corp. 1985, 1989
2.12 - 1

 red : integer;
 blue : st80;

 %include /usr/include/aildefs.inc

 begin
 blue := '/usr/include';
 red := p_chroot (blue);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE CHROOT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCHROOT, RED
 CHARACTER*80 BLUE
 BLUE = '/usr/include '
 RED = FCHROOT (BLUE)
 PRINT *, RED
 END

VS/AIX Interface Library
CHROOT change the root directory

¦ Copyright IBM Corp. 1985, 1989
2.12 - 2

 2.13 CLOSE close a file

 Description
 The CLOSE system call closes a specified file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_close (fildes); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCLOSE (FILDES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is a descriptor returned by a CREAT, DUP, DUP2, FCNTL, OPEN, or PIPE,
 system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the OPEN and
 CLOSE system routines. The OPEN call returns a file descriptor in the
 variable "red". This descriptor is used to close the same file.
 Pascal

 procedure close1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/tmp/anyfile', RDONLY, 0);
 blue := p_close (red);

VS/AIX Interface Library
CLOSE close a file

¦ Copyright IBM Corp. 1985, 1989
2.13 - 1

 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE CLOSE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCLOSE, FOPEN, BLUE, RED
 RED = FOPEN ('/tmp/anyfile ', RDONLY, 0)
 BLUE = FCLOSE (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
CLOSE close a file

¦ Copyright IBM Corp. 1985, 1989
2.13 - 2

 2.14 CONNECT initiate a connection to a socket

 Description
 The CONNECT system call makes a connection to a specified "peer" socket if
 that socket is of type SOCK_DGRAM. If the socket is of type SOCK_STREAM,
 then this system call attempts to make a connection to another socket.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_connect (s, name, namelen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCONNECT (S, NAME1, NAME2, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 name
 specifies the socket to which a connection is to be made. Each
 communication space interprets this parameter in its own way.

 � In Pascal, name is of type sockaddrptr (declared in the include
 file ailtypes.inc).

 � In FORTRAN, name1 is of type INTEGER and corresponds to
 sockaddr.sa_family in Pascal.

 � In FORTRAN, name2 is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 namelen
 is the length of the name parameter.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
CONNECT initiate a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.14 - 1

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CONNECT
 system routine, which in these examples connects "s" and "s1". Socket "s"
 of type SOCK_DGRAM is created with a SOCKET system call. Another socket
 "s1" has been created and then bound to name "socket" with a BIND system
 call.

 Pascal

 procedure connect1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 namelen, s, s1, green : integer;
 name : sockaddrptr;

 %include /usr/include/aildefs.inc

 begin
 new (name);
 s := p_socket (PF_UNIX, SOCK_DGRAM, 0);
 if (s = -1) then showerror;
 s1 := p_socket (PF_UNIX, SOCK_DGRAM, 0);
 name^.sa_family := PF_UNIX;
 name^.sa_data := 'socket';
 namelen := 16;
 green := p_bind (s1, name, namelen);
 green := p_connect (s, name, namelen);
 writeln ('Connect returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE CONNECT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCONNECT, FBIND, FSOCKET, NAME1, S, GREEN, S1
 CHARACTER*14 NAME2
 S = FSOCKET (PFUNIX, SKDGRAM, 0)
 S1 = FSOCKET (PFUNIX, SKDGRAM, 0)
 NAME2 = 'SOCKET '
 NAME1 = PFUNIX
 GREEN = FBIND (S1, NAME1, NAME2, 16)
 GREEN = FCONNECT (S, NAME1, NAME2, 16)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
CONNECT initiate a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.14 - 2

 2.15 CREAT create a new file

 Description
 The CREAT system call creates a new file or calls up an existing file in
 preparation for rewriting.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_creat (path, mode); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FCREAT (PATH, MODE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file being created or rewritten.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 mode
 is the access mode of the file being created or rewritten. (For a
 list of modes see CHMOD on page 2.10.)

 � In Pascal, mode is of type integer.

 � In FORTRAN, mode is of type INTEGER.

 Return Values

 The return value is the file descriptor of the file created. The value -1
 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the CREAT
 system routine. The variable "green" defines the path parameter. The
 Pascal and FORTRAN constants include files contain definitions of
 constants for the modes available in CREAT. File /tmp/test.1 is given
 owner read permissions as specified by the variable "red".

 Pascal

VS/AIX Interface Library
CREAT create a new file

¦ Copyright IBM Corp. 1985, 1989
2.15 - 1

 procedure creat1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 green : st80;

 %include /usr/include/aildefs.inc

 begin
 red := IREAD;
 green := '/tmp/test.1';
 blue := p_creat (green, red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE CREAT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FCREAT, BLUE, RED
 CHARACTER*80 GREEN
 RED = IREAD
 GREEN = '/tmp/test.1 '
 BLUE = FCREAT (GREEN, RED)
 END

 Notes
 For additional information about the CREAT system call, refer to the umask
 command in AIX Operating System Commands Reference, which explains the
 interaction between the current-file-creation mask and the mode parameter.

VS/AIX Interface Library
CREAT create a new file

¦ Copyright IBM Corp. 1985, 1989
2.15 - 2

 2.16 DISCLAIM "disclaim" the contents of an area of memory

 Description
 The DISCLAIM system call marks an area of memory as containing data that
 is no longer needed. This system call cannot be used on memory that has
 been mapped to a file by the SHMAT system call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_disclaim (addr, length, flag) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definition --------------------------------+
 ¦ ¦
 ¦ p_disclaim (addr: memptr; length, flag : usign) : integer; ¦
 ¦ external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FDISCLAIM (ADDR, LENGTH, FLAG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 addr
 points to the beginning of the memory area to be disclaimed.

 � In Pascal, addr is a pointer of type memptr (memptr is a pointer
 to a user-defined area of any data type.

 � In FORTRAN, addr is a user-defined area of any type.

 length
 specifies the number of bytes of memory to be disclaimed.

 � In Pascal, length is of type usign.

 � In FORTRAN, length is of type INTEGER;

 flag
 specifies that each memory location in the address range is to be set
 to 0 (zero). This flag must have the value specified by ZERO_MEM
 (ZEROMEM in FORTRAN).

 � In Pascal, flag is of type integer.

 � In FORTRAN, flag is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

VS/AIX Interface Library
DISCLAIM "disclaim" the contents of an area of memory

¦ Copyright IBM Corp. 1985, 1989
2.16 - 1

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the DISCLAIM
 system routine, which in these examples disclaims the content of 10 bytes
 of memory in a character array ("yellow" or "ADDR"), and in effect frees
 that amount of memory for other use.

 Pascal

 procedure disclaim1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 myaray = packed array[1..10] of char;
 myptr = @myaray;

 var
 i : integer;
 yellow : myptr;

 %include /usr/include/aildefs.inc

 function p_disclaim (addr : myptr; length, flag : usign) :
 integer; external

 begin
 new(yellow);
 green := p_disclaim (yellow, 10, ZERO_MEM);
 writeln ('Disclaim returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE DISCLAIM1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FDISCLAIM, GREEN
 CHARACTER*80 ADDR
 GREEN = FDISCLAIM (ADDR, 10, ZEROMEM)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

 Notes
 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values of type
 usign that fall in the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from that
 value before issuing the call (the result will always be negative).

VS/AIX Interface Library
DISCLAIM "disclaim" the contents of an area of memory

¦ Copyright IBM Corp. 1985, 1989
2.16 - 2

 2.17 DUP, DUP2 return a second file-descriptor

 Description
 The DUP and DUP2 system calls create a second descriptor for a specified
 open file.

 � The DUP system call returns a new file descriptor for the specified
 file.

 � The DUP2 system call returns a new file descriptor in one of the
 parameters.

 The descriptor that is to be "duplicated" must be an existing descriptor
 returned by a CREAT, DUP, DUP2, FCNTL, OPEN, PIPE, SOCKET, or SOCKETPAIR
 system call. The new file descriptor is synonymous with the existing one
 (that is, the new descriptor points to the same file).

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_dup (fildes); ¦
 ¦ ¦
 ¦ p_dup2 (oldfd, newfd); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FDUP (FILDES) ¦
 ¦ ¦
 ¦ FDUP2 (OLDFD, NEWFD) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the file descriptor to be duplicated by the DUP system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes of type INTEGER.

 oldfd
 is the file descriptor to be duplicated by the DUP2 system call.

 � In Pascal, oldfd is of type integer.

 � In FORTRAN, oldfd of type INTEGER.

 newfd
 is the new file-descriptor generated by the DUP2 system call.

 � In Pascal, newfd is of type integer.

 � In FORTRAN, newfd of type INTEGER.

VS/AIX Interface Library
DUP, DUP2 return a second file-descriptor

¦ Copyright IBM Corp. 1985, 1989
2.17 - 1

 Return Values

 The return value is the new file-descriptor. The value -1 is returned and
 an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutine that follow make calls to the
 DUP system routine, which returns a file descriptor in the variable
 "blue". The Pascal and FORTRAN constants include files contain
 definitions of constants for the modes available in OPEN.

 Pascal

 procedure dup1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
 blue := p_dup (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE DUP1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FDUP, FOPEN, BLUE, RED
 RED = FOPEN ('/usr/include/ailtypes.inc ', RDONLY, 0)
 BLUE = FDUP (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
DUP, DUP2 return a second file-descriptor

¦ Copyright IBM Corp. 1985, 1989
2.17 - 2

 2.18 EXECL, EXECLE, EXECLP execute a program

 Description
 The EXEC system call, in all its forms, executes a new program in the
 calling process. The call does not create a new process but overlays the
 current program with a new one.

 The three EXEC calls described in this section pass a maximum of four
 arguments to a specified executable file. This restriction on the number
 of arguments is what distinguishes these three system calls from those
 described in the next section.

 The EXECLE call differs from the other two in having an envp parameter.

 The EXECLP call is issued with the same arguments as EXECL, but it
 duplicates the shell actions in searching for an executable file in a list
 of directories.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_execl (path, arg0, arg1, arg2, arg3); ¦
 ¦ ¦
 ¦ p_execle (path, arg0, arg1, arg2, arg3, envp); ¦
 ¦ ¦
 ¦ p_execlp (filenm, arg0, arg1, arg2, arg3); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FEXECL (PATH, ARG0, ARG1, ARG2, ARG3) ¦
 ¦ ¦
 ¦ FEXECLE (PATH, ARG0, ARG1, ARG2, ARG3, ENVP) ¦
 ¦ ¦
 ¦ FEXECLP (FILENM, ARG0, ARG1, ARG2, ARG3) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the explicit path (location) of the file to be executed. This
 parameter is used in the EXECL and EXECLE calls.

 � In Pascal, path is of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 filenm
 is the name of the file to be executed. This parameter is used in the
 EXECLP call, which will search for the specified file only in the
 current and default directories.

 � In Pascal, filenm is of type st80.

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.18 - 1

 � In FORTRAN, filenm is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 arg0, arg1, arg2, and arg3
 are string variables or constants. They hold the arguments to be
 passed to the file specified by filenm or path. The value of arg0
 must be filenm or the last attribute of path.

 � In Pascal, each arg is of type st80. If fewer than four arguments
 are required, the remaining strings must be nil strings.

 � In FORTRAN, each arg is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space. If fewer than four arguments are required, the
 remaining strings must each contain one, and only one, blank.

 envp
 is a parameter used only in EXECLE (and EXECVE; see next section). It
 is an 80-element array that holds the attributes of the execution
 environment of the calling process. Each element is an 80-byte
 character string.

 � In Pascal, envp is a variable of type pasargv. The terminating
 string in the array must be a nil string.

 � In FORTRAN, envp is an array of strings of type CHARACTER*80. The
 terminating character of a string must be a blank space. The
 terminating string in the array must contain one, and only one,
 blank.

 Note: For details of this parameter, see the sh command in AIX
 Operating System Commands Reference.

 Return Values
 There is no return value from a successful EXEC call. The value -1 is
 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 EXECL system routine, which prints the current date.

 Pascal

 procedure execl1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 merlin : integer;
 arg0, arg1, arg2, arg3, path : st80;

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.18 - 2

 %include /usr/include/aildefs.inc

 begin
 path := '/bin/sh';
 arg0 := 'sh';
 arg1 := '-c';
 arg2 := 'date';
 arg3 := '';
 merlin := p_execl (path, arg0, arg1, arg2, arg3)
 end;

 FORTRAN

 SUBROUTINE EXECL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FEXECL, MERLIN
 CHARACTER*80 ARG0, ARG1, ARG2, ARG3, PATH
 PATH = '/bin/sh '
 ARG0 = 'sh '
 ARG1 = '-c '
 ARG2 = 'date '
 ARG3 = ' '
 MERLIN = FEXECL (PATH, ARG0, ARG1, ARG2, ARG3)
 END

 (*) The EXECV, EXECVE, and EXECVP calls are described in the
 next subsection (page 2.19).

VS/AIX Interface Library
EXECL, EXECLE, EXECLP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.18 - 3

 2.19 EXECV, EXECVE, EXECVP execute a program

 Description
 The three EXEC system calls described in this section can pass a maximum
 of 80 arguments to a specified executable file (in contrast to the maximum
 of four arguments that can be passed by the EXEC routines described in the
 preceding section).

 The EXECVE call differs from the other two in having an envp parameter.

 The EXECVP call is issued with the same arguments as EXECV, but it
 duplicates the shell actions in searching for an executable file in a list
 of directories.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_execv (path, args); ¦
 ¦ ¦
 ¦ p_execve (path, args, envp); ¦
 ¦ ¦
 ¦ p_execvp (filenm, args); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FEXECV (PATH, ARGS) ¦
 ¦ ¦
 ¦ FEXECVE (PATH, ARGS, ENVP) ¦
 ¦ ¦
 ¦ FEXECVP (FILENM, ARGS) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the explicit path (location) of the file to be executed. This
 parameter is used in the EXECV and EXECVE calls.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 filenm
 is the name of the file to be loaded and executed. This parameter is
 used in the EXECVP call, which searches for the specified file only in
 the current and default directories.

 � In Pascal, filenm is a string variable or constant of type st80.

 � In FORTRAN, filenm is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.19 - 1

 args
 is an array of strings. It holds any arguments to be passed to the
 file specified by filenm or path. The first element of the array
 should be filenm or the last attribute of path.

 � In Pascal, args is a variable of type pasargv declared in the
 ailtypes.inc file. The terminating string must be a nil string.

 � In FORTRAN, args is a string variable or constant of type
 CHARACTER*80. The terminating character of a string must be a
 blank space. The terminating string must contain one, and only
 one, blank.

 envp
 is a parameter used only in EXECVE (and EXECLE, described in the
 preceding section). It is an 80-element array that holds the
 attributes of the execution environment of the calling process. (Each
 element is an 80-byte character string.)

 � In Pascal, envp is a variable of type pasargv, declared in the
 types file. The terminating string in the array must be a nil
 string.

 � In FORTRAN, envp is an array of strings of type CHARACTER*80. The
 terminating character of a string must be a blank space. The
 terminating string in the array must contain one, and only one,
 blank space.

 � For details of this parameter, see the description of the sh
 command in &AIX Commands Reference.

 Return Values
 There is no return value from a successful EXEC call. The value -1 is
 returned and an error code set in errno if the call fails.

 If EXECVP is called to execute a shell command file and it is impossible
 to execute that file, the values of args[0] and args[1] are modified
 before the return.

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the EXECV
 system routine, which will produce a listing of the current working
 directory (see Notes).

 Pascal

 procedure execvp1;

 const
 %include /usr/include/ailfconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 merlin : integer;
 name : st80;
 args : pasargv;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.19 - 2

 begin
 name := 'examp';
 args[1] := 'examp';
 args[2] := '-x';
 args[3] := -F';
 args[4] := '-f';
 args[5] := '';
 merlin := p_execvp (name, args)
 end;

 FORTRAN

 SUBROUTINE EXECVP1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FEXECPV, MERLIN
 CHARACTER*80 ARGS(80), NAME
 NAME = 'examp '
 ARGS(1) = 'examp '
 ARGS(2) = '-x '
 ARGS(3) = '-F '
 ARGS(4) = '-f '
 ARGS(5) = ' '
 MERLIN = FEXECVP (NAME, ARGS)
 END

 Notes

 The executable file 'examp' must be in the current directory before these
 examples will work.

VS/AIX Interface Library
EXECV, EXECVE, EXECVP execute a program

¦ Copyright IBM Corp. 1985, 1989
2.19 - 3

 2.20 EXIT, _EXIT terminate a process

 Description
 The EXIT system call is the standard means of terminating a process.

 The _EXIT call terminates a process without performing any of the clean-up
 operations performed by the EXIT routine.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_exit (status); ¦
 ¦ ¦
 ¦ p__exit (status); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FEXIT (STATUS) ¦
 ¦ ¦
 ¦ FEEXIT (STATUS) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 status
 is the termination status returned to the parent process.

 � In Pascal, status is of type integer.

 � In FORTRAN, status is of type INTEGER.

 Return Values
 There is no return value from a successful EXIT or _EXIT call.

 Examples

 The Pascal procedure and FORTRAN subroutine that follow call the EXIT,
 FORK, and WAIT system routines. Both create a child process, which issues
 the EXIT call. The parent process executes a WAIT call, and the
 parameter of that call ("green") receives the low-order eight bits of the
 value that the child passes to the EXIT routine. It is this value that is
 printed.

 Pascal

 procedure exit1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc

 var

VS/AIX Interface Library
EXIT, _EXIT terminate a process

¦ Copyright IBM Corp. 1985, 1989
2.20 - 1

 blue, green, red, yellow : integer;

 %include /usr/include/aildefs.inc

 begin
 green := p_fork;
 if green = 0 then
 blue := p_exit (red);
 yellow := p_wait (green);
 writeln ('status ', green);
 end;

 FORTRAN

 SUBROUTINE EXIT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FEXIT, FFORK, FWAIT, BLUE, GREEN, RED, YELLOW
 GREEN = FFORK ()
 IF (GREEN .EQ. 0) THEN
 BLUE = FEXIT (RED)
 ENDIF
 YELLOW = FWAIT (GREEN)
 PRINT *, 'STATUS ', GREEN
 END

VS/AIX Interface Library
EXIT, _EXIT terminate a process

¦ Copyright IBM Corp. 1985, 1989
2.20 - 2

 2.21 FABORT abort the changes to a file

 Description
 The FABORT system call cancels data changes made to a specified file. The
 file must be open for write or read/write at the time the call is made.
 If no changes have been made since the file was last written to storage,
 the call has no effect.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_fabort (fildes); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFABORT (FILDES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of a file that has been opened for write or
 read/write.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the FABORT
 system routine, which in these examples cancels changes made to the file
 /usr/include/junk since the last time it was filed.

 Pascal

 procedure fabort1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
FABORT abort the changes to a file

¦ Copyright IBM Corp. 1985, 1989
2.21 - 1

 begin
 red := p_open ('/usr/include/junk', WRONLY, 0);
 blue := p_fcommit (red);

 { The file can be changed between these two calls }.

 green := p_fabort (red);
 writeln ('Fabort returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE FABORT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFABORT, FFCOMMIT, FOPEN, BLUE, RED, YELLOW
 RED = FOPEN ('/usr/include/junk ', WRONLY, 0)
 BLUE = FFCOMIT (RED)

 C THE FILE CAN BE CHANGED BETWEEN THESE TWO CALLS.

 BLUE = FFABORT (RED)
 IF (BLUE .EQ. -1) PRINT *, 'FABORT: ERROR'
 IF (BLUE .NE. -1) PRINT *, 'FABORT: OK'
 END

VS/AIX Interface Library
FABORT abort the changes to a file

¦ Copyright IBM Corp. 1985, 1989
2.21 - 2

 2.22 FCLEAR clear space in a file

 Description
 The FCLEAR system call clears space (makes a "hole") in a file by writing
 binary zeros to a specified number of bytes in that file. This "zeroing"
 process begins at the current position of the seek pointer of the file
 specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_fclear (fildes, nbytes); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFCLEAR (FILDES, NBYTES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of the file in which space is being cleared.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 nbytes
 is a constant or a variable specifying the number of bytes to be
 zeroed. If this number falls within a certain range, the programmer
 will have to use a conversion formula to obtain the proper value for
 nbytes (see Notes).

 � In Pascal nbytes is of type usign.

 � In FORTRAN nbytes is of type INTEGER.

 Return Values
 The return value is nbytes. If this value falls within a certain range,
 the programmer will have to use a conversion formula to obtain the actual
 number (see Notes).

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the FCLEAR
 system routine, which overwrites the specified open file /tmp/junk with
 200 null characters.

 Pascal

 procedure fclear1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
FCLEAR clear space in a file

¦ Copyright IBM Corp. 1985, 1989
2.22 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/tmp/junk', WRONLY, 0);
 blue := p_fclear (red, 200);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE FCLEAR1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFCLEAR, FOPEN, BLUE, RED
 RED = FOPEN ('/tmp/junk ', WRONLY, 0)
 BLUE = FFCLEAR (RED, 200)
 PRINT *, BLUE
 END

 Notes
 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values of type
 usign that fall in the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from the
 parameter value (the result will always be negative) before issuing the
 call.

 Conversely, if the return value is a negative number, add 4 294 067 296 to
 that number to obtain the correct value.

VS/AIX Interface Library
FCLEAR clear space in a file

¦ Copyright IBM Corp. 1985, 1989
2.22 - 2

 2.23 FCNTL control an open-file descriptor

 Description
 The FCNTL system call performs various control operations on an open-file
 descriptor.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_fcntl (fildes, cmd, arg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function declaratios -------------------------------+
 ¦ ¦
 ¦ function p_fcntl (fildes, cmd : int; var arg : integer) : integer; ¦
 ¦ external; ¦
 ¦ ¦
 ¦ or ¦
 ¦ ¦
 ¦ function p_fcntl (fildes, cmd : int; var arg : flockrec) : integer; ¦
 ¦ external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFCNTL (FILDES, CMD, ARG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is a descriptor returned by a CREAT, DUP, DUP2, FCNTL, OPEN, PIPE,
 SOCKET, or SOCKETPAIR system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 cmd
 is a variable or constant specifying the operation to be performed.
 The options are defined as constants in the Pascal and FORTRAN
 constants include files.

 F_DUPFD returns a new file descriptor.

 F_GETFD returns the value of the close-on-exec flag associated with
 the file descriptor fildes.

 F_SETFD sets the close-on-exec flag associated with fildes to the
 value of the low-order bit of arg.

 F_GETFL gets the file status flags of the file descriptor. fildes.

VS/AIX Interface Library
FCNTL control an open-file descriptor

¦ Copyright IBM Corp. 1985, 1989
2.23 - 1

 F_SETFL sets the file status flags to the value of arg.

 F_GETLK gets the first blocking file lock.

 F_SETLK sets or clears a file lock.

 F_SETLKW waits, if necessary, to set or clear a file lock.

 F_GETOWN gets the process ID or process-group ID set to receive
 signals.

 F_SETOWN sets the process ID or process-group ID set to receive
 signals.

 Note: In FORTRAN, the underscore is omitted (for example, "FDUPFD").

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 arg
 varies according to the cmd parameter.

 � In Pascal, arg is of type integer for all values of cmd except
 F_GETLK, F_SETLK, and F_SETLK. For these values, arg is of type
 flockrec. Possible values for the l_type field are:

 F_RDLCK = 1
 F_WRLCK = 2
 F_UNLCK = 3

 � In FORTRAN, arg is of type integer for all values of cmd except
 F_GETLK, F_SETLK, and F_SETLK. For these values, arg is of type
 INT*2 ARG(Possible values for arg[1] are:

 FRDLCK = 1
 FWRLCK = 2
 FUNLCK = 3

 Return Values
 The value returned varies according to the command option specified in the
 cmd parameter of the call:

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 FCNTL system routine, which in these examples opens the file
 /usr/include/ailtypes.inc for reading and writing. The file descriptor
 returned by the OPEN call is used for the fildes parameter ("blue") in
 FCNTL; the cmd parameter ("red") instructs the system to return the
 file-status flags of the file descriptor. This is the value printed out.

 Pascal

 procedure fcntl1;

VS/AIX Interface Library
FCNTL control an open-file descriptor

¦ Copyright IBM Corp. 1985, 1989
2.23 - 2

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red, yellow : integer;

 %include /usr/include/aildefs.inc

 function p_fcntl (fildes, cmd : int; var arg : integer) : integer; external

 begin
 red := F_GETFL;
 green := 0;
 blue := p_open ('/usr/include/ailtypes.inc', 2, 0);
 yellow := p_fcntl (blue, red, green);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE FCNTL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFCNTL, FOPEN, BLUE, GREEN, RED, YELLOW
 RED = FGETFL
 GREEN = 0
 BLUE = FOPEN ('/usr/include/ailtypes.inc ', 2, 0)
 YELLOW = FFCNTL (BLUE, RED, GREEN)
 PRINT *, YELLOW
 END

VS/AIX Interface Library
FCNTL control an open-file descriptor

¦ Copyright IBM Corp. 1985, 1989
2.23 - 3

 2.24 FORK create a process

 Description
 The FORK system call creates a new process whose memory image is a copy of
 the memory image of the process that issued the FORK call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_fork; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFORK () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 This system call has no parameters.

 Return Values
 Upon successful completion, FORK returns the value 0 to the child process
 and the process ID of the child to the parent. The value -1 is returned
 and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the FORK
 system routine to create a new process. The process ID of the child is
 returned to the parent process in the variable "blue", and the value 0 to
 the child process. Therefore both 0 and the process ID of the child are
 printed out.

 Pascal

 procedure fork1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_fork;
 writeln (blue);
 end;

VS/AIX Interface Library
FORK create a process

¦ Copyright IBM Corp. 1985, 1989
2.24 - 1

 FORTRAN

 SUBROUTINE FORK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFORK, BLUE
 BLUE = FFORK ()
 PRINT *, BLUE
 END

VS/AIX Interface Library
FORK create a process

¦ Copyright IBM Corp. 1985, 1989
2.24 - 2

 2.25 FSYNC, FCOMMIT write to permanent storage

 Description
 FSYNC and FCOMMIT are synonymous system calls that write all modified data
 in a specified open file to permanent storage.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_fsync (fildes); ¦
 ¦ ¦
 ¦ p_fcommit (fildes); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFFSYNC (FILDES) ¦
 ¦ ¦
 ¦ FFCOMMIT (FILDES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of an open file.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 FSYNC system routine, which writes changes in a specified file to
 permanent storage.

 Pascal

 procedure fsync1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red, yellow : integer;

VS/AIX Interface Library
FSYNC, FCOMMIT write to permanent storage

¦ Copyright IBM Corp. 1985, 1989
2.25 - 1

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/tmp/junk', WRONLY, 0);
 blue := p_fsync (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE FSYNC1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFFSYNC, FOPEN, BLUE, RED
 RED = FOPEN ('/tmp/junk ', WRONLY, 0)
 BLUE = FFFSYNC (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
FSYNC, FCOMMIT write to permanent storage

¦ Copyright IBM Corp. 1985, 1989
2.25 - 2

 2.26 FTRUNCATE truncate a file

 Description
 The FTRUNCATE system call counts a specified number of bytes from the
 beginning of a specified file and then deletes all the remaining bytes.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ftruncate (fildes, len); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFTRUNCATE (FILDES, LEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of an open file.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 len
 is the number of bytes to be left in the truncated file, counting from
 the first byte. (See Notes.)

 � In Pascal, len is of type usign.

 � In FORTRAN, len is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 FTRUNCATE system routine, which in these examples truncates the file
 /tmp/xxx (assuming that it exists) to a length of 100 bytes as specified
 by the len parameter ("blue").

 Pascal

 procedure ftruncate1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
FTRUNCATE truncate a file

¦ Copyright IBM Corp. 1985, 1989
2.26 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue, red, yellow : integer;
 orange : st80;

 %include /usr/include/aildefs.inc

 begin
 orange := '/tmp/xxx';
 blue := 100;
 red := p_open (orange, WRONLY, 0);
 yellow := p_ftruncate (red, blue);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE FTRUNCATE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFTRUNCATE, FOPEN, BLUE, RED, YELLOW
 CHARACTER*80 ORANGE
 ORANGE = '/tmp/xxx '
 BLUE = 100
 RED = FOPEN (orange, WRONLY, 0)
 YELLOW = FFTRUNCATE (RED, BLUE)
 PRINT *, YELLOW
 END

 Notes

 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values of type
 usign that fall in the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from that
 value before issuing the call (the result will always be negative).

VS/AIX Interface Library
FTRUNCATE truncate a file

¦ Copyright IBM Corp. 1985, 1989
2.26 - 2

 2.27 GETDTABLESIZE get the size of a process-descriptor table

 Description
 The GETDTABLESIZE system returns the size of the process-descriptor table,
 which has at least 20 slots for each process. In AIX the value returned
 is 200.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getdtablesize; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETDTABLESIZE () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 This system call has no parameters.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 GETDTABLESIZE system routine.

 Pascal

 procedure getdtablesize1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 begin
 green := p_getdtablesize;
 writeln ('tablesize is ', green);
 if green = -1 then
 writeln ('Getdtablesize: ERROR')
 else
 writeln ('Getdtablesize: OK');
 end;

VS/AIX Interface Library
GETDTABLESIZE get the size of a process-descriptor table

¦ Copyright IBM Corp. 1985, 1989
2.27 - 1

 FORTRAN

 SUBROUTINE GETDTABLESIZE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETDTABLESIZE, GREEN
 GREEN = FGETDTABLESIZE()
 IF (GREEN .EQ. -1) THEN
 PRINT *, 'GETDTABLESIZE: ERROR'
 CALL ERRORS
 ELSE
 PRINT *, 'GETDTABLESIZE: OK'
 ENDIF
 END

VS/AIX Interface Library
GETDTABLESIZE get the size of a process-descriptor table

¦ Copyright IBM Corp. 1985, 1989
2.27 - 2

 2.28 GETGROUPS get a group access list

 Description
 The GETGROUPS system call gets the group access list of the current
 process and stores it in an array specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getgroups (ngrps, gidset); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETGROUPS (NGRPS, GIDSET) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 ngrps
 is the number of entries that can be stored in the array specified by
 the gidset parameter.

 � In Pascal, ngrps is of type integer.

 � In FORTRAN, ngrps is of type INTEGER.

 gidset
 is an array in which the requested list items will be put. The
 maximum number of elements the array may hold is equal to the constant
 NGROUP defined in the Pascal and FORTRAN constants include files.

 � In Pascal, gidset is of type intngroup. (Getptr is a pointer to a
 user-defined integer array.)

 � In FORTRAN, gidset is a user-defined array of type INTEGER.

 Return Values
 The value returned upon successful completion of the call is the number of
 elements stored in the group access list. The value -1 is returned and an
 error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETGROUPS system routine, which in these example returns a number that is
 equal to the number of elements in the array specified by the variable
 "red".

 Pascal

VS/AIX Interface Library
GETGROUPS get a group access list

¦ Copyright IBM Corp. 1985, 1989
2.28 - 1

 procedure getgroups1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green : integer;
 red : intngroup;

 begin
 green := 20;
 blue := p_getgroups (green, red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE GETGROUPS1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETGROUPS, BLUE, GREEN, RED(20)
 GREEN = 20
 BLUE = FGETGROUPS (GREEN, RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
GETGROUPS get a group access list

¦ Copyright IBM Corp. 1985, 1989
2.28 - 2

 2.29 GETHOSTID get a host ID

 Description
 The GETHOSTID system returns an integer identifier for the current host.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_gethostid; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETHOSTID () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters
 This system call has no parameters.

 Return Values
 The identifier for the current host is returned upon successful completion
 of the call. The value -1 is returned and an error code set in errno if
 the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow return the host ID
 in the variable "green".

 Pascal

 procedure gethostid1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;

 %include /usr/include/aildefs.inc

 begin
 green := p_gethostid;
 writeln ('Gethostid returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

VS/AIX Interface Library
GETHOSTID get a host ID

¦ Copyright IBM Corp. 1985, 1989
2.29 - 1

 SUBROUTINE GETHOSTID1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETHOSTID, GREEN
 GREEN = FGETHOSTID ()
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETHOSTID get a host ID

¦ Copyright IBM Corp. 1985, 1989
2.29 - 2

 2.30 GETHOSTNAME get a local host name

 Description
 The GETHOSTNAME system returns the name of the current host.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_gethostname (name, namelen); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETHOSTNAME (NAME, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 name
 receives the name of the host machine.

 � In Pascal, name is of type st80.

 � In FORTRAN, name is of type CHARACTER*80.

 namelen
 is the length of the name parameter.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page return the
 name of the current host in the variable name.

 Pascal

 procedure gethostname1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green, namelen : integer;

VS/AIX Interface Library
GETHOSTNAME get a local host name

¦ Copyright IBM Corp. 1985, 1989
2.30 - 1

 name : st80;

 %include /usr/include/aildefs.inc

 begin
 namelen := 20;
 green := p_gethostname (name, namelen);
 writeln ('Gethostname returned: ', green : 2);
 if (green = -1) then showerror;
 end;
 end;

 FORTRAN

 SUBROUTINE GETHOSTNAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETHOSTNAME, NAMELEN, GREEN
 CHARACTER*80 NAME
 NAMELEN = 20
 GREEN = FGETHOSTNAME (NAME, NAMELEN)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETHOSTNAME get a local host name

¦ Copyright IBM Corp. 1985, 1989
2.30 - 2

 2.31 GETITIMER get the current value of an internal timer

 Description
 The GETITIMER system call returns the value of the internal timer
 specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getitimer (which, value); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETITIMER (WHICH, VALUE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 which
 specifies one of the following timers:

 ITIMER_REAL the timer decrements in real time.

 ITIMER_VIRTUAL the timer decrements in process virtual time (it runs
 only when the process is executing).

 ITIMER_PROF the timer decrements both in process virtual time and
 when the operating system is executing on behalf of
 the process.

 Note: In FORTRAN, the underscore is omitted (for example,
 "ITIMERREAL").

 � In Pascal, which is of type integer.

 � In FORTRAN, which is of type INTEGER.

 value
 is a variable in which the time is returned when the call is executed.

 � In Pascal, value is of type itimerval, declared in the include
 file ailtypes.inc.

 � In FORTRAN, value is an array of four integers, or INTEGER
 VALUE(4).

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
GETITIMER get the current value of an internal timer

¦ Copyright IBM Corp. 1985, 1989
2.31 - 1

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETITIMER system routine, which in these examples get the current value of
 the ITIMER_REAL timer. This value is returned in the variables "vvalue"
 (Pascal) and "VAL" (FORTRAN).

 Pascal

 procedure getitimer1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 which : integer;
 vvalue : itimerval;

 %include /usr/include/aildefs.inc

 begin
 new(vvalue);
 which := ITIMER_REAL;
 green := p_getitimer (which, vvalue);
 writeln ('Getitimer returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE GETITIMER1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETITIMER, VAL(4), GREEN
 GREEN = FGETITIMER (ITIMERREAL, VAL)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETITIMER get the current value of an internal timer

¦ Copyright IBM Corp. 1985, 1989
2.31 - 2

 2.32 GETLOCAL get the alias for <LOCAL>

 Description
 The GETLOCAL system call gets the alias for <LOCAL>.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getlocal (localname, maxlength) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETLOCAL (LOCALNAME, MAXLENGTH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 localname
 receives the pathname for <LOCAL>.

 � In Pascal, localname is of type st80.

 � In FORTRAN, localname is of type CHARACTER*80.

 maxlength
 is the maximum length of the localname buffer.

 � In Pascal, maxlength is of type integer.

 � In FORTRAN, maxlength is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETLOCAL system routine, and the alias for <LOCAL> is placed in buf.

 Pascal

 procedure getlocal1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;

VS/AIX Interface Library
GETLOCAL get the alias for <LOCAL>

¦ Copyright IBM Corp. 1985, 1989
2.32 - 1

 buf : st80;

 %include /usr/include/aildefs.inc

 begin
 green := p_getlocal (buf, 50);
 writeln ('Alias for local is ', buf);
 writeln ('Getlocal returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE GETLOCAL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETLOCAL, GREEN
 CHARACTER BUF(80)
 PRINT *, 'Calling Getlocal'
 GREEN = FGETLOCAL (BUF, 20)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETLOCAL get the alias for <LOCAL>

¦ Copyright IBM Corp. 1985, 1989
2.32 - 2

 2.33 GETPEERNAME get the name of a "peer" socket

 Description
 The GETPEERNAME system call returns the name of the "peer" connected to
 the socket specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getpeername (s, name, namelen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETPEERNAME (S, NAME1, NAME2, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET or
 SOCKETPAIR system call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 name
 receives the name of the peer upon completion of the call.

 � In Pascal, name is of type sockaddrptr (declared in the include
 file ailtypes.inc).

 � In FORTRAN, name1 is of type INTEGER and corresponds to
 sockaddr.sa_family in Pascal.

 � In FORTRAN, name2 is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 namelen
 is the length of the name parameter. It should be initialized to
 indicate the amount of space pointed to by name. It receives the
 actual size of the peer name upon completion of the call.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket

¦ Copyright IBM Corp. 1985, 1989
2.33 - 1

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 GETPEERNAME system routine, which in these examples returns (in the
 variable "name1"), the name associated with socket "sv[1]" (previously
 created and bound to the name "sockname" with a BIND system call).

 Pascal

 procedure getpeername1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 namelen, blue, gray : integer;
 name, name1 : sockaddrptr;
 sv : int2;

 %include /usr/include/aildefs.inc

 begin
 new (name);
 new(name1);
 namelen := 16;
 green:=p_socketpair(PF_UNIX, SOCK_DGRAM, 0, sv);
 name^.sa_data := 'abc';
 name^.sa_family := PF_UNIX;
 green := p_unlink('abc');
 gray := p_bind (sv[2], name, namelen);
 green := p_getpeername (sv[1], name1, namelen);
 if (green <> -1) then
 writeln('Getpeername returned : OK')
 else
 writeln('Getpeername returned : ERROR');
 if (green = -1) then showerror;
 green:=p_unlink ('abc');
 green:=p_shutdown (sv[1], 2);
 green:=p_shutdown (sv[2], 2);
 end;

 FORTRAN

 SUBROUTINE GETPEERNAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETPEERNAME, FBIND, FSHUTDOWN, FSOCKETPAIR, FUNLINK
 INTEGER GREEN, LEN, SV(2)
 CHARACTER*14 NAME, NAME1
 PROT = 0
 GREEN = FSOCKETPAIR (PFUNIX, SKDGRAM, 0, SV)
 NAME = 'BNAME '
 GREEN = FUNLINK ('BNAME ')
 GREEN = FBIND (SV(1), PFUNIX, NAME, 16)
 LEN = 16
 NAME2 = 'SOCKNAME'
 GREEN = FGETPEERNAME (SV(2), PFUNIX, NAME1, LEN)

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket

¦ Copyright IBM Corp. 1985, 1989
2.33 - 2

 IF (GREEN .LE. -1) THEN
 PRINT *, 'GETPEERNAME : ERROR'
 ELSE
 PRINT *, 'GETPEERNAME : OK'
 ENDIF
 GREEN = FUNLINK ('BNAME ')
 GREEN = FSHUTDOWN (SV(1), 2)
 GREEN = FSHUTDOWN (SV(2), 2)
 END

VS/AIX Interface Library
GETPEERNAME get the name of a "peer" socket

¦ Copyright IBM Corp. 1985, 1989
2.33 - 3

 2.34 GETPGRP, GETPID, GETPPID get a process-group or process identifier

 Description
 The GET system calls described in this and the following section return
 the ID of a group, process, or user.

 � GETPGRP returns the process group ID of the calling process.

 � GETPID returns the process ID of the calling process and is often used
 to generate uniquely named temporary files.

 � GETPPID returns the process ID of the parent process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getpgrp; ¦
 ¦ ¦
 ¦ p_getpid; ¦
 ¦ ¦
 ¦ p_getppid; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETPGRP () ¦
 ¦ ¦
 ¦ FGETPID () ¦
 ¦ ¦
 ¦ FGETPPID () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters
 These system calls have no parameters.

 Return Values
 The return value of each of the three calls is a particular ID (see
 description above).

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the GETPID
 system routine, which returns the process ID in the variable "blue".

 Pascal

 procedure getpid1;

 const
 %include /usr/include/ailpconsts.inc
 type

VS/AIX Interface Library
GETPGRP, GETPID, GETPPID get a process-group or process identifier

¦ Copyright IBM Corp. 1985, 1989
2.34 - 1

 %include /usr/include/ailtypes.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_getpid;
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE GETPID1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETPID, BLUE
 BLUE = FGETPID ()
 PRINT *, BLUE
 END

VS/AIX Interface Library
GETPGRP, GETPID, GETPPID get a process-group or process identifier

¦ Copyright IBM Corp. 1985, 1989
2.34 - 2

 2.35 GETSOCKNAME get a socket name

 Description
 The GETSOCKNAME system returns the current name of the socket specified in
 the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getsockname (s, name, namelen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETSOCKNAME (S, NAME1, NAME2, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 name
 receives the name of the socket upon completion of the call.

 � In Pascal, name is of type sockaddrptr (declared in the include
 file ailtypes.inc).

 � In FORTRAN, name1 is of type INTEGER and corresponds to
 sockaddr.sa_family in Pascal.

 � In FORTRAN, name2 is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 namelen
 is the length of the name parameter. It should be initialized to
 indicate the amount of space pointed to by name. It receives the
 actual size of the socket name upon completion of the call.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
GETSOCKNAME get a socket name

¦ Copyright IBM Corp. 1985, 1989
2.35 - 1

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 GETSOCKNAME system routine, which in these examples returns in the
 variable "name1" the name 'sockname', which was bound to socket "s&cdq,
 with a BIND system call.

 Pascal

 procedure getsockname1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 namelen, s, green : integer;
 name, name1 : sockaddrptr;

 %include /usr/include/aildefs.inc

 begin
 new (name);
 name^.sa_data := 'sockname';
 name^.sa_family := PF_UNIX;
 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 if (s = -1) then showerror;
 new (name1);
 namelen := 16;
 green := p_bind (s, name, namelen);
 green := p_getsockname (s, name1, namelen);
 writeln ('Getsockname returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE GETSOCKNAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETSOCKNAME, FBIND, FSOCKET, S, NAMELEN
 INTEGER, GREEN, NAME1, RC
 CHARACTER*14 NAME, NAME2
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 NAME2 = 'sockname '
 NAMELEN = 16
 NAME1 = PFUNIX
 RC = FBIND (S, NAME1, NAME2, NAMELEN)
 IF (S .EQ. -1) CALL ERRORS
 GREEN = FGETSOCKNAME (S, NAME1, NAME, NAMELEN)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETSOCKNAME get a socket name

¦ Copyright IBM Corp. 1985, 1989
2.35 - 2

 2.36 GETSOCKOPT get socket options

 Description
 The GETSOCKOPT system gets the options associated with a specified socket.
 These options may exist at multiple protocol levels, and are always
 present at the uppermost socket level.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getsockopt (s, level, optname, optval, optlen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETSOCKOPT (S, LEVEL, OPTNAME, OPTVAL, OPTLEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 level
 level at which the desired option resides. To manipulate options at
 the socket level, specify the level as SOL_SOCKET.

 � In Pascal, level is of type integer.

 � In FORTRAN, level is of type INTEGER;

 optname
 is the option name, passed uninterpreted to the appropriate protocol
 module for interpretation. The socket-level options are:

 SO_DEBUG turns on recording of debugging information.

 SO_REUSEADDR allows local address reuse.

 SO_KEEPALIVE keeps connections alive.

 SO_DONTROUTE does not apply routing on outgoing messages.

 SO_LINGER lingers on a CLOSE system call if data is present.

 SO_OOBINLINE leaves received out-of-band data in line.

VS/AIX Interface Library
GETSOCKOPT get socket options

¦ Copyright IBM Corp. 1985, 1989
2.36 - 1

 SO_SNDBUF sends buffer size.

 SO_RCVBUF receives buffer size.

 SO_ERROR gets error status.

 SO_TYPE gets socket type.

 SO_BROADCAST requests permission to transmit broadcast messages.

 Note: In FORTRAN, the underscore is omitted (for example, "SODEBUG").

 � In Pascal, optname is of type integer.

 � In FORTRAN, optname is of type INTEGER.

 optval
 points to a buffer, in which the option values are returned by the
 system call.

 � In Pascal, optval is of type st80.

 � In FORTRAN, optval is of type CHARACTER*80.

 optlen.
 specifies the length of the buffer pointed to by optval.

 � In Pascal, optlen is of type integer.

 � In FORTRAN, optlen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 GETSOCKOPT system routine, which in these examples returns the options
 associated with socket "s".

 Pascal

 procedure getsockopt1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 level, optlen, optname, s, green : integer;
 optval : st80;

 %include /usr/include/aildefs.inc

 begin

VS/AIX Interface Library
GETSOCKOPT get socket options

¦ Copyright IBM Corp. 1985, 1989
2.36 - 2

 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 level := SOL_SOCKET;
 optlen := 80;
 green := p_getsockopt (s, level, optname, optval, optlen);
 writeln ('Getsockopt returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE GETSOCKOPT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FGETSOCKOPT, FSOCKET, LEVEL, OPTLEN, OPTNAME, S, GREEN
 CHARACTER*80 OPTVAL
 PRINT *, 'Calling Getsockopt'
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (S .EQ. -1) CALL ERRORS
 LEVEL = SOLSOCKET
 OPTLEN = 80;
 GREEN = FGETSOCKOPT (S, LEVEL, OPTNAME, OPTVAL, OPTLEN)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETSOCKOPT get socket options

¦ Copyright IBM Corp. 1985, 1989
2.36 - 3

 2.37 GETTIMEOFDAY get the current time

 Description
 The GETTIMEOFDAY system call gets the current time.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_gettimeofday (tp, tzp); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETTIMEOFDAY (TP, TZP) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 tp
 holds two integers:

 1. the number of seconds that have elapsed since 00:00:00 January 1,
 1970 GMT, plus

 2. the number of microseconds that must be added to the preceding
 number to get the current time.

 � In Pascal, tp is of type timeval, declared in the include file
 ailtypes.inc.

 � In FORTRAN, tp is of type INTEGER TP(2).

 tzp
 holds two integers:

 1. the time west of Greenwich in minutes.

 2. the type of DST correction to apply.

 � In Pascal, tzp is of type timezone, declared in the include file
 ailtypes.inc.

 � In FORTRAN, tzp is of type INTEGER TZP(2).

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETTIMEOFDAY system routine, which in these examples returns Greenwich

VS/AIX Interface Library
GETTIMEOFDAY get the current time

¦ Copyright IBM Corp. 1985, 1989
2.37 - 1

 time and the current time zone in the variables tp and tzp respectively.

 Pascal

 procedure gettimeofday1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 tp : timeval;
 tzp : timezone;

 %include /usr/include/aildefs.inc

 begin
 green := p_gettimeofday (tp, tzp);
 writeln ('Gettimeofday returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE GETTIMEOFDAY1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER, FGETTIMEOFDAY, TP(2), TZP(2), GREEN
 GREEN = FGETTIMEOFDAY (TP, TZP)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
GETTIMEOFDAY get the current time

¦ Copyright IBM Corp. 1985, 1989
2.37 - 2

 2.38 GETUID, GETEUID, GETGID, GETEGID get a user or group identifier

 Description
 The four GET system calls described in this section return the real or
 effective ID of a user or group.

 � GETUID returns the ID of the real user of the calling process.

 � GETEUID returns the effective user ID of the calling process.

 � GETGID returns the real group ID of the calling process.

 � GETEGID returns the effective group ID of the calling process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getuid; ¦
 ¦ ¦
 ¦ p_geteuid; ¦
 ¦ ¦
 ¦ p_getgid; ¦
 ¦ ¦
 ¦ p_getegid; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETUID () ¦
 ¦ ¦
 ¦ FGETEUID () ¦
 ¦ ¦
 ¦ FGETGID () ¦
 ¦ ¦
 ¦ FGETEGID () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters
 These system calls have no parameters.

 Return Values
 The return value of each of the four calls is a particular ID (see
 description above).

 � In Pascal, the return value is of type ushrt

 � In FORTRAN, the return value is of type INTEGER*2

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETGID system routine, which returns the real group ID of the calling
 process in the variable "blue".

 Pascal

VS/AIX Interface Library
GETUID, GETEUID, GETGID, GETEGID get a user or group identifier

¦ Copyright IBM Corp. 1985, 1989
2.38 - 1

 procedure getgid1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : ushrt;

 %include /usr/include/aildefs.inc

 begin
 blue := p_getgid;
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE GETGID1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER*2 FGETGID, BLUE
 BLUE = FGETGID ()
 PRINT *, BLUE
 END

 Notes
 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values that fall in
 the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from the
 parameter value before issuing the call (the result will always be
 negative).

VS/AIX Interface Library
GETUID, GETEUID, GETGID, GETEGID get a user or group identifier

¦ Copyright IBM Corp. 1985, 1989
2.38 - 2

 2.39 GETXVERS get the UNIX version string

 Description
 The GETXVERS system call returns the UNIX version string.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_getxvers (xvers, length); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FGETXVERS (XVERS, LENGTH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 xvers
 is a pointer to the version string.

 � In Pascal, xvers is of type st80.

 � In FORTRAN, xvers is of type CHARACTER*80.

 length
 is the length of the version string.

 � In Pascal, length is of type integer.

 � In FORTRAN, length is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 GETXVERS system routine. After completion of the call, string "s"
 contains the UNIX version string.

 Pascal

 procedure getxvers1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var

VS/AIX Interface Library
GETXVERS get the UNIX version string

¦ Copyright IBM Corp. 1985, 1989
2.39 - 1

 green: integer:
 s : st80;

 %include /usr/include/aildefs.inc

 begin
 green := p_getxvers (s, 10);
 writeln (s);
 end;

 FORTRAN

 SUBROUTINE GETXVERS1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER, FGETXVERS, GREEN
 CHARACTER*80 S
 GREEN = FGETXVERS (S, 10)
 PRINT *, S
 END

VS/AIX Interface Library
GETXVERS get the UNIX version string

¦ Copyright IBM Corp. 1985, 1989
2.39 - 2

 2.40 IOCTL control the input and output of a device

 Description
 The IOCTL system call performs a variety of functions on both block- and
 character-special files (devices). (For information about available
 devices see AIX Operating System Commands Reference and AIX Operating
 System Technical Reference.)

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ioctl (fildes, requst, arg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FIOCTL (FILDES, REQUST, ARG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the file descriptor of an opened device.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 requst
 is either of two operations to be performed on the device specified by
 fildes. Both are defined in the Pascal and FORTRAN constants include
 files. They are as follows:

 IOCTYP returns the device type associated with fildes. The
 device types are defined in the constant include files.

 IOCINF stores device information specified by fildes in the
 buffer specified by arg.

 � In Pascal, requst is of type integer.

 � In FORTRAN, requst is of type INTEGER.

 arg
 is a data structure used to pass and receive values from the IOCTL
 routine.

 � In Pascal, arg is of type devptr.

 Note: The Pascal type-definition file /usr/include/ailtypes.inc
 may have to be edited, and the data structure pointed to by
 devptr changed, to make that structure acceptable to the
 device specified in the call.

 � In FORTRAN, arg is a variable or array of type INTEGER.

VS/AIX Interface Library
IOCTL control the input and output of a device

¦ Copyright IBM Corp. 1985, 1989
2.40 - 1

 Note: In FORTRAN, arg must be defined in the program to make it
 acceptable to the device specified in the call. This
 variable must be an array large enough to contain the
 structure returned by IOCTL. If the array is not large
 enough, the IOCTL will destroy the stackframe and cause a
 memory fault.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutine that follow call the IOCTL
 system routine, which returns information about device /dev/lp in the
 Pascal record "green" or FORTRAN array "GREEN".

 Pascal

 procedure ioctl1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red, yellow : integer;
 green : devptr;

 %include /usr/include/aildefs.inc

 begin
 new (green);
 red := p_open ('/dev/lp', RDWR, 0);
 yellow := IOCINF;
 blue := p_ioctl (red, yellow, green);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE IOCTL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FIOCTL, FOPEN, BLUE, GREEN(61), RED, YELL0W
 RED = FOPEN ('/dev/lp ', RDWR, 0)
 YELLOW = IOCINF
 BLUE = FIOCTL (RED, YELLOW, GREEN)
 PRINT *, BLUE
 END

VS/AIX Interface Library
IOCTL control the input and output of a device

¦ Copyright IBM Corp. 1985, 1989
2.40 - 2

 2.41 KILL, KILLPG send a signal to a process or a process group

 Description
 The KILL system call sends a specified signal to a specified process. The
 KILLPG system call sends a specified signal to a specified process group.

 The process receiving the signal is usually terminated as a result (see
 SIGNAL on page 2.89).

 Note: Only the super-user may issue either call if the sending and
 receiving processes or groups have different effective user IDs.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_kill (pid, sig); ¦
 ¦ ¦
 ¦ p_killpg (pgrp, sig); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FKILL (PID, SIG) ¦
 ¦ ¦
 ¦ FKILLPG (PGRP, SIG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 pid
 is the ID of the process to which a signal is to be sent.

 � In Pascal, pid is of type integer.

 � In FORTRAN, pid is of type INTEGER.

 pgrp
 is the ID of the process group to which a signal is to be sent.

 � In Pascal, pgrp is of type integer.

 � In FORTRAN, pgrp is of type INTEGER.

 sig
 is the signal to be sent to the specified process. A process or
 process group may send signals to itself.

 � In Pascal, sig is of type integer.

 � In FORTRAN, sig is of type INTEGER.

 Return Values
 The value 0 is returned if the specified process is terminated; The value
 -1 is returned and an error code set in errno if the call fails.

VS/AIX Interface Library
KILL, KILLPG send a signal to a process or a process group

¦ Copyright IBM Corp. 1985, 1989
2.41 - 1

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the KILL
 system routine, which in these examples verifies the existence of the
 "special" root process, with process ID = 0.

 Pascal

 procedure kill1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_kill (0, 0);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE KILL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FKILL, BLUE
 BLUE = FKILL (0, 0)
 PRINT *, BLUE
 END

VS/AIX Interface Library
KILL, KILLPG send a signal to a process or a process group

¦ Copyright IBM Corp. 1985, 1989
2.41 - 2

 2.42 LINK link to a file

 Description
 The LINK system call creates a link to an existing file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_link (path1, path2); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FLINK (PATH1, PATH2) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path1
 is the name of the file to which a link is created.

 � In Pascal, path1 is a string variable or constant of type st80.

 � In FORTRAN, path1 is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 path2
 is the name of the new directory entry (link) to be created.

 � In Pascal, path2 is a string variable or constant of type st80.

 � In FORTRAN, path2 is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the LINK
 system routine, which in these examples creates a second link (/tmp/new)
 for the file /tmp/xxx. This will not be a copy of the file /tmp/xxx but
 an additional link to the existing file.

 Pascal

 procedure link1;

VS/AIX Interface Library
LINK link to a file

¦ Copyright IBM Corp. 1985, 1989
2.42 - 1

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 yellow : integer;
 blue, red : st80;

 %include /usr/include/aildefs.inc

 begin
 red := '/tmp/xxx';
 blue := '/tmp/new';
 yellow := p_link (red, blue);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE LINK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FLINK, YELLOW
 CHARACTER*80 BLUE, RED
 RED = '/tmp/xxx '
 BLUE = '/tmp/new '
 YELLOW = FLINK (RED, BLUE)
 PRINT *, YELLOW
 END

VS/AIX Interface Library
LINK link to a file

¦ Copyright IBM Corp. 1985, 1989
2.42 - 2

 2.43 LISTEN "listen" for a connection to a socket

 Description
 The LISTEN system call specifies a maximum queue length for the number of
 pending connections to a specified socket. The call applies only to
 sockets of type SOCK_STREAM.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_listen (s, backlog); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FLISTEN (S, BACKLOG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of the socket that was created by a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 backlog
 specifies the maximum length of the queue of pending connections.

 � In Pascal, backlog is of type integer.

 � In FORTRAN, backlog is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 LISTEN system routine after the backlog parameter has been set to 1.

 Pascal

 procedure listen1;

 const
 %include /usr/include/ailpconsts.inc
 type

VS/AIX Interface Library
LISTEN "listen" for a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.43 - 1

 %include /usr/include/ailtypes.inc
 var
 backlog, namelen, s : integer;
 addr : sockaddrptr;

 %include /usr/include/aildefs.inc

 begin
 s := p_socket (PF_UNIX, SOCK_DGRAM, 0);
 if (s = -1) then showerror;
 new (addr);
 addr^.sa_data := 'socket';
 addr^.sa_family := PF_UNIX;
 green := p_unlink ('socket');
 green := p_bind (s, addr, 16);
 backlog := 1;
 green := p_listen (s, backlog);
 if (green <> -1) then
 writeln ('Listen returned : OK')
 else
 writeln ('Listen returned : ERROR');
 if (green = -1) then showerror;
 green := p_shutdown (s, 2);
 end;

 FORTRAN

 SUBROUTINE LISTEN1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FLISTEN, FBIND, FSHUTDOWN, FSOCKET, FUNLINK
 INTEGER BACKLOG, S, GREEN
 CHARACTER*80 NAME
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 NAME = 'BNAME '
 GREEN = FUNLINK (NAME)
 GREEN = FBIND (S, SKSTRM, NAME, 16)
 BACKLOG = 1
 GREEN = FLISTEN (S, BACKLOG)
 IF (GREEN .EQ. -1) THEN
 PRINT *, 'LISTEN : ERROR'
 CALL ERRORS
 ELSE
 PRINT *, 'LISTEN : OK'
 ENDIF
 GREEN = FUNLINK ('BNAME ')
 GREEN = FSHUTDOWN (S, 2)
 END

VS/AIX Interface Library
LISTEN "listen" for a connection to a socket

¦ Copyright IBM Corp. 1985, 1989
2.43 - 2

 2.44 LOCKF lock or unlock a region of a file

 Description
 The LOCKF system call locks and unlocks regions of an open file. It is
 used to synchronize simultaneous access to a specified open file by
 multiple processes. Only one process at a time can maintain a "lock" on a
 region of a file. The LOCKF system call can invoke either of two kinds of
 lock: (1) enforced or (2) advisory.

 1. When a process holds an enforced lock on a region of a file:

 a. no other process can access that region with read or write system
 calls; and

 b. CREAT and OPEN are prevented from truncating the file.

 2. When a process holds an advisory lock on a region of a file:

 a. no other process can lock that region or an overlapping region
 with the LOCKF call; and

 b. the CREAT, OPEN, READ, and WRITE call are not affected, which
 means that a process itself must issue a LOCKF call in order to
 make advisory locks effective.

 Note: To select enforced locking, the ENFMT access mode of the specified
 file must be set. Otherwise, locking is optional. Thus a given
 file can have enforced locks or advisory locks but not both.

 Warning: Buffered I/O does not work properly with file locking.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_lockf (fildes, request, size); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FLOCKF (FILDES, REQUEST, SIZE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of an open file that has been returned by a CREAT,
 DUP, DUP2, OPEN, or PIPE system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 requst
 can be a constant or a variable. The options are defined as constants
 in the Pascal and FORTRAN constants include files.

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

¦ Copyright IBM Corp. 1985, 1989
2.44 - 1

 F_ULOCK unlocks a previously locked region in the file.

 F_LOCK locks the region for exclusive use.

 F_TLOCK determines whether another process has locked the
 specified region and, if not, locks the region.

 F_TEST determines whether another process has already locked a
 region.

 Note: In FORTRAN, the underscore is omitted (for example, "FULOCK").

 � In Pascal, requst is of type integer.

 � In FORTRAN, requst is of type INTEGER.

 size
 can be a constant or a variable and it defines the number of bytes
 being locked or unlocked. Unallocated "holes" in the file can also be
 locked (see FCLEAR on page 2.22).

 � In Pascal size is of type integer.

 � In FORTRAN, size is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutine that follow call the LOCKF
 system routine, which locks an open file "forward" 1000 bytes.

 Pascal

 procedure lockf1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
 blue := p_lockf (red, F_LOCK, 1000);
 writeln (blue);
 end;

 FORTRAN

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

¦ Copyright IBM Corp. 1985, 1989
2.44 - 2

 SUBROUTINE LOCKF1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FLOCKF, FOPEN, BLUE, RED
 RED = FOPEN ('/usr/include/ailtypes.inc ', RDONLY, 0)
 BLUE = FLOCKF (RED, FLOCK, 1000)
 PRINT *, BLUE
 END

VS/AIX Interface Library
LOCKF lock or unlock a region of a file

¦ Copyright IBM Corp. 1985, 1989
2.44 - 3

 2.45 LSEEK set a read or write pointer

 Description
 The LSEEK system call sets a read or write pointer in a specified file
 that has been opened for reading or writing.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_lseek (fildes, offset, whence); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FLSEEK (FILDES, OFFSET, WHENCE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of the file to be read from or written to; it is
 returned by a CREAT, DUP, DUP2, FCNTL, or OPEN system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 offset
 is a value (number of bytes) used in combination with the whence
 parameter to position the pointer in the file.

 � In Pascal, offset is of type integer.

 � In FORTRAN, offset is of type INTEGER.

 whence
 specifies how the offset value will be used to position the file
 pointer of fildes.

 SEEK_SET the pointer will be set to the value of offset.

 SEEK_CUR the pointer will be set to the value of the current location
 plus the offset value.

 SEEK_END the pointer will be set to the value of the offset number of
 bytes plus the size of the file.

 Note: In FORTRAN, the underscore is omitted (for example,
 "SEEKSET").

 � In Pascal, whence is of type integer.

 � In FORTRAN, whence is of type INTEGER.

 Return Values

VS/AIX Interface Library
LSEEK set a read or write pointer

¦ Copyright IBM Corp. 1985, 1989
2.45 - 1

 The return value is the new location of the file pointer as measured in
 bytes from the beginning of the file. The value -1 is returned and an
 error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the LSEEK
 system routine, which moves the file pointer to the 200-byte mark of the
 open file specified in the call. The return value in "yellow" should in
 this case equal the offset of 200.

 Pascal

 procedure lseek1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red, yellow : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
 blue := SEEK_SET;
 green := 200;
 yellow := p_lseek (red, green, blue);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE LSEEK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FLSEEK, FOPEN, BLUE, GREEN, RED, YELLOW
 RED = FOPEN ('/usr/include/ailtypes.inc ', RDONLY, 0)
 BLUE = SEEKSET
 GREEN = 200
 YELLOW = FLSEEK (RED, GREEN, BLUE)
 PRINT *, YELLOW
 END

VS/AIX Interface Library
LSEEK set a read or write pointer

¦ Copyright IBM Corp. 1985, 1989
2.45 - 2

 2.46 MKDIR create a directory

 Description
 The MKDIR system call creates a new directory.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_mkdir (path, mode); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMKDIR (PATH, MODE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the new directory.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 mode
 is the mask for the read, write, and execute (rwx) flags for owner,
 group, and others. The low-order 9 bits in mode are modified by the
 file-mode-creation mask of the process. All bits set in the creation
 mask are cleared. For more information, see page 2.105)

 � In Pascal, mode is of type integer.

 � In FORTRAN, mode is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 MKDIR system routine. The directory specified in the call is /usr/games,
 which becomes the new directory. The return value of the call is in the
 variable "folio".

 Pascal

 procedure mkdir1;

VS/AIX Interface Library
MKDIR create a directory

¦ Copyright IBM Corp. 1985, 1989
2.46 - 1

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 folio : integer;
 red : st80;

 %include /usr/include/aildefs.inc

 begin
 red := '/usr/games';
 folio := p_mkdir (red, 128);
 writeln (folio);
 end;

 FORTRAN

 SUBROUTINE MKDIR1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FMKDIR, FOLIO
 CHARACTER*80 RED
 RED = '/usr/games '
 FOLIO = FMKDIR (RED, 128)
 PRINT *, FOLIO
 END

VS/AIX Interface Library
MKDIR create a directory

¦ Copyright IBM Corp. 1985, 1989
2.46 - 2

 2.47 MKNOD create a directory or special file

 Description
 The MKNOD system call creates a new regular file, special file, or
 directory; specifies an access mode that includes directory special-file
 bits; and initializes the first pointer of the i-node.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_mknod (path, mode, dev); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMKNOD (PATH, MODE, DEV) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the new file or directory.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 mode
 is the access mode of the new file and includes special bits and
 directory bits. It is constructed by logically ORing the values of
 the access-attribute bits of CHMOD (see page 2.10.) with one of the
 following values, which define the file type:

 S_IFDIR directory

 S_IFCHR character special file

 S_IFMPX multiplexed character special file the value of the
 low-order bit of arg.

 S_IFBLK block special file

 S_IFREG regular data file

 S_IFIFO FIFO special file

 The protection bits of the mode are modified by the process mode mask
 (see UMASK on page 2.105)

 � In Pascal, mode is of type integer.

VS/AIX Interface Library
MKNOD create a directory or special file

¦ Copyright IBM Corp. 1985, 1989
2.47 - 1

 � In FORTRAN, mode is of type INTEGER.

 dev
 initializes the first block pointer of the i-node. For ordinary files
 and directories, dev is usually zero. In the case of a special file,
 dev specifies the file to be created. (For information on
 special-file bits, see AIX Technical Reference.)

 � In Pascal, dev is of type integer.

 � In FORTRAN, dev is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGE

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call MKNOD system
 routine, which in these examples creates a file (/tmp/junk). The value of
 mode ("blue") specifies a text file with read and write privileges for the
 owner of the file.

 Pascal

 procedure mknod1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 yellow : st80;

 %include /usr/include/aildefs.inc

 begin
 yellow := '/tmp/junk';
 blue := 33152;
 red := p_mknod (yellow, blue, 0);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE MKNOD1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FMKNOD, BLUE, RED
 CHARACTER*80 YELLOW
 YELLOW = '/tmp/junk '
 BLUE = 33152
 RED = FMKNOD (YELLOW, BLUE, 0)

VS/AIX Interface Library
MKNOD create a directory or special file

¦ Copyright IBM Corp. 1985, 1989
2.47 - 2

 PRINT *, RED
 END

VS/AIX Interface Library
MKNOD create a directory or special file

¦ Copyright IBM Corp. 1985, 1989
2.47 - 3

 2.48 MOUNT, UMOUNT mount or unmount a file system

 Description
 The MOUNT system call mounts a removable file system on a block-structured
 special file, names a new root file for that file system, and specifies
 whether the system is write enabled or write protected.

 The UMOUNT system call unmounts a removable file system: the associated
 root file is replaced by the default version, any pending I/O for the
 unmounted system is completed, and the system itself is marked clean.

 Note: Only users with an effective user ID of super-user may issue
 thesecall.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_mount (dev, dir, mflag); ¦
 ¦ ¦
 ¦ p_umount (dev, flag); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMOUNT (DEV, DIR, MFLAG) ¦
 ¦ ¦
 ¦ FUMOUNT (DEV, FLAG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 dev
 specifies the device on which the file system is to be mounted or from
 which it is to be unmounted.

 � In Pascal, dev is a string variable or constant of type st80.

 � In FORTRAN, dev is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 dir
 is used only with MOUNT. It is the name of the directory of the file
 system that is to be mounted. The file specified by dir must exist
 and it must be a directory unless the root file of the mounted file
 system is not a directory.

 � In Pascal, dir is a string variable or constant of type st80.

 � In FORTRAN, dir is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 mflag
 is used only with MOUNT. The least significant bit specifies whether

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

¦ Copyright IBM Corp. 1985, 1989
2.48 - 1

 the file system is write enabled or not.

 Note: For possible values of this parameter, see Appendix B.

 � In Pascal, mflag is of type integer.

 � In FORTRAN, mflag is of type INTEGER.

 flag
 if set to a non-zero value, forces the unmounting of the file system
 even if it contains open files.

 � In Pascal, flag is of type integer.

 � In FORTRAN, flag is of type INTEGER.

 Return Values
 MOUNT returns the value 0 upon successful completion of the call. The
 value -1 is returned and an error code set in errno if the call fails.

 UMOUNT returns the value 0 upon successful completion of the call. The
 value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the UMOUNT
 system routine. In these examples, the call instructs the routine to
 unmount a device.

 Pascal

 procedure umount1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 yellow : integer;
 blue : st80;

 %include /usr/include/aildefs.inc

 begin
 blue := '/dev/hd9';
 yellow := p_umount (blue, 0);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE UMOUNT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUMOUNT, YELLOW
 CHARACTER*80 BLUE

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

¦ Copyright IBM Corp. 1985, 1989
2.48 - 2

 BLUE = '/dev/hd9 '
 YELLOW = FUMOUNT (BLUE, 0)
 PRINT *, YELLOW
 END

VS/AIX Interface Library
MOUNT, UMOUNT mount or unmount a file system

¦ Copyright IBM Corp. 1985, 1989
2.48 - 3

 2.49 MSGCTL invoke message-control operations

 Description
 The MSGCTL system call invokes any of three message-control operations,
 including the storing and setting of the values in a specified message
 queue.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_msgctl (msqid, cmd, buf); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMSGCTL (MSQID, CMD, BUF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 msqid
 is the identifier of a message queue created by a previous MSGGET call
 (see page 2.50). The value of msqid is returned by MSGGET.

 � In Pascal, msqid is of type integer.

 � In FORTRAN, msqid is of type INTEGER.

 cmd
 specifies the operation to be performed, which can be any of the
 options in the following list.

 Note: Each option number corresponds to a mnemonic (shown in
 parentheses) defined in the Pascal and FORTRAN constants
 include files.

 IPCRMD removes the message-queue identifier and its associated
 data structure from the operating system and destroys
 the associated message.

 IPCSET sets the value of the following fields and the data
 structure associated with msqid to the corresponding
 value found in the data structure pointed to by buf.

 In Pascal these fields are:

 � msg_perm.uid
 � msg_perm.gid
 � msg_perm.mode
 � msg_qbytes

 In FORTRAN the corresponding fields are:

VS/AIX Interface Library
MSGCTL invoke message-control operations

¦ Copyright IBM Corp. 1985, 1989
2.49 - 1

 � MSQID(1)
 � MSQID(2)
 � MSQID(5)
 � MSQID(12)

 Note: Only a process whose effective user ID is
 super-user can raise the value of msg_qbytes.

 IPCSTT takes the current value of each field of the data
 structure associated with msqid and stores it in the
 structure pointed to by the buf parameter (see below).

 Note: The first two options can be used only when the effective user
 ID is equal to the super-user ID or to the value of
 msqid_ds@.msg_perm.uid in Pascal or MSQID(1) in FORTRAN.

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 buf
 points to a record of type msqid_ds. The values stored or set in this
 record are the current values of the data structure associated with
 msqid.

 � In Pascal, buf is of type mdsptr.

 � In FORTRAN, buf is an array(17) of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the MSGCTL
 system routine. The value of the first parameter of this call is the
 return value of MSGGET. (The value of the first parameter of MSGGET is
 the return value of the ftok system subroutine; see Notes at the end of
 this section.) The variable "pink" specifies the option that stores the
 values associated with the msqid parameter "green" in the data structure
 pointed to by "yellow".

 Pascal

 procedure msgctl1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, pink, red : integer;
 orange : st80;
 brown : char;

VS/AIX Interface Library
MSGCTL invoke message-control operations

¦ Copyright IBM Corp. 1985, 1989
2.49 - 2

 yellow : mdsptr;

 %include /usr/include/aildefs.inc

 begin
 new (yellow);
 brown := 'm';
 orange := '/usr/include/ailtypes.inc';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_msgget (red, blue);
 pink := IPCSTT;
 red := p_msgctl (green, pink, yellow);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE MSGCTL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFTOK, FMSGGET, FMSGCTL, BLUE, GREEN, PINK, RED, YELLOW(17)
 CHARACTER*80 ORANGE
 CHARACTER BROWN
 BROWN = 'm'
 ORANGE = '/usr/include/ailtypes.inc '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FMSGGET (RED, BLUE)
 PINK = IPCSTT
 RED = FMSGCTL (GREEN, PINK, YELLOW)
 PRINT *, RED
 END

VS/AIX Interface Library
MSGCTL invoke message-control operations

¦ Copyright IBM Corp. 1985, 1989
2.49 - 3

 2.50 MSGGET get or create a message queue

 Description
 The MSGGET system call gets a specified message queue identifier
 associated with the specified key parameter. MSGGET can also create the
 identifier and message queue if they do not already exist.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_msgget (key, msgflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMSGGET (KEY, MSGFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 key
 determines which identifier and associated data structure to use. The
 key parameter may be equal to 0 (IPCPVT); or key can be an IPC key
 constructed by a call to the ftok system subroutine.

 � In Pascal, key is of type integer.

 � In FORTRAN, key is of type INTEGER.

 msgflg
 specifies a set of conditions (options) governing the creation of the
 message-queue data structure and the accessibility of the message
 queue. The parameter value is that of one of the following options or
 is constructed from two or more of those options by logical ORing.
 The options are defined as constants in the Pascal and FORTRAN
 constants include files.

 IPCCRT creates the message-queue data structure when it does not
 exist.

 IPCEXL causes MSGGET to fail when IPCCRT is set and the
 message-queue data structure exists.

 IRUSR permits the process that owns the message-queue data
 structure to read it.

 IWUSR permits the process that owns the message-queue data
 structure to modify it.

 IRGRP permits the group associated with the message-queue data
 structure to read it.

 IWGRP permits the group associated with the message-queue data
 structure to modify it.

VS/AIX Interface Library
MSGGET get or create a message queue

¦ Copyright IBM Corp. 1985, 1989
2.50 - 1

 IROTH permits others to read the message-queue data structure.

 IWOTH permits others to modify the message-queue data structure.

 � In Pascal, msgflg is of type integer.

 � In FORTRAN, msgflg is of type INTEGER.

 Return Values
 A message-queue identifier is returned upon successful completion of the
 call, and the data structure (msqid_ds; see Appendix C) associated with
 the new identifier is initialized. The value -1 is returned and an error
 code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the MSGGET
 system routine. (The value of the first parameter of the call is the
 return value of the ftok system subroutine. The value assigned to the
 parameter "blue" specifies the creation of a message queue for the process
 (if one does not already exist) and gives the user read access to it.

 Pascal

 procedure msgget1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 orange : st80;
 brown : char;

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/usr/include/ailtypes.inc';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_msgget (red, blue);
 writeln (green);
 end;

 FORTRAN

 SUBROUTINE MSGGET1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FMSGGET, FFTOK, BLUE, GREEN, RED
 CHARACTER*80 ORANGE
 CHARACTER BROWN
 BROWN = 'm'
 ORANGE = '/usr/include/ailtypes.inc '

VS/AIX Interface Library
MSGGET get or create a message queue

¦ Copyright IBM Corp. 1985, 1989
2.50 - 2

 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FMSGGET (RED, BLUE)
 PRINT *, GREEN
 END

VS/AIX Interface Library
MSGGET get or create a message queue

¦ Copyright IBM Corp. 1985, 1989
2.50 - 3

 2.51 MSGRCV, MSGXRCV read and store a message

 Description
 Both of the MSG system calls read a message from a specified queue and
 place it in a structure specified in the call.

 In addition, MSGXRCV will return the following items of information:

 � the time the message was sent

 � the sender's effective user ID

 � the sender's effective group ID

 � the sender's node ID

 � the sender's process ID

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_msgrcv (msqid, msgp, msgsz, msgtyp, msgflg); ¦
 ¦ ¦
 ¦ p_msgxrcv (msqid, msgpt, msgsz, msgtyp, msgflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMSGRCV (MSQID, MSGP1, MSGP2, MSGSZ, MSGTYP, MSGFLG) ¦
 ¦ ¦
 ¦ FMSGXRCV (MSQID, MSGPT1, MSGPT2, MSGSZ, MSGTYP, MSGFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 msqid
 is a message-queue identifier containing the message to be read.

 � In Pascal, msqid is of type integer.

 � In FORTRAN, msqid is of type INTEGER.

 msgp
 points to the record msgbuf, in which a type identifier and the
 message will be stored. This message is read from the queue specified
 by msqid. The msgp parameter is used only in the MSGRCV call.

 � In Pascal, msgp is of type mbufptr.

 � In FORTRAN, msgp is sent as two parameters:

 - msgp1 is of type INTEGER.

 - msgp2 is of type CHARACTER*80.

VS/AIX Interface Library
MSGRCV, MSGXRCV read and store a message

¦ Copyright IBM Corp. 1985, 1989
2.51 - 1

 msgpt
 points to the extended message receive buffer (msgxbuf), in which the
 message time, sender information, type identifier, and message will be
 stored. This message is read from the queue specified by msqid. The
 msgpt parameter is used only in the MSGXRCV call.

 � In Pascal, msgpt is of type msgxptr.

 � In FORTRAN, msgpt is sent as two parameters:

 - msgpt1 is an array(6) of type INTEGER.

 - msgpt2 is of type CHARACTER*80.

 msgsz
 is a constant or variable that specifies the length of the message in
 bytes. The maximum size of msgsz is 80 characters.

 � In Pascal, msgsz is of type integer.

 � In FORTRAN, msgsz is of type INTEGER.

 msgtyp
 is a constant or variable that specifies the type of the message to be
 read.

 � In Pascal, msgtyp is of type integer.

 � In FORTRAN, msgtyp is of type INTEGER.

 msgflg
 specifies the operation to be performed when the desired message is in
 the queue and when it is not. The value assigned to msgflg is that of
 one or more of the following:

 IPCNER
 truncates the message when it is longer than the number of
 bytes specified by msgsz.

 IPCNWT
 specifies the operation to be performed when the desired
 message is not in the queue.

 � In Pascal, msgflg is of type integer.

 � In FORTRAN, msgflg is of type INTEGER.

 Return Values
 A value equal to the number of bytes stored in mtext (of msgbuf or
 msgxbuf) is returned upon successful completion of a call, and the data
 structure associated with the message-queue identifier is modified as
 follows:

 � msg_qnum is decremented by 1

 � msg_lpid is set equal to the process ID of the calling process

 � msg_rtime is set equal to the current time

 The value -1 is returned and an error code is set in errno if the call

VS/AIX Interface Library
MSGRCV, MSGXRCV read and store a message

¦ Copyright IBM Corp. 1985, 1989
2.51 - 2

 fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the MSGRCV
 system routine. The value of the first parameter of this call is the
 return value of MSGGET. (The value of the first parameter of MSGGET is
 the return value of the ftok system subroutine; see Notes at the end of
 this section.) The variable "orange" specifies the maximum length of the
 message. The value printed out is the number of bytes received from a
 message.

 Pascal

 procedure msgrcv1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, grey, orange, pink, purple, red : integer;
 white : st80;
 brown : char;
 yellow : mbufptr;

 %include /usr/include/aildefs.inc

 begin
 new (yellow);
 brown := 'w';
 white := '/usr/include/ailtypes.inc';
 blue := 0;
 green := IPCNER;
 orange := 50;
 pink := IPCCRT + IRUSR;
 purple := p_ftok (white, brown);
 red := p_msgget (purple, pink);
 grey := p_msgrcv (red, yellow, orange, blue, green);
 writeln (grey);
 end;

 FORTRAN

 SUBROUTINE MSGRCV1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FMSGRCV, FMSGGET, FFTOK, BLUE, GREEN, GREY, ORANGE
 INTEGER PINK, PURPLE, RED, VIOLET
 CHARACTER*80 WHITE, YELLOW
 CHARACTER BROWN
 BROWN = 'w'
 WHITE = '/usr/include/ailtypes.inc '
 BLUE = 0
 GREEN = IPCNER

VS/AIX Interface Library
MSGRCV, MSGXRCV read and store a message

¦ Copyright IBM Corp. 1985, 1989
2.51 - 3

 ORANGE = 50
 PINK = IPCCRT + IRUSR
 PURPLE = FFTOK (WHITE, BROWN)
 RED = FMSGGET (PURPLE, PINK)
 GREY = FMSGRCV (RED, VIOLET, YELLOW, ORANGE, BLUE, GREEN)
 PRINT *, GREY
 END

VS/AIX Interface Library
MSGRCV, MSGXRCV read and store a message

¦ Copyright IBM Corp. 1985, 1989
2.51 - 4

 2.52 MSGSND send a message to a queue

 Description
 The MSGSND system call sends a message to a specified queue.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_msgsnd (msqid, msgp, msgsz, msgflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FMSGSND (MSQID, MSGP1, MSGP2, MSGSZ, MSGFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 msqid
 is a message-queue identifier to which a message is to be sent.

 � In Pascal, msqid is of type integer.

 � In FORTRAN, msqid is of type INTEGER.

 msgp
 is the pointer to the record msgbuf, which contains the message to be
 sent.

 � In Pascal, msgp is of type mbufptr.

 � In FORTRAN, msgp is sent as two parameters:

 - msgp1 is of type INTEGER.

 - msgp2 is of type CHARACTER*80.

 msgsz
 is a constant or variable that specifies the length of the message in
 bytes. The maximum value of msgsz is 80.

 � In Pascal, msgsz is of type integer.

 � In FORTRAN, msgsz is of type INTEGER.

 msgflg
 specifies the action taken when either of the following conditions
 prevents the message from being sent:

 � the number of bytes already in the queue is equal to the number
 specified by msg_qbytes.

 � the total number of messages in all queues in the system is equal
 to the system-imposed limit.

VS/AIX Interface Library
MSGSND send a message to a queue

¦ Copyright IBM Corp. 1985, 1989
2.52 - 1

 � In Pascal, msgflg is of type integer.

 � In FORTRAN, msgflg is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call, and the
 data structure associated with the message-queue identifier is modified as
 follows:

 � msg_qnum is incremented by 1

 � msg_lspid is set equal to the process ID of the calling process

 � msg_stime is set equal to the current time

 The value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the MSGSND
 system routine. The value of the first parameter of this call is the
 return value of MSGGET. (The value of the first parameter of MSGGET is
 the return value of the ftok system subroutine; see Appendix E.) The
 variable "orange" specifies the length of the message.

 Pascal

 procedure msgsnd1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc

 var
 blue, grey, orange, pink, purple, red : integer;
 white : st80;
 brown : char;
 yellow : mbufptr;

 %include /usr/include/aildefs.inc

 begin
 new (yellow);
 brown := 'w';
 white := '/usr/include/ailtypes.inc';
 blue := IPCNWT;
 orange := 27;
 pink := IPCCRT + IRUSR + IWUSR;
 yellow@.mtype := 1;
 yellow@.mtext := 'This is 1 test for messages';
 purple := p_ftok (white, brown);
 red := p_msgget (purple, pink);
 grey := p_msgsnd (red, yellow, orange, blue);
 writeln (grey);
 end;

VS/AIX Interface Library
MSGSND send a message to a queue

¦ Copyright IBM Corp. 1985, 1989
2.52 - 2

 FORTRAN

 SUBROUTINE MSGSND1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FMSGSND, FMSGGET, FFTOK, BLUE, GREY, ORANGE, PINK
 INTEGER PURPLE, RED, YELLOW
 CHARACTER*80 WHITE, VIOLET
 CHARACTER BROWN
 BROWN = 'w'
 WHITE = '/usr/include/ailtypes.inc '
 BLUE = IPCNWT
 ORANGE = 27
 PINK = IPCCRT + IRUSR + IWUSR
 YELLOW = 1
 VIOLET = 'This is 1 test for messages'
 PURPLE = FFTOK (WHITE, BROWN)
 RED = FMSGGET (PURPLE, PINK)
 GREY = MSGSND (RED, YELLOW, VIOLET, ORANGE, BLUE)
 PRINT *, GREY
 END

VS/AIX Interface Library
MSGSND send a message to a queue

¦ Copyright IBM Corp. 1985, 1989
2.52 - 3

 2.53 NICE set a process priority

 Description
 The NICE system call assigns a new CPU priority to a process by adding a
 specified value to its current NICE value.

 If this value results in a priority number outside the valid range, the
 NICE routine will reset the priority to the nearest limit.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_nice (incr); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FNICE (INCR) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 incr
 is a value that--when added to the priority number of the current
 process--determines the new priority number of the current process.

 � In Pascal, incr is of type integer.

 � In FORTRAN, incr is of type INTEGER.

 Return Values
 The new NICE value minus 20 is the value returned upon successful
 completion of the call. The value -1 is returned and an error code set in
 errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutine that follow call the NICE
 system routine. The priority number of the current process is increased
 by 5, thereby lowering the priority. The incr parameter is specified with
 the variable "red". The return value printed is the new priority value
 minus 20.

 Pascal

 procedure nice1;

 const
 %include /usr/include/ailpconsts.inc
 type

VS/AIX Interface Library
NICE set a process priority

¦ Copyright IBM Corp. 1985, 1989
2.53 - 1

 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := 5;
 blue := p_nice (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE NICE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FNICE, BLUE, RED
 RED = 5
 BLUE = FNICE (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
NICE set a process priority

¦ Copyright IBM Corp. 1985, 1989
2.53 - 2

 2.54 OPEN open a file for reading or writing

 Description
 The OPEN system call opens a specified file for reading or writing or
 both, depending on the access mode specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_open (path, oflag, mode); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FOPEN (PATH, OFLAG, MODE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file to be opened.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 oflag
 specifies one or a combination of the options listed below. The
 parameter value is that of one of the following options or is
 constructed from two or more of those options by logical ORing. The
 options are defined as constants in the Pascal and FORTRAN constants
 include files (see Appendixes).

 Note: The RDONLY, WRONLY, and RDWR values cannot be logically ORed
 together.

 RDONLY opens the file for reading.

 WRONLY opens the file for writing.

 RDWR opens the file for both reading and writing.

 NDELAY open without delay. This flag may affect subsequent
 reads and writes.

 APPEND sets the file pointer to the end of the file prior to
 each write.

 CREATE has no effect if the file specified by path exists.
 However, if the specified file does not exist, the file
 owner's ID and the files's group ID are set to the
 effective user ID of the process; and the access mode
 is set to mode.

VS/AIX Interface Library
OPEN open a file for reading or writing

¦ Copyright IBM Corp. 1985, 1989
2.54 - 1

 TRUNC truncates the file length to zero.

 EXCL when this option and CREATE are set, OPEN will fail if
 the file exists.

 � In Pascal, oflag is of type integer.

 � In FORTRAN, oflag is of type INTEGER.

 mode
 is used with the CREATE value of oflag.

 Note: For more information on the mode parameter, see CHMOD on page
 2.10 and STATX on page 2.98.

 Return Values
 The return value is the file descriptor of the opened file. This file
 descriptor will be needed for subsequent input-output operations. The
 value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the OPEN
 system routine, which returns a file descriptor in the variable "red". If
 the call is successful, the number printed out is a valid file descriptor.

 Pascal

 procedure open1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
 writeln(red);
 end;

 FORTRAN

 SUBROUTINE OPEN1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FOPEN, RED
 CHARACTER*80 BLUE
 BLUE = '/usr/include/ailtypes.inc '
 RED = FOPEN (BLUE, RDONLY, 0)
 PRINT *, RED
 END

VS/AIX Interface Library
OPEN open a file for reading or writing

¦ Copyright IBM Corp. 1985, 1989
2.54 - 2

 2.55 PAUSE wait for a signal

 Description
 The PAUSE system call suspends the execution of a process until it
 receives a signal.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_pause; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FPAUSE () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters
 This system call has no parameters.

 Return Values
 There is no return value from a successful completion of PAUSE. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the PAUSE
 system routine, which suspends the calling process until the signal from
 the ALARM call is received.

 Pascal

 procedure pause1;

 const
 %include /usr/include/ailfconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;
 green, red : usign;

 %include /usr/include/aildefs.inc

 begin
 red := 20;
 green := p_alarm (red);
 writeln (green);
 blue := p_pause
 end;

VS/AIX Interface Library
PAUSE wait for a signal

¦ Copyright IBM Corp. 1985, 1989
2.55 - 1

 FORTRAN

 SUBROUTINE PAUSE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FPAUSE, FALARM, BLUE, GREEN, RED
 RED = 20
 GREEN = FALARM (RED)
 PRINT *, GREEN
 BLUE = FPAUSE ()
 END

VS/AIX Interface Library
PAUSE wait for a signal

¦ Copyright IBM Corp. 1985, 1989
2.55 - 2

 2.56 PIPE create an interprocess channel

 Description
 The PIPE system call creates an interprocess communication
 mechanism--called a "pipe" or "channel"--that allows the passing of data
 between processes. After a pipe has been set up, two or more cooperating
 processes (created by subsequent FORK routines) can pass data to one
 another with READ and WRITE calls.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_pipe (fildes); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FPIPE (FILDES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is an array of two file descriptors, both of which are returned by a
 PIPE call. The first element of the array holds the file descriptor
 for the read end of the pipe; the second element holds the file
 descriptor for the write end of the pipe.

 � In Pascal, fildes is a variable of type piparray.

 � In FORTRAN, fildes is an array(2) of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails (for
 example, if too many files are open).

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutine that follow call the PIPE
 system routine. A pipe is created between two files whose descriptors are
 returned: the read end of the pipe is returned in the first element of the
 array "red" and the write end is returned in the second.

 Pascal

 procedure pipe1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
PIPE create an interprocess channel

¦ Copyright IBM Corp. 1985, 1989
2.56 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;
 red : piparray;

 %include /usr/include/aildefs.inc

 begin
 blue := p_pipe (red);
 writeln (blue);
 writeln (red[1]);
 writeln (red[2]);
 end;

 FORTRAN

 SUBROUTINE PIPE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FPIPE, BLUE, RED(2)
 BLUE = FPIPE (RED)
 PRINT *, BLUE
 PRINT *, RED(1)
 PRINT *, RED(2)
 END

VS/AIX Interface Library
PIPE create an interprocess channel

¦ Copyright IBM Corp. 1985, 1989
2.56 - 2

 2.57 PLOCK lock or unlock a process, text, or data

 Description
 The PLOCK system call allows the calling process to lock or unlock its
 text segment (text lock), its data segment (data lock), or both (process
 lock) into memory. Locked segments are "pinned" in memory and are
 unaffected by paging.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_plock (op); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FPLOCK (OP) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 op
 is a constant or variable that specifies one of four options:

 UNLOCK remove the locks.

 PROCLOCK lock text and data segments into memory.

 TXTLOCK lock text segment into memory.

 DATLOCK lock data segment into memory.

 � In Pascal, op is of type integer.

 � In FORTRAN, op is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the PLOCK
 system routine. The value of the op parameter ("red") specifies that the
 routine lock the current text segment into memory.
 Pascal

 procedure plock1;

VS/AIX Interface Library
PLOCK lock or unlock a process, text, or data

¦ Copyright IBM Corp. 1985, 1989
2.57 - 1

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := TXTLOCK;
 blue := p_plock (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE PLOCK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FPLOCK, BLUE, RED
 RED = TXTLOCK
 BLUE = FPLOCK (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
PLOCK lock or unlock a process, text, or data

¦ Copyright IBM Corp. 1985, 1989
2.57 - 2

 2.58 PROFIL generate an execution-time profile

 Description
 The PROFIL system call generates a histogram of periodically sampled
 values of the program counter of the calling process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_profil (buf, bufsiz, offset, scale); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FPROFIL (BUF, BUFSIZ, OFFSET, SCALE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 buf
 for any value of bufsiz except -1, points to an area of memory, and
 its length in bytes is given by bufsiz. If the value of bufsiz is -1,
 then the parameters offset and scale are ignored and buf points to an
 array of "prof" structures (declared in ailtypes.inc and available
 only in Pascal).

 � In Pascal, buf is of type intptr.

 � In FORTRAN, buf is of type INTEGER*2.

 bufsiz
 specifies the size of the buffer in bytes. A value of 0 (zero)
 renders the routine ineffective. (See Notes.)

 � In Pascal, bufsiz is of type usign.

 � In FORTRAN, bufsiz is of type INTEGER.

 offset
 specifies the value to be subtracted from the program counter. (See
 Notes.)

 � In Pascal, offset is of type usign.

 � In FORTRAN, offset is of type INTEGER.

 scale
 specifies the value by which the quantity (program count - offset) is
 multiplied before the value in buf is incremented. (See Notes.)

 � In Pascal, scale is of type usign.

 � In FORTRAN, scale is of type INTEGER.

 Return Values

VS/AIX Interface Library
PROFIL generate an execution-time profile

¦ Copyright IBM Corp. 1985, 1989
2.58 - 1

 There is no return value from a successful PROFIL call. The value -1 is
 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the PROFIL
 system routine. With the values assigned in the example, all instructions
 will be mapped to the area in memory pointed to by the variable "yellow".

 Pascal

 procedure profil1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 yellow : shrtptr;
 blue, indigo, violet : usign;

 %include /usr/include/aildefs.inc

 begin
 new (yellow);
 blue := 2;
 indigo := 0;
 violet := 1;
 green := p_profil (yellow, blue, indigo, violet)
 end;

 FORTRAN

 SUBROUTINE PROFIL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FPROFIL, BLUE, GREEN, INDIGO, VIOLET, YELLOW*2
 BLUE = 2
 INDIGO = 0
 VIOLET = 1
 GREEN = FPROFIL (YELLOW, BLUE, INDIGO, VIOLET)
 END

 Notes
 Because Pascal and FORTRAN lack the facilities for handling unsigned
 4-byte integers, the programmer must convert parameter values that fall in
 the range

 2 147 483 648 through 4 294 067 295

 To use a parameter value in this range, subtract 4 294 067 296 from the
 parameter value before issuing the call (the result will always be
 negative).

VS/AIX Interface Library
PROFIL generate an execution-time profile

¦ Copyright IBM Corp. 1985, 1989
2.58 - 2

 2.59 PTRACE trace the execution of a child process

 Description
 The PTRACE routine enables a parent process to control the execution of a
 child process and to examine and change its memory image. The routine is
 used primarily for breakpoint debugging.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ptrace (requst, pid, addr, data, buff); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUNCTION FPTRACE (REQUST, PID, ADDR, DATA, BUFF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 requst
 is a variable that specifies a trace operation (see AIX Technical
 Reference).

 � In Pascal, requst is of type integer.

 � In FORTRAN, requst is of type INTEGER.

 pid
 is a variable that contains the process ID of the traced process.
 This process must be an immediate child of the tracing process.

 � In Pascal, pid is of type integer.

 � In FORTRAN, pid is of type INTEGER.

 addr
 Depending on the value of requst, this parameter

 - points to an area where data is returned; or
 - indicates a register whose value is to be modified or
 returned; or
 - points to a block of data (in the child process) to be read
 from or written to.

 � In Pascal, addr is of type intptr.

 � In FORTRAN, addr is of type INTEGER.

 data
 when it is not ignored, usually holds data for requests that write to
 the memory image of the traced process.

 � In Pascal, data is of type integer.

VS/AIX Interface Library
PTRACE trace the execution of a child process

¦ Copyright IBM Corp. 1985, 1989
2.59 - 1

 � In FORTRAN, data is of type INTEGER.

 buff
 is a pointer to a block of data (for any requst that requires a
 buffer).

 � In Pascal, buff is of type intptr.

 � In FORTRAN, buff is of type INTEGER.

 Return Values
 For the values that are returned by PTRACE, see the descriptions of the
 arguments to the requst parameter. The value -1 is returned and an error
 code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the PTRACE
 system routine. A child process is created by a FORK system call. The
 child process then calls PTRACE, requesting that it be traced by the
 parent (requst = 0). The parent process waits for a signal from the child
 and then calls PTRACE, which returns the value of register 2 used by the
 child process (requst = 11).

 Pascal

 procedure ptrace1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, orange, red, yellow : integer;

 %include /usr/include/aildefs.inc

 begin
 green := p_fork;
 if green = 0 then
 begin
 orange := p_alarm (1);
 orange := p_ptrace (0, 0, nil, 0, nil);
 for blue := 1 to 10 do
 for red := 1 to 100 do
 write ('z');
 writeln;
 end

 else
 begin
 orange := p_wait (yellow);
 writeln ('return from wait ', orange);
 orange := p_ptrace (11, green, nil, 2, nil);
 writeln ('register two contains ', orange);

VS/AIX Interface Library
PTRACE trace the execution of a child process

¦ Copyright IBM Corp. 1985, 1989
2.59 - 2

 end
 end;

 FORTRAN

 SUBROUTINE PTRACE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FPTRACE, FALARM, FFORK, FWAIT
 INTEGER BLUE, GREEN, ORANGE, RED, YELLOW
 GREEN = FFORK ()

 IF (GREEN .EQ. 0) THEN
 ORANGE = FALARM (1)
 ORANGE = FPTRACE (0, 0, 0, 0, 0)
 DO 10 BLUE = 1, 10
 DO 20 RED = 1, 100
 PRINT *, 'z'
 ELSE
 ORANGE = FWAIT (YELLOW)
 PRINT *, 'RETURN FROM WAIT ', ORANGE
 ORANGE = FPTRACE (11, GREEN, 0, 2, 0)
 PRINT *, 'REGISTER TWO CONTAINS ', ORANGE
 ENDIF
 END

VS/AIX Interface Library
PTRACE trace the execution of a child process

¦ Copyright IBM Corp. 1985, 1989
2.59 - 3

 2.60 READ, READX read from a file

 Description
 The READ system call reads a specified number of bytes from a file into a
 buffer.

 The READX system call invokes the same function as READ, but it provides
 the alternative of communication with character device drivers that
 require more information or return more status information than READ can
 handle.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_read (fildes, buf, nbytes); ¦
 ¦ ¦
 ¦ p_readx (fildes, buf, nbytes, ext); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definitions -------------------------------+
 ¦ ¦
 ¦ function p_read (fildes : integer; buf : readptr; ¦
 ¦ nbytes : integer) : integer; external; ¦
 ¦ ¦
 ¦ function p_readx (fildes : integer; buf : readptr; ¦
 ¦ nbytes, ext : integer) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FREAD (FILDES, BUF, NBYTES) ¦
 ¦ ¦
 ¦ FREADX (FILDES, BUF, NBYTES, EXT) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor returned by a successful CREAT, DUP, DUP2, FCNTL,
 OPEN, PIPE, SOCKET, or SOCKETPAIR system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 buf
 is a pointer to a buffer. The bytes read from the file specified by
 fildes are placed in this buffer when a READ or READX system call is
 executed.

 � In Pascal, buf is of type readptr. (Readptr is a user-defined
 pointer to a packed array of type character.)

VS/AIX Interface Library
READ, READX read from a file

¦ Copyright IBM Corp. 1985, 1989
2.60 - 1

 � In FORTRAN, buf is a user-defined array of type CHARACTER.

 nbytes
 is the number of bytes to be read from the file specified by fildes.

 � In Pascal, nbytes is of type integer.

 � In FORTRAN, nbytes is of type integer.

 ext
 is a parameter of the READX call only. It provides a value or a
 pointer to a communication area for specific devices.

 � In Pascal, ext is of type integer.

 � In FORTRAN, ext is of type INTEGER.

 In Pascal and FORTRAN, ext is device-dependent (see AIX Technical
 Reference).

 Return Values

 The return value is the actual number of bytes read from the file. If the
 return value is 0 (zero), the end file has been reached. The value -1 is
 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the READ
 system routine, which reads a specified number of bytes from a file that
 has been opened for reading. In these examples, 100 bytes are read from
 the file /usr/include/ailtypes.inc into the buffer pointed to by the
 Pascal variable "yellow" and by the FORTRAN string "YELLOW".

 Pascal

 procedure read1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 readary = packed array[1..100] of char;
 readptr = @readary;
 var
 blue, orange, red : integer;
 yellow : readptr;

 function p_read (fildes : integer; buf : readptr;
 nbytes : integer) : integer; external;

 begin
 new (yellow);
 blue := p_open ('/usr/include/ailtypes.inc', RDONLY, 0);
 red := 100;
 orange := p_read (blue, yellow, red);

VS/AIX Interface Library
READ, READX read from a file

¦ Copyright IBM Corp. 1985, 1989
2.60 - 2

 writeln (orange);
 end;

 FORTRAN

 SUBROUTINE READ1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FREAD, FOPEN, BLUE, ORANGE, RED
 CHARACTER*100 YELLOW
 BLUE = FOPEN ('/usr/include/ailtypes.inc ', RDONLY, 0)
 RED = 100
 ORANGE = FREAD (BLUE, YELLOW, RED)
 PRINT *, ORANGE
 END

VS/AIX Interface Library
READ, READX read from a file

¦ Copyright IBM Corp. 1985, 1989
2.60 - 3

 2.61 READLINK read the value of a symbolic link

 Description
 The READLINK system call places a specified number of characters from the
 symbolic-link path in a specified buffer.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_readlink (path, buf, bufsize); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FREADLINK (PATH, BUF, BUFSIZE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 points to the path name of an existing file.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 buf
 is the user's buffer to be filled with read data.

 � In Pascal, buf is a string variable or constant of type st80.

 � In FORTRAN, buf is a string variable or constant of type
 CHARACTER*80.

 bufsize
 is the size of buf

 � In Pascal, bufsize is of type integer.

 � In FORTRAN, bufsize is of type INTEGER.

 Return Values
 The count of characters read into the buffer is returned to the calling
 process. The value -1 is returned and an error code set in errno if the
 call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the READLINK
 system routine, after first creating a symbolic link between

VS/AIX Interface Library
READLINK read the value of a symbolic link

¦ Copyright IBM Corp. 1985, 1989
2.61 - 1

 /bushel/light/hide and /usr/include/aildefs.inc. The system call places
 the name of the symbolic link in the parameter buf. After successful
 completion of the call, the link is removed by UNLINK.

 Pascal

 procedure readlink1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 path, buf : st80;

 %include /usr/include/aildefs.inc

 begin
 path := '/bushel/light/hide';
 green := p_symlink ('/usr/include/aildefs.inc', path);
 if (green = -1) then showerror;
 green := p_readlink (path, buf, 50);
 writeln ('Readlink returned: ', green : 2);
 if (green = -1) then showerror;
 writeln ('buf = ', buf);
 green := p_unlink ('/bushel/light/hide');
 end;

 FORTRAN

 SUBROUTINE READLINK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FREADLINK, FSYMLINK, FUNLINK, GREEN
 CHARACTER*80 BUF, P1, P2
 P1 = '/usr/include/aildefs.inc '
 P2 = '/bushel/light/hide '
 GREEN = FSYMLINK (P1, P2)
 IF (GREEN .EQ. -1) CALL ERRORS
 GREEN = FREADLINK (P2, BUF, 50)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 PRINT *, BUF
 GREEN = FUNLINK (P2)
 END

VS/AIX Interface Library
READLINK read the value of a symbolic link

¦ Copyright IBM Corp. 1985, 1989
2.61 - 2

 2.62 READV read input into multiple buffers

 Description
 The READV system call obtains data from a specified source and reads that
 data into a specified set of buffers.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_readv (d, iov, iovcnt); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definition --------------------------------+
 ¦ ¦
 ¦ function p_readv (d : integer; var iov : iovarr; ¦
 ¦ iovcnt : integer) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ This system call is not available in FORTRAN. ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 d
 is a file descriptor or a socket descriptor.

 � In Pascal, d is of type integer.

 iov
 is an array of buffers.

 � In Pascal, iov is an array of records of type iovrec
 (user-defined).

 iovcnt
 is the number of buffers of the type specified by iov

 � In Pascal, iovcnt is of type integer.

 Return Values

 The number of bytes read and placed in a buffer is returned upon
 successful completion of the call. The value -1 is returned and an error
 code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 Examples
 In the Pascal procedure that follows, five iovec records are initialized
 with base addresses and a buffer length of 10. Socket descriptor s is
 created by a SOCKET system call, and READV is called to read information

VS/AIX Interface Library
READV read input into multiple buffers

¦ Copyright IBM Corp. 1985, 1989
2.62 - 1

 from the socket into the five buffers pointed to by iov.
 Pascal

 procedure readv1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 buf = packed array[1..10] of char;
 bufptr = ^buf;
 iovrec = record
 iov_len : integer;
 iov_base : bufptr;
 end;
 iovarr = array[1..5] of iovrec;
 var
 i, s, green : integer;
 arr : st5;
 iov : iovarr;

 %include /usr/include/aildefs.inc

 function p_readv (d : integer; var iov : iovarr;
 iovcnt : integer) : integer; external;

 begin
 for i := 1 to 5 do
 begin
 iov[i].iov_len := 10;
 new(iov[i].iov_base);
 end;
 s := p_open ('/usr/include/aildefs.inc', RDONLY, 0);
 green := p_readv (s, iov, 5);
 if (green <> -1) then
 writeln ('Readv returned: OK')
 else
 writeln ('Readv returned: ERROR')
 if (green = -1) then showerror;
 end;

VS/AIX Interface Library
READV read input into multiple buffers

¦ Copyright IBM Corp. 1985, 1989
2.62 - 2

 2.63 REBOOT reinitialize or halt system operation

 Description
 The REBOOT system call makes a "request" that the operating system be
 reinitialized ("rebooted") or that it be stopped ("halted"). If the call
 fails, it returns a value; otherwise, it does not.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_reboot (howto); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FREBOOT (HOWTO) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 howto
 specifies one of the following flags:

 RBNOSYNC prevents the normals WRITE of buffered data to file systems.

 RBHALT stops system operation.

 � In Pascal, howto is of type integer.

 � In FORTRAN, howto is of type INTEGER.

 Return Values
 There is no return value from a successful REBOOT call. The value -1 is
 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the REBOOT
 system routine, with the howto flag set to RBHALT. The AIX subsystem is
 terminated and not restarted.
 Pascal

 procedure reboot1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 howto : integer;

VS/AIX Interface Library
REBOOT reinitialize or halt system operation

¦ Copyright IBM Corp. 1985, 1989
2.63 - 1

 %include /usr/include/aildefs.inc

 begin
 howto := RBHALT;
 p_reboot (howto);
 end;

 FORTRAN

 SUBROUTINE REBOOT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FREBOOT, HOWTO
 HOWTO = RBHALT
 CALL FREBOOT (HOWTO)
 END

VS/AIX Interface Library
REBOOT reinitialize or halt system operation

¦ Copyright IBM Corp. 1985, 1989
2.63 - 2

 2.64 RECV, RECVMSG, RECVFROM receive a message from a socket

 Description
 The RECV, RECVMSG, and RECVFROM system calls receive a message from a
 specified socket.

 Note: The RECV system call can be used only when the specified socket is
 in a connected state. The RECVMSG and RECVFROM calls can be used
 at any time.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_recv (s, buf, len, flags); ¦
 ¦ ¦
 ¦ p_recvmsg (s, msg, flags); ¦
 ¦ ¦
 ¦ p_recvfrom (s, buf, len, flags, from, fromlen); ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definitions -------------------------------+
 ¦ ¦
 ¦ function p_recv (s : integer; var msg : msgarr; len : integer; ¦
 ¦ flags : integer) : integer; external; ¦
 ¦ ¦
 ¦ function p_recvfrom (s : integer; var msg : msgarr; var len : integer¦
 ¦ flags : integer; from : sockaddrptr; ¦
 ¦ fromlen : intptr) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FRECV (S, BUF, LEN, FLAGS) ¦
 ¦ ¦
 ¦ FRECVMSG (S, MSG, FLAGS) ¦
 ¦ ¦
 ¦ FRECVFROM (S, BUF, LEN, FLAGS, FROM, FROMLEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket created by a SOCKET system call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 buf
 is the structure in which the message is to be received.

 Note: The buf parameter is used only in the RECV and RECVFROM system

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.64 - 1

 calls.

 � In Pascal, buf is an array of type msgarr (a user-defined array of
 type character).

 � In FORTRAN, buf is a user-defined array of type CHARACTER.

 len
 is the length of the message received. The len parameter is used only
 in the RECV and RECVFROM system calls.

 � In Pascal, len is of type integer.

 � In FORTRAN, len is of type INTEGER.

 flags
 is an argument whose value is specified by logically OR-ing one or
 both of the values shown here:

 MSG_OOB processes the out-of-band data on sockets that support it.

 MSG_PEEK peeks at the incoming message.

 Note: In FORTRAN, the underscore is omitted (for example,
 "MSGOOB").

 The flags parameter is used only in the RECV and RECVFROM system
 calls.

 � In Pascal, flags is of type integer.

 � In FORTRAN, flags is of type INTEGER.

 msg
 is a message header to be received.

 � In Pascal, msg is of type msghdrptr, declared in the include file
 ailtypes.inc.

 � In FORTRAN, msg is of type CHARACTER*80.

 from
 receives the source address of the message if the argument is a
 nonzero value.

 � In Pascal, from is of type sockaddrptr, declared in the include
 file ailtypes.inc.

 � In FORTRAN, from is of type CHARACTER*14 and corresponds to
 sockaddr.sa_data in Pascal.

 fromlen
 is initialized to the size of the from parameter. On return, this
 value is changed to the actual size of the address stored there.

 � In Pascal, fromlen is of type intptr.

 � In FORTRAN, fromlen is of type INTEGER.

 Return Values

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.64 - 2

 The length of the message, in bytes, is returned upon successful
 completion of the call. A value of -1 is returned and an error code set
 in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the RECV
 system routine. Because RECV receives a message only when a socket is in
 a connected state, sockets s and "s1" are created, after which "s1" is
 bound to the name "socket" and connected to socket s. Finally, a message
 is received from "s1".
 Pascal

 procedure recv1;

 const
 %include /usr/include/ailpconsts.inc
 type
 msgarr = packed array[1..50] of character;

 %include /usr/include/ailtypes.inc

 var
 flags, len, namelen, s, s1, green : integer;
 buf : msgarr;
 name : sockaddrptr;

 %include /usr/include/aildefs.inc

 function p_recv (s : integer; var buf : msgarr; var len : integer;
 flags : integer) : integer; external;

 begin
 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 flags := MSG_DONTROUTE + MSG_OOB;
 len := 50;
 green := p_recv (s, buf, len, flags);
 writeln ('Recv returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE RECV1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FRECV, FSOCKET, FLAGS, GREEN
 CHARACTER*50 BUF
 FLAGS = MSGDONTROUTE +MSGOOB
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (S .EQ. -1) CALL ERRORS
 GREEN = FRECV (S, BUF, 50, FLAGS)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
RECV, RECVMSG, RECVFROM receive a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.64 - 3

 2.65 RENAME rename a directory

 Description
 The RENAME system call renames a directory or file in a file system.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_rename (frompath, topath); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FRENAME (FROMPATH, TOPATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 frompath
 is the name of the directory or file to be renamed.

 � In Pascal, frompath is a string variable or constant of type st80.

 � In FORTRAN, frompath is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 topath
 is the new name of the directory or file.

 � In Pascal, topath is a string variable or constant of type st80.

 � In FORTRAN, topath is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 RENAME system routine. The directory to be renamed by the call is
 /usr/games, which becomes /usr/work. The return value of the call is in
 the variable "folio".
 Pascal

 procedure rename1;

 const

VS/AIX Interface Library
RENAME rename a directory

¦ Copyright IBM Corp. 1985, 1989
2.65 - 1

 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 folio : integer;
 blue, red, : st80;

 %include /usr/include/aildefs.inc

 begin
 red := '/usr/games';
 blue := '/usr/work';
 folio := p_rename (red, blue);
 writeln (folio);
 end;

 FORTRAN

 SUBROUTINE RENAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FRENAME, FOLIO
 CHARACTER*80 BLUE, RED
 RED = '/usr/games '
 BLUE = '/usr/work '
 FOLIO = FRENAME (RED, BLUE)
 PRINT *, FOLIO
 END

VS/AIX Interface Library
RENAME rename a directory

¦ Copyright IBM Corp. 1985, 1989
2.65 - 2

 2.66 RMDIR remove a directory

 Description
 The RMDIR system call removes a directory specified in the call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_rmdir (path); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FRMDIR (PATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the directory to be removed.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 RMDIR system routine. The directory specified in the call is /usr/games,
 which is removed. The return value of the call is in the variable
 "folio".

 Pascal

 procedure rmdir1;

 consts
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 folio : integer;
 red : st80;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
RMDIR remove a directory

¦ Copyright IBM Corp. 1985, 1989
2.66 - 1

 begin
 red := '/usr/games';
 folio := p_rmdir (red);
 writeln (folio);
 end;

 FORTRAN

 SUBROUTINE RMDIR1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FRMDIR, FOLIO
 CHARACTER*80 RED
 RED = '/usr/games '
 FOLIO = FRMDIR (RED)
 PRINT *, FOLIO
 END

VS/AIX Interface Library
RMDIR remove a directory

¦ Copyright IBM Corp. 1985, 1989
2.66 - 2

 2.67 SELECT check the status of file descriptors and message queues

 Description
 The SELECT system call checks specified file descriptors and message
 queues for readiness to read or write or for any exceptional condition
 that may be pending.

 Note: For more information about the SELECT system routine, and
 particularly about message queues, see the corresponding
 description in AIX Operating System Technical Reference.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_select (nfds, readfds, writefds, exceptfds, timeout); ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSELECT (NFDS, READFDS, WRITEFDS, EXCEPTFDS, TIMEOUT) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 nfds
 specifies the number of file descriptors being selected.

 � In Pascal, nfds is of type integer.

 � In FORTRAN, nfds is of type INTEGER.

 readfds
 points to a mask specifying a set of file descriptors or message
 queues to be checked for readiness to read (receive). Those that are
 ready are said to meet the selection criteria.

 � In Pascal, readfds is of type integer.

 � In FORTRAN, readfds is of type INTEGER.

 writefds
 points to a mask specifying a set of file descriptors or message
 queues to be checked for readiness to write (send). Those that are
 ready are said to meet the selection criteria.

 � In Pascal, writefds is of type integer.

 � In FORTRAN, writefds is of type INTEGER.

 exceptfds
 points to a mask specifying a set of file descriptors or message
 queues to be checked for exceptions. Those that have exceptions
 pending are said to meet the selection criteria.

VS/AIX Interface Library
SELECT check the status of file descriptors and message queues

¦ Copyright IBM Corp. 1985, 1989
2.67 - 1

 � In Pascal, exceptfds is of type integer.

 � In FORTRAN, exceptfds is of type INTEGER.

 timeout
 specifies the maximum length of time that the calling process will
 wait for at least one of the files or message queues specified in the
 masks to "test positive" for readiness or for a pending exception.

 � In Pascal, timeout is of type timevalptr.

 � In FORTRAN, exceptfds is an array of type INT with two elements.
 This array corresponds to the Pascal data structure--defined in
 the constants include file (Appendix B)--as follows:

 TIMEOUT(1) = timeout.tv_sec

 TIMEOUT(2) = timeout.tv_usec

 Return Values

 The value representing the total number of file descriptors and message
 queues that meet the selection criteria is returned upon successful
 completion of the call. The value -1 is returned and an error code set in
 errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SELECT
 system subroutine, which in these examples checks file descriptors 0, 1,
 and 2 for readiness to read (rfds points to bit mask 7). Upon return, the
 bit mask is overwritten with one showing which file descriptors have data
 ready.

 Pascal

 procedure select1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green, efds, rfds, wfds : integer;
 timeout : timevalptr;

 begin
 new (timeout);
 timeout^.tv_sec := 5;
 rfds^ := 7;
 wfds^ := 0;
 efds^ := 0;
 green := p_select (3, rfds, wfds, efds, timeout)
 writeln (green);
 end;

VS/AIX Interface Library
SELECT check the status of file descriptors and message queues

¦ Copyright IBM Corp. 1985, 1989
2.67 - 2

 FORTRAN

 SUBROUTINE SELECT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSELECT, GREEN, TOUT(2)
 TOUT(1) = 5
 GREEN = FSELECT (3, 7, 0, 0, TOUT)
 PRINT *, GREEN
 END

VS/AIX Interface Library
SELECT check the status of file descriptors and message queues

¦ Copyright IBM Corp. 1985, 1989
2.67 - 3

 2.68 SEMCTL invoke semaphore-control operations

 Description
 The SEMCTL system call invokes a variety of semaphore-control operations,
 most of which involve getting and setting the values of a data structure
 containing information about a set of semaphores.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_semctl (semid, semnum, cmd, arg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSEMCTL (SEMID, SEMNUM, CMD, ARG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 semid
 is the identifier of a semaphore set created by a previous SEMGET call
 (see page 2.69). The value of semid is returned by the SEMGET call.

 � In Pascal, semid is of type integer.

 � In FORTRAN, semid is of type INTEGER.

 semnum
 specifies the particular semaphore that will be affected by the
 control operation invoked by the call.

 � In Pascal, semnum is of type integer.

 � In FORTRAN, semnum is of type INTEGER.

 cmd
 specifies the control operation to be performed, which can be any of
 the options in the following list. These options are executed with
 respect to the semaphores specified by semid and semnum.

 Note: Each constant is defined in the Pascal and FORTRAN constants
 include file (see Appendix B).

 The fields referred to in the option descriptions below belong to the
 sem record (see Appendix C).

 GETVAL returns the value of the semval field of the semaphore
 specified by semid and semnum.

 SETVAL sets the value of the semval field of the semaphore set
 according to the array pointed to by the field arg.val.

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

¦ Copyright IBM Corp. 1985, 1989
2.68 - 1

 GETPID returns the value of the sempid field of the semaphore
 specified by semid and semnum.

 GTNCNT returns the value of the semncnt field of the semaphore
 specified by semid and semnum.

 GTZCNT returns the value of the semzcnt field of the semaphore
 specified by semid and semnum.

 The following cmd options return and set every semval field in the set
 of semaphores.

 GETALL takes the values of the semval field of the semaphore
 specified by semid and semnum and stores them in the
 array pointed to by the field arg.arry.

 SETALL sets semvals according to the array pointed to by
 arg.arry.

 IPCSTT takes the current value of each field of the data
 structure associated with semid and stores it in the
 structure pointed to by the field arg.buf. In FORTRAN,
 information is stored in the first 14 elements of the
 field arg.arry (for further information see Table A on
 page 2.68).

 IPCSET sets the value of the following fields of the data
 structure associated with semid to the corresponding
 values found in the structure pointed to by arg.buf.

 � sem_perm.uid
 � sem_perm.gid
 � sem_perm.mode (low-order nine bits only)

 In FORTRAN these fields are set according to elements
 1, 2, and 5 of the field arg.arry.

 Note: This option can be used only when the effective
 user ID is equal to the super-user ID or to the
 user ID.

 IPCRMD removes the semaphore identifier and its associated
 data structure from the operating system.

 Note: This option can be used only when the effective
 user ID is equal to the super-user ID or to the
 user ID.

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 arg
 is a data structure determined by the cmd parameter. The values
 returned to the Pascal record and the FORTRAN array are listed on the
 next page.
 For cmd options GETVAL, SETVAL, GETPID, GTNCNT,
 and GTZCNT:

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

¦ Copyright IBM Corp. 1985, 1989
2.68 - 2

 +--+
 ¦ Pascal ¦ FORTRAN ¦ Description ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.val ¦ ARG(1) ¦ The values of the sem ¦
 ¦ ¦ ¦ record are set and ¦
 ¦ ¦ ¦ returned here. ¦
 +--+

 For cmd options GETALL and SETALL:

 +--+
 ¦ Pascal ¦ FORTRAN ¦ Description ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.arry@[1] ¦ ARG(1) ¦ The values of the semary ¦
 ¦ . . . ¦ . . . ¦ record are set and ¦
 ¦ arg.arry@[1000] ¦ ARG(1000) ¦ returned here. ¦
 +--+

 For cmd options IPCSTT and IPCSET:

 +--+
 ¦ Pascal ¦ FORTRAN ¦ Description ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.uid ¦ ARG(1) ¦ owner's user ID ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.gid ¦ ARG(2) ¦ owner's group ID ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.cuid ¦ ARG(3) ¦ creator's user ID ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.cgid ¦ ARG(4) ¦ creator's group ID ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.mode ¦ ARG(5) ¦ access mode ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.seq ¦ ARG(6) ¦ lot-usage sequence ¦
 ¦ ¦ ¦ number ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_perm.key ¦ ARG(7) ¦ key value ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_base@semval ¦ ARG(8) ¦ operation permission ¦
 ¦ ¦ ¦ structure ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_base@sempid ¦ ARG(9) ¦ ID of last process that ¦
 ¦ ¦ ¦ issued SEMOP ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_base@semncnt ¦ ARG(10) ¦ number of processes ¦
 ¦ ¦ ¦ awaiting semval > cval ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_base@semzcnt ¦ ARG(11) ¦ number of processes ¦
 ¦ ¦ ¦ awaiting semval = 0 ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_nsems ¦ ARG(12) ¦ number of semaphores in ¦
 ¦ ¦ ¦ a set ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@semlcnt ¦ ARG(13) ¦ processes waiting on ¦

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

¦ Copyright IBM Corp. 1985, 1989
2.68 - 3

 ¦ ¦ ¦ locked semaphore ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_otime ¦ ARG(14) ¦ time of last SEMOP call ¦
 +--------------------------------+------------+--------------------------¦
 ¦ arg.buf@sem_ctime ¦ ARG(15) ¦ last time this structure ¦
 ¦ ¦ ¦ was changed by a SEMCTL ¦
 ¦ ¦ ¦ call ¦
 +--+

 � In Pascal, arg is of type semrec.

 � In FORTRAN, arg is a 1000-element array of type INTEGER.

 Return Values
 The value returned from a successful call varies with the cmd option
 specified.

 GTNCNT semncnt

 GETPID sempid

 GETVAL semval

 GTZCNT semzcnt

 All Others 0

 The value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SEMCTL
 system routine. In these examples, a semaphore identifier is retrieved by
 a call to SEMGET from the associated key parameter ("red") returned by a
 call to the ftok system subroutine. The call to SEMCTL stores the current
 value of each member of the data structure associated with the semid
 parameter ("green") in the structure yellow.buf (in Pascal) or
 YELLOW(1)..YELLOW(15) in FORTRAN.

 Pascal

 procedure semctl1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, pink, purple, red : integer;
 orange : st80;
 brown : char;
 yellow : semrec;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

¦ Copyright IBM Corp. 1985, 1989
2.68 - 4

 begin
 new (yellow.buf);
 brown := 'm';
 orange := '/tmp/junk';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_semget (red, 20, blue);
 pink := 20;
 purple := p_semctl (green, pink, 2, yellow);
 writeln (purple);
 end;

 FORTRAN

 SUBROUTINE SEMCTL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSEMCTL, FFTOK, FSEMGET, BLUE, GREEN, PINK
 INTEGER PURPLE, RED, YELLOW(1000)
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'
 ORANGE = '/tmp/junk '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FSEMGET (RED, 20, BLUE)
 PINK = 20
 PURPLE = FSEMCTL (GREEN, PINK, 2, YELLOW)
 PRINT *, PURPLE
 END

VS/AIX Interface Library
SEMCTL invoke semaphore-control operations

¦ Copyright IBM Corp. 1985, 1989
2.68 - 5

 2.69 SEMGET get or create a semaphore-set ID

 Description
 The SEMGET system call returns a semaphore-set ID associated with the
 specified key parameter.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_semget (key, nsems, semflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSEMGET (KEY, NSEMS, SEMFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 key
 is a semaphore-set ID that has been assigned directly by the
 programmer or has been returned by the ftok system subroutine or
 similar algorithm.

 � In Pascal, key is of type integer.

 � In FORTRAN, key is of type INTEGER.

 nsems
 specifies the number of semaphores in a set.

 � In Pascal, nsems is of type integer.

 � In FORTRAN, nsems is of type INTEGER.

 semflg
 specifies one or more conditions (options) governing the creation of a
 semaphore-set data structure and the accessibility of the semaphore
 set. The parameter value is that of one of the following options or
 is constructed from two or more of those options by logical ORing.
 The options are defined as constants in the Pascal and FORTRAN
 constants include files.

 IPCCRT creates a data structure if one does not exist.

 IPCEXL causes SEMGET to fail if IPCCRT is also set and the data
 structure already exists.

 IRUSR permits the process that owns the data structure to read
 it.

 IWUSR permits the process that owns the data structure to modify
 it.

 IRGRP permits the group associated with the data structure to

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID

¦ Copyright IBM Corp. 1985, 1989
2.69 - 1

 read it.

 IWGRP permits the group associated with the data structure to
 modify it.

 IROTH permits others to read the data structure.

 IWOTH permits others to modify the data structure.

 � In Pascal, semflg is of type integer.

 � In FORTRAN, semflg is of type INTEGER.

 Return Values
 A semaphore-set ID is returned upon successful completion of the call.
 The value -1 is returned and error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SEMGET
 system routine, which in these examples returns a semaphore identifier
 associated with the key parameter ("red") returned by a call to the ftok
 system subroutine. This identifier is the value printed out.

 Pascal

 procedure semget1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 orange : st80;
 brown : char;

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/tmp/junk';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_semget (red, 20, blue);
 writeln (green);
 end;

 FORTRAN

 SUBROUTINE SEMGET1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSEMGET, FFTOK, BLUE, GREEN, RED
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID

¦ Copyright IBM Corp. 1985, 1989
2.69 - 2

 ORANGE = '/tmp/junk '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FSEMGET (RED, 20, BLUE)
 PRINT *, GREEN
 END

VS/AIX Interface Library
SEMGET get or create a semaphore-set ID

¦ Copyright IBM Corp. 1985, 1989
2.69 - 3

 2.70 SEMOP perform semaphore operations

 Description
 The SEMOP system call invokes a group of semaphore operations that are
 performed on a specified semaphore set.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_semop (semid, sops, nsops); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSEMOP (SEMID, SOPS, NSOPS) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 semid
 is the ID of the semaphore set that is to be operated on.

 � In Pascal, semid is of type integer.

 � In FORTRAN, semid is of type INTEGER.

 sops
 is a pointer to an array of semaphore operation data structures. The
 breakdown of this parameter for each of the n semaphores is as
 follows:

 Pascal FORTRAN Description
 nsops[n].sem_num NSOPS(n,1) Semaphore number
 nsops[n].sem_op NSOPS(n,2) Semaphore operation
 nsops[n].sem_flg NSOPS(n,3) Operation flags

 Each semaphore operation specified by sem_op (FORTRAN, NSOPS(n,2)) is
 performed on the corresponding semaphore specified by sem_num
 (FORTRAN, NSOPS(n,1)). The sem_flg (FORTRAN, NSOPS(n,3)) value can be
 0, one of the following constants, or the value obtained from
 logically ORing (adding) the following constants defined in the Pascal
 and FORTRAN constants include files.

 SEMNDO (SEM_UNDO)
 SEMODR (SEM_ORDER)
 IPCNWT (IPC_NOWAIT)

 Note: For further information about these constants and the semaphore
 operations, see AIX Operating System Technical Reference.

 � In Pascal, sops is of type semopary.

 � In FORTRAN, sops is an array(1000,3) of type INTEGER.

 nsops

VS/AIX Interface Library
SEMOP perform semaphore operations

¦ Copyright IBM Corp. 1985, 1989
2.70 - 1

 specifies the number of semaphore operations to be performed. A
 semaphore set is limited to 1000 semaphores.

 � In Pascal, nsops is of type integer.

 � In FORTRAN, nsops is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. In
 addition, each value of sempid for each semaphore in the array pointed to
 by sops is set to the process ID of the calling process. The value -1 is
 returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SEMOP
 system routine. In these examples, a semaphore identifier is retrieved by
 a call to SEMGET from the associated key parameter ("red") returned by a
 call to the ftok system subroutine. The call to SEMGET would typically be
 part of a program used between two processes using semaphores to buffer
 information. The call to SEMOP is used by the sending process to perform
 two semaphore operations. The first operation decrements a counter of
 empty buffer available upon sending information. The second operation
 increments a second counter of data packages that can be received by a
 second process.

 Pascal

 procedure semop1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, grey, pink, red : integer;
 orange : st80;
 brown : char;
 yellow : semopary;

 %include /usr/include/aildefs.inc

 begin
 brown := 'z';
 orange := '/tmp/junk';
 grey := IPCCRT + IRUSR + IWUSR;
 red := p_ftok (orange, brown);
 pink := p_semget (red, 2, grey);
 yellow[1].sem_num := 1;
 yellow[2].sem_num := 2;
 yellow[1].sem_op := 1;
 yellow[2].sem_op := -1;
 yellow[1].sem_flg := 0;
 yellow[2].sem_flg := 0;
 blue := p_semop (pink, yellow, 2);
 writeln (blue);

VS/AIX Interface Library
SEMOP perform semaphore operations

¦ Copyright IBM Corp. 1985, 1989
2.70 - 2

 end;

 FORTRAN

 SUBROUTINE SEMOP1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSEMOP, FSEMGET, FFTOK, BLUE, GREY
 INTEGER PINK, RED, YELLOW(1000,3)
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'z'
 ORANGE = '/tmp/junk '
 GREY = IPCCRT + IRUSR + IWUSR
 RED = FFTOK (ORANGE, BROWN)
 PINK = FSEMGET (RED, 2, GREY)
 YELLOW(1,1) = 1
 YELLOW(2,1) = 2
 YELLOW(1,2) = 1
 YELLOW(2,2) = -1
 YELLOW(1,3) = 0
 YELLOW(2,3) = 0
 BLUE = SEMOP (PINK, YELLOW, 2)
 PRINT *, BLUE
 END

VS/AIX Interface Library
SEMOP perform semaphore operations

¦ Copyright IBM Corp. 1985, 1989
2.70 - 3

 2.71 SEND, SENDMSG, SENDTO send a message from a socket

 Description
 The SEND, SENDMSG, and SENDTO system calls send a message from a specified
 socket.

 Note: The SEND system call can be used only when the specified socket is
 in a connected state. The SENDMSG and SENDTO calls can be used at
 any time.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_send (s, msg, len, flags); ¦
 ¦ ¦
 ¦ p_sendmsg (s, msg, flags); ¦
 ¦ ¦
 ¦ p_sendto (s, msg, len, flags, to, tolen); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function declarations ------------------------------+
 ¦ ¦
 ¦ function p_send (s : integer; msg : msgarr; len : integer; ¦
 ¦ flags : integer) : integer; external; ¦
 ¦ ¦
 ¦ function p_sendto (s : integer; msg : msgarr; len : integer; ¦
 ¦ flags : integer; to : sockaddrptr; ¦
 ¦ tolen : integer) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSEND (S, MSG, LEN, FLAGS) ¦
 ¦ ¦
 ¦ FSENDMSG (S, MSG, FLAGS) ¦
 ¦ ¦
 ¦ FSENDTO (S, MSG, LEN, FLAGS, TO, TOLEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket created by a SOCKET system call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 len
 is the length of the message to be sent. The len parameter is used
 only in the SEND and SENDTO system calls.

 � In Pascal, len is of type integer.

VS/AIX Interface Library
SEND, SENDMSG, SENDTO send a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.71 - 1

 � In FORTRAN, len is of type INTEGER.

 flags
 is an argument whose value is specified by logically OR-ing one or
 both of the values shown here:

 MSG_OOB processes the out-of-band data on sockets that support this
 notion.

 MSG_DONTROUTE sends the message without reference to routing tables.

 The flags parameter is used only in the SEND and SENDTO system calls.

 � In Pascal, flags is of type integer.

 � In FORTRAN, flags is of type INTEGER.

 msg
 is a message header to be received.

 When the SENDMSG system call is used:

 � In Pascal, msg is of type msghdrptr, declared in the include file
 ailtypes.inc.

 � In FORTRAN, msg is of type CHARACTER*80.

 When the SEND and SENDTO system calls are used:

 � In Pascal, msg is an array of type msgarr (a user-defined packed
 array of type character).

 � In FORTRAN, msg is a user-defined array of type CHARACTER.

 to
 is the address of the target.

 � In Pascal, to is of type sockaddrptr, declared in the include file
 ailtypes.inc.

 � In FORTRAN, to is of type CHARACTER*14. The final character of
 the string must be a blank space.

 tolen
 is the size of the data in the to parameter.

 � In Pascal, tolen is of type integer.

 � In FORTRAN, tolen is of type INTEGER.

 Return Values
 The length of the message, in bytes, is returned upon successful
 completion of the call. A value of -1 is returned and an error code set
 in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
SEND, SENDMSG, SENDTO send a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.71 - 2

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the SEND
 system routine. Because SEND sends a message only when a socket is in a
 connected state, sockets "s" and "s1" are created, after which "s1" is
 bound to the name "socket" and connected to socket "s". Finally, a
 message is sent from "s" to the connected socket (in this case, "s1").

 Pascal

 procedure send1;

 const
 %include /usr/include/ailpconsts.inc
 type
 msgarr = packed array[1..50] of char;

 %include /usr/include/ailtypes.inc

 var
 flags, len, s : integer;
 msg : msgarr;

 function p_send (s : integer; msg : msgarr;
 len, flags : integer) : integer; external;

 %include /usr/include/aildefs.inc

 begin
 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 msg := 'This is a short message';
 len := 23;
 flags := MSG_DONTROUTE + MSG_OOB;
 green := p_send (s, msg, len, flags);
 writeln ('Send returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SEND1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSEND, FSOCKET, FLAGS, LEN, S
 CHARACTER*50 MSG
 FLAGS = MSGDONTROUTE + MSGOOB
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (S .EQ. -1) CALL ERRORS
 MSG = 'This is a short message '
 LEN = 23
 GREEN = FSEND (S, MSG, LEN, FLAGS)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SEND, SENDMSG, SENDTO send a message from a socket

¦ Copyright IBM Corp. 1985, 1989
2.71 - 3

 2.72 SETGROUPS set a group access list

 Description
 The SETGROUPS system call sets, or creates, the group access list of the
 current user process according to the values set in an array specified in
 the call.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setgroups (ngrps, gidset); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETGROUPS (NGRPS, GIDSET) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 ngrps
 is the number of entries in the array pointed to by gidset. This
 number may not exceed the constant NGROUP defined in the Pascal and
 FORTRAN constants include files.

 � In Pascal, ngrps is of type integer.

 � In FORTRAN, ngrps is of type INTEGER.

 gidset
 is an array containing the values to be placed in the group access
 list. The maximum number of elements the array may hold is equal to
 the constant NGROUP defined in the Pascal and FORTRAN constants
 include files.

 � In Pascal, gidset is an array of type intngroup. (Setptr is a
 pointer to a user-defined integer array.)

 � In FORTRAN, gidset is a user-defined array, of type INTEGER,
 containing up to NGROUP elements.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SETGROUPS system routine, which in these examples sets the group access

VS/AIX Interface Library
SETGROUPS set a group access list

¦ Copyright IBM Corp. 1985, 1989
2.72 - 1

 list of the current user process to that of the three named elements of
 the array pointed to (Pascal) or specified (FORTRAN) by the variable
 "red".

 Pascal

 procedure setgroups1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green : integer;
 red : intngroup;

 begin
 red[1] := 1;
 red[2] := 2;
 red[3] := 3;
 green := 3;
 blue := p_setgroups (green, red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SETGROUPS1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETGROUPS, BLUE, GREEN, RED(3)
 RED(1) = 1
 RED(2) = 2
 RED(3) = 3
 GREEN = 3
 BLUE = FSETGROUPS (GREEN, RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
SETGROUPS set a group access list

¦ Copyright IBM Corp. 1985, 1989
2.72 - 2

 2.73 SETHOSTID set an identifier for the host machine

 Description
 The SETHOSTID system call sets a unique identifier for the current host.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sethostid (hostid); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETHOSTID (HOSTID) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 hostid
 is the unique identifier assigned to the current host.

 � In Pascal, hostid is of type integer.

 � In FORTRAN, hostid is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page set the host
 ID to 25.

 Pascal

 procedure sethostid1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;

 %include /usr/include/aildefs.inc

 begin

VS/AIX Interface Library
SETHOSTID set an identifier for the host machine

¦ Copyright IBM Corp. 1985, 1989
2.73 - 1

 green := p_sethostid(25);
 writeln ('Sethostid returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETHOSTID1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETHOSTID, GREEN
 GREEN = FSETHOSTID(25)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SETHOSTID set an identifier for the host machine

¦ Copyright IBM Corp. 1985, 1989
2.73 - 2

 2.74 SETHOSTNAME set the name of the current host

 Description
 The SETHOSTNAME system call sets the name of the current host machine.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sethostname (name, namelen); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETHOSTNAME (NAME, NAMELEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 name
 is the name of the host machine.

 � In Pascal, name is of type st80.

 � In FORTRAN, name is of type CHARACTER*80. The terminating
 character of the string must be a blank space.

 namelen
 is the length of the name parameter.

 � In Pascal, namelen is of type integer.

 � In FORTRAN, namelen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page set the name
 of the current host to "HNAME".

 Pascal

 procedure sethostname1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
SETHOSTNAME set the name of the current host

¦ Copyright IBM Corp. 1985, 1989
2.74 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 green, namelen : integer;
 name : st80;

 %include /usr/include/aildefs.inc

 begin
 namelen := 5;
 name := 'HNAME ';
 green := p_sethostname (name, namelen);
 writeln ('Sethostname returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETHOSTNAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETHOSTNAME, GREEN
 GREEN = FSETHOSTNAME ('HNAME ', 5)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SETHOSTNAME set the name of the current host

¦ Copyright IBM Corp. 1985, 1989
2.74 - 2

 2.75 SETITIMER set the value of an internal timer

 Description
 The SETITIMER system call sets the value of internal timer specified in
 the call.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setitimer (which, value, ovalue); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETITIMER (WHICH, VALUE, OVALUE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 which
 specifies one of the following internal timers:

 ITIMER_REAL the timer decrements in real time.

 ITIMER_VIRTUAL the timer decrements in process virtual time (it runs
 only when the process is executing).

 ITIMER_PROF the timer decrements both in process virtual time and
 when the operating system is executing on behalf of
 the process.

 Note: In FORTRAN, the underscore is omitted (for example,
 "ITIMERREAL").

 � In Pascal, which is of type integer.

 � In FORTRAN, which is of type INTEGER.

 value
 is a variable in which the time is returned when the call is executed.

 � In Pascal, value is of type itimerval, declared in the include
 file ailtypes.inc.

 � In FORTRAN, value is an array of four integers, or INTEGER
 VALUE(4).

 ovalue
 is a variable in which the previous timer value is returned when the
 call is executed.

 � In Pascal, ovalue is of type itimerval, declared in the include

VS/AIX Interface Library
SETITIMER set the value of an internal timer

¦ Copyright IBM Corp. 1985, 1989
2.75 - 1

 file ailtypes.inc.

 � In FORTRAN, ovalue is an array of four integers, or INTEGER
 VALUE(4).

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code is set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SETITIMER
 system routine, which in these examples set the value of the ITIMER_REAL
 timer to "5" and returns the previous value in the variable "ovalue".

 Pascal

 procedure setitimer1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 which : integer;
 ovalue, vvalue : itimerval;

 %include /usr/include/aildefs.inc

 begin
 with vvalue do
 begin
 it_interval.tv_sec := 5;
 it_interval.tv_usec := 4;
 it_value.tv_sec := 3;
 it_value.tv_usec := 2;
 end;
 which := ITIMER_REAL;
 green := p_setitimer (which, vvalue, ovalue);
 writeln ('Setitimer returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETITIMER1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETITIMER, VAL(4), OVAL(4), GREEN
 VAL(1) = 5
 VAL(2) = 4
 VAL(3) = 3
 VAL(4) = 2
 GREEN = FSETITIMER (ITIMERREAL, VAL, OVAL)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS

VS/AIX Interface Library
SETITIMER set the value of an internal timer

¦ Copyright IBM Corp. 1985, 1989
2.75 - 2

 END

VS/AIX Interface Library
SETITIMER set the value of an internal timer

¦ Copyright IBM Corp. 1985, 1989
2.75 - 3

 2.76 SETLOCAL set the alias for <LOCAL>

 Description
 The SETLOCAL system call sets the calling process' alias for <LOCAL>.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setlocal (localname) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETLOCAL (LOCALNAME) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 localname
 is the pathname for <LOCAL>.

 � In Pascal, localname is of type st80.

 � In FORTRAN, localname is of type CHARACTER*80. The terminating
 character must be a blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SETLOCAL system routine, which in these examples sets the value of the
 current <LOCAL> to "NEW_AIX" (Pascal) or "NEWAIX" (FORTRAN).

 Pascal

 procedure setlocal1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 buf : st80;

 %include /usr/include/aildefs.inc

 begin

VS/AIX Interface Library
SETLOCAL set the alias for <LOCAL>

¦ Copyright IBM Corp. 1985, 1989
2.76 - 1

 buf := 'new_aix';
 green := p_setlocal (buf);
 writeln (buf);
 writeln ('Setlocal returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETLOCAL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETLOCAL, GREEN
 CHARACTER BUF(80)
 BUF = 'NEWAIX '
 GREEN = FSETLOCAL (BUF)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SETLOCAL set the alias for <LOCAL>

¦ Copyright IBM Corp. 1985, 1989
2.76 - 2

 2.77 SETPGRP, SETPGID set a process group ID

 Description
 The SETPGRP and SETPGID system calls set a process group ID.

 � The SETPGRP system call sets the group ID of the calling process to
 its process ID.

 � The SETPGID system call is used either to join a calling process to a
 process group or to create a new process group.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setpgrp; ¦
 ¦ ¦
 ¦ p_setpgid (pid, pgid) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETPGRP () ¦
 ¦ ¦
 ¦ FSETPGID (PID, PGID) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters
 The SETPGRP system call has no parameters.

 pid
 is the process group ID to be set.

 � In Pascal, pid is of type integer.

 � In FORTRAN, pid is of type integer.

 pgid
 specifies the value to which the pid is to be set.

 � In Pascal, pgid is of type integer.

 � In FORTRAN, pgid is of type integer.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SETPGRP
 system routine, which returns a new process group ID in the variable
 "blue".

VS/AIX Interface Library
SETPGRP, SETPGID set a process group ID

¦ Copyright IBM Corp. 1985, 1989
2.77 - 1

 Pascal

 procedure setpgrp1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_setpgrp;
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SETPGRP1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETPGRP, BLUE
 BLUE = FSETPGRP ()
 PRINT *, BLUE
 END

VS/AIX Interface Library
SETPGRP, SETPGID set a process group ID

¦ Copyright IBM Corp. 1985, 1989
2.77 - 2

 2.78 SETSOCKOPT set options on sockets

 Description
 The SETSOCKOPT system sets the options for a specified socket. These
 options may exist at multiple protocol levels, and are always present at
 the uppermost socket level.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setsockopt (s, level, optname, optval, optlen) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETSOCKOPT (S, LEVEL, OPTNAME, OPTVAL, OPTLEN) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of a socket that was created with a SOCKET system
 call.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 level
 is level at which the desired option resides. To manipulate options
 at the socket level, specify the level as SOL_SOCKET.

 � In Pascal, level is of type integer.

 � In FORTRAN, level is of type INTEGER;

 optname
 is the option name, passed uninterpreted to the appropriate protocol
 module for interpretation. The socket-level options are:

 SO_DEBUG turns on recording of debugging information.

 SO_REUSEADDR allows local address reuse.

 SO_KEEPALIVE keeps connections alive.

 SO_DONTROUTE does not apply routing on outgoing messages.

 SO_LINGER lingers on a CLOSE system call if data is present.

 SO_OOBINLINE leaves received out-of-band data in line.

VS/AIX Interface Library
SETSOCKOPT set options on sockets

¦ Copyright IBM Corp. 1985, 1989
2.78 - 1

 SO_SNDBUF sends buffer size.

 SO_RCVBUF receives buffer size.

 SO_ERROR gets error status.

 SO_TYPE gets socket type.

 SO_BROADCAST requests permission to transmit broadcast messages.

 Note: In FORTRAN, the underscore is omitted (for example, "SODEBUG").

 � In Pascal, optname is of type integer.

 � In FORTRAN, optname is of type INTEGER.

 optval
 points to a buffer, in which the option values are returned by the
 system call.

 � In Pascal, optval is of type st80.

 � In FORTRAN, optval is of type CHARACTER*80. The terminating
 character must be a blank space.

 optlen.
 specifies the length of the buffer pointed to by optval.

 � In Pascal, optlen is of type integer.

 � In FORTRAN, optlen is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 SETSOCKOPT system routine, which in these examples sets the options for
 socket s The level has been set to SOL_SOCKET and the option name to
 SO_DEBUG.

 Pascal

 procedure setsockopt1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 level, optlen, optname, s, green : integer;
 optval : st80;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
SETSOCKOPT set options on sockets

¦ Copyright IBM Corp. 1985, 1989
2.78 - 2

 begin
 s := p_socket (PF_UNIX, SOCK_STREAM, 0);
 level := SOL_SOCKET;
 optname := SO_DEBUG;
 optval := '';
 optlen := 0;
 green := p_setsockopt (s, level, optname, otpval, optlen);
 writeln ('Setsockopt returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETSOCKOPT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSETSOCKOPT, FSOCKET, LEVEL, OPTLEN, OPTNAME, S, GREEN
 CHAR*80 OPTVAL
 S = FSOCKET (PFUNIX, SKSTRM, 0)
 OPTNAME = SODEBUG
 IF (S .EQ. -1) CALL ERRORS
 LEVEL = SOLSOCKET
 GREEN = FSETSOCKOPT (S, LEVEL, OPTNAME, 0, 0)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SETSOCKOPT set options on sockets

¦ Copyright IBM Corp. 1985, 1989
2.78 - 3

 2.79 SETTIMEOFDAY set the current time

 Description
 The SETTIMEOFDAY system call sets the current time.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_settimeofday (tp, tzp); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETTIMEOFDAY (TP, TZP) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 tp
 holds two integers:

 1. the number of seconds that have elapsed since 00:00:00 January 1,
 1970 GMT, plus

 2. the number of microseconds that must be added to the preceding
 number to get the current time.

 � In Pascal, tp is of type timeval, declared in the include file
 ailtypes.inc.

 � In FORTRAN, tp is of type INTEGER TP(2).

 tzp
 holds two integers:

 1. the time west of Greenwich in minutes.

 2. the type of DST correction to apply.

 � In Pascal, tzp is of type timezone, declared in the include file
 ailtypes.inc.

 � In FORTRAN, tzp is of type INTEGER TZP(2).

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

VS/AIX Interface Library
SETTIMEOFDAY set the current time

¦ Copyright IBM Corp. 1985, 1989
2.79 - 1

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 SETTIMEOFDAY system routine, which in these examples sets the current
 Greenwich time and the current time to the values that tp and tzp are
 given when they are initialized.

 Pascal

 procedure settimeofday1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 tp : timeval;
 tzp : timezone;

 %include /usr/include/aildefs.inc

 begin
 tp.tv_sec := 34567;
 tp.tv_usec := 12345;
 tzp.tz_minuteswest := 93845;
 green := p_settimeofday (tp, tzp);
 writeln ('Settimeofday returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SETTIMEOFDAY1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER, FSETTIMEOFDAY, TP(2), TZP(2), GREEN
 TP(1) = 123445
 TP(2) = 567889
 TZP(1) = 48604
 GREEN = FSETTIMEOFDAY (TP, TZP)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SETTIMEOFDAY set the current time

¦ Copyright IBM Corp. 1985, 1989
2.79 - 2

 2.80 SETUID, SETGID set user or group identifiers

 Description
 The SET system calls described in this section set the user or group IDs
 to values specified in the call. Both the effective and the real IDs are
 set.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setuid (uid); ¦
 ¦ ¦
 ¦ p_setgid (gid); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETUID (UID) ¦
 ¦ ¦
 ¦ FSETGID (GID) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 uid
 is used with SETUID. It is the new value of the user ID to be set.

 � In Pascal, uid is of type integer.

 � In FORTRAN, uid is of type INTEGER.

 gid
 is used with SETGID. It is the new value of the new group ID to be
 set.

 � In Pascal, gid is of type integer.

 � In FORTRAN, gid is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of a call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SETGID
 system routine, which sets the real and effective group IDs. In these
 examples a value is obtained through a call to GETGID and then sent to
 SETGID.

 Pascal

VS/AIX Interface Library
SETUID, SETGID set user or group identifiers

¦ Copyright IBM Corp. 1985, 1989
2.80 - 1

 procedure setgid1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;
 red : ushrt;

 %include /usr/include/aildefs.inc

 begin
 red := p_getgid;
 blue := p_setgid (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SETGID1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER*2 FGETGID, FSETGID, BLUE, RED
 RED = FGETGID ()
 BLUE = FSETGID (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
SETUID, SETGID set user or group identifiers

¦ Copyright IBM Corp. 1985, 1989
2.80 - 2

 2.81 SETXVERS set the UNIX version string

 Description
 The SETXVERS system call sets the value of the UNIX version string.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_setxvers (xvers); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSETXVERS (XVERS) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 xvers
 is a pointer to the version string.

 � In Pascal, xvers is of type st80.

 � In FORTRAN, xvers is of type CHARACTER*80. The terminating
 character of the string must be a blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SETXVERS
 system routine, which in these examples sets the value of the version
 string to "NEW_VERSION".

 Pascal

 procedure setxvers1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green: integer:
 s, s1 : st80;

 %include /usr/include/aildefs.inc

 begin

VS/AIX Interface Library
SETXVERS set the UNIX version string

¦ Copyright IBM Corp. 1985, 1989
2.81 - 1

 s := 'NEW_VERSION';
 green := p_setxvers (s);
 green := p_getxvers (s1, 10);
 writeln (s);
 end;

 FORTRAN

 SUBROUTINE SETXVERS1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER, FSETXVERS, FGETXVERS, GREEN
 CHARACTER*80 S, S1
 S = 'NEW_VERSION '
 GREEN = FSETXVERS (S)
 GREEN = FGETXVERS (S1, 10)
 PRINT *, S1
 END

VS/AIX Interface Library
SETXVERS set the UNIX version string

¦ Copyright IBM Corp. 1985, 1989
2.81 - 2

 2.82 SHMAT attach a shared-memory segment or mapped file

 Description
 The SHMAT system call attaches one of the following to the address space
 of the calling process:

 � a shared memory segment, o
 � a mapped file associated with a shared-memory identifier (returned b
 SHMGET), or
 � a file descriptor (returned by OPEN).

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_shmat (shmid, shmadr, shmflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSHMAT (SHMID, SHMADR, SHMFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 shmid
 is either a shared-memory identifier returned by SHMGET or a file
 descriptor returned by OPEN.

 � In Pascal, shmid is of type integer.

 � In FORTRAN, shmid is of type INTEGER.

 shmadr
 determines the address to which the shared-memory segment is attached.

 � In Pascal, shmadr is of type integer.

 � In FORTRAN, shmadr is of type INTEGER.

 shmflg
 specifies a set of conditions governing the attachment of a
 shared-memory segment or a mapped file to an address space. The value
 assigned to shmflg is that of one or more of the options in the
 following list. These are defined in the Pascal and FORTRAN constants
 include files.

 SHMRND rounds the address given by the shmadr parameter to the
 next lower segment boundary if necessary.

 SHMRDO specifies read-only mode (the default is read-write mode).

 � In Pascal, shmflag is of type integer.

 � In FORTRAN, shmflg is of type INTEGER.

VS/AIX Interface Library
SHMAT attach a shared-memory segment or mapped file

¦ Copyright IBM Corp. 1985, 1989
2.82 - 1

 Return Values
 The start address of the attached shared-memory segment or mapped file is
 returned on successful completion of the call. The value -1 is returned
 and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SHMAT
 system routine. In these examples, the shared-memory identifier returned
 by a SHMGET call is used to specify the shared-memory segment that SHMAT
 attaches to the address of the calling process.

 Pascal

 procedure shmat1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 orange : st80;
 brown : char;

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/tmp/junk';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_shmget (red, 512, blue);
 blue := p_shmat (green, 0, 0);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SHMAT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSHMAT, FSHMGET, FFTOK, BLUE, GREEN, RED
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'
 ORANGE = '/tmp/junk '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FSHMGET (RED, 512, BLUE)
 BLUE = FSHMAT (GREEN, 0, 0)
 PRINT *, BLUE
 END

VS/AIX Interface Library
SHMAT attach a shared-memory segment or mapped file

¦ Copyright IBM Corp. 1985, 1989
2.82 - 2

 2.83 SHMCTL invoke shared-memory-control operations

 Description
 The SHMCTL system call invokes three shared-memory-control operations.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_shmctl (shmid, cmd, buf); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSHMCTL (SHMID, CMD, BUF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 shmid
 is a shared-memory-segment identifier returned by the SHMGET call.

 � In Pascal, shmid is of type integer.

 � In FORTRAN, shmid is of type INTEGER

 cmd
 specifies the control operation to be performed. These operations are
 defined in the Pascal and FORTRAN constants include files.

 IPCRMD removes the shared-memory identifier specified by shmid
 from the system and erases the shared-memory segment and
 associated data structure.

 Note: This option can be executed only by a process that
 has an effective user ID equal to that of the
 super-user or to the value of shm.perm.uid in the
 data structure.

 IPCSET sets the value of the following members of the data
 structure associated with shmid to the corresponding value
 found in the structure pointed to by the buf parameter:

 � shperm.uid
 � shper.gid
 � shperm.mode (low-order nine bits only)

 Note: This cmd option can be executed only by a process
 that has an effective user ID equal to that of
 super-user or to the value of shm.perm.uid in the
 data structure associated with the shmid parameter.

 IPCSTT places the current value of each member of the data

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

¦ Copyright IBM Corp. 1985, 1989
2.83 - 1

 structure associated with shmid in the structure pointed
 to by the buf parameter. The current process must have
 read permissions on this shared-memory segment or mapped
 file.

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 buf
 is a pointer to the data structure to be modified.

 � In Pascal, buf is of type smds.

 � In FORTRAN, buf is an array(12) of type INTEGER.

 This array corresponds to the Pascal data structure--defined in the
 aildefs.inc file (Appendix C)--as follows:

 BUF(1) = shperm.uid, shperm.gid (2 bytes each)

 BUF(2) = shperm.cuid, shperm.cgid (2 bytes each)

 BUF(3) = shperm.mode, shperm.seg (2 bytes each)

 BUF(4) = shperm.key

 BUF(5) = shperm.shseqsz

 BUF(6) = shperm.spare0

 BUF(7) = shperm.shlpid

 BUF(8) = shcpid

 BUF(9) = shnattach, shcnattach (2 bytes each)

 BUF(10) = shatime

 BUF(11) = shdtime

 BUF(12) = shctime

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SHMCTL system routine. In these examples, the cmd parameter ("pink")
 specifies an option that will place information about a shared-memory
 segment (identified by the shmid parameter, or "green") in the data
 structure pointed to by the buf parameter. In Pascal this structure is
 the record pointed to by the variable "yellow". In FORTRAN, "YELLOW" is
 an array. The value printed is the process user ID.

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

¦ Copyright IBM Corp. 1985, 1989
2.83 - 2

 Pascal

 procedure shmctl1;

 const
 %include/usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, pink, red : integer;
 orange : st80;
 brown : char;
 yellow : smds;

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/tmp/junk';
 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_shmget (red, 512, blue);
 pink := IPCSTT;
 red := p_shmctl (green, pink, yellow);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE SHMCTL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSHMCTL, FSHMGET, FFTOK, BLUE, GREEN, PINK, RED, YELLOW(12)
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'
 ORANGE = '/tmp/junk '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FSHMGET (RED, 512, blue)
 PINK = IPCSTT
 RED = FSHMCTL (GREEN, PINK, YELLOW)
 PRINT *, RED
 END

VS/AIX Interface Library
SHMCTL invoke shared-memory-control operations

¦ Copyright IBM Corp. 1985, 1989
2.83 - 3

 2.84 SHMDT detach a shared-memory or mapped file segment

 Description
 The SHMDT system call detaches a shared-memory segment from the data
 segment of the calling process. Shared memory segments must be explicitly
 detached using SHMDT.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_shmdt (shmadr); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSHMDT (SHMADR) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 shmadr
 is the address at which the memory segment is detached from the
 address space of the calling process. It is the same address as that
 at which the segment was originally attached (see SHMAT on page 2.82)

 � In Pascal, shmadr is of type integer.

 � In FORTRAN, shmadr is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SHMDT system routine, which in these examples detaches the shared-memory
 segment identified by the address returned by a call to SHMAT.

 Pascal

 procedure shmdt1;

 const
 %include/usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, grey, pink, red : integer;
 orange : st80;
 brown : char;

VS/AIX Interface Library
SHMDT detach a shared-memory or mapped file segment

¦ Copyright IBM Corp. 1985, 1989
2.84 - 1

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/tmp/junk';
 grey := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 pink := p_shmget (red, 512, grey);
 blue := p_shmat (pink, 0, 0);
 green := p_shmdt (blue);
 writeln (green);
 end;

 FORTRAN

 SUBROUTINE SHMDT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSHMDT, FSHMAT, FSHMGET, FFTOK, BLUE, GREEN
 INTEGER GREY, PINK, RED
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'
 ORANGE = '/tmp/junk '
 GREY = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 PINK = FSHMGET (RED, 512, GREY)
 BLUE = FSHMAT (PINK, 0, 0)
 GREEN = FSHMDT (BLUE)
 PRINT *, GREEN
 END

VS/AIX Interface Library
SHMDT detach a shared-memory or mapped file segment

¦ Copyright IBM Corp. 1985, 1989
2.84 - 2

 2.85 SHMGET get a shared-memory-segment identifier

 Description
 The SHMGET system call returns a shared-memory-segment ID associated with
 the specified key value.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_shmget (key, size, shmflg); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSHMGET (KEY, SIZE, SHMFLG) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 key
 is either the value 0 (IPCPVT) or an IPC key returned by the ftok
 system subroutine. A shared-memory ID, its associated data structure,
 and shared-memory segment, equal in bytes to the value of size is
 created if:

 � key is set equal to 0 (IPCPVT).

 or

 � key does not already have a shared-memory ID associated with it
 and the shmflg parameter is set equal to the constant IPCCRT.

 The initial values of the data structure associated with a newly
 created shared-memory ID are listed later in this section under Return
 Values

 � In Pascal, key is of type integer.

 � In FORTRAN, key is of type INTEGER.

 size
 is the number of bytes in the shared-memory segment.

 � In Pascal, size is of type integer.

 � In FORTRAN size is of type INTEGER.

 shmflg
 specifies a set of conditions (options) governing the creation of a
 shared-memory data structure and the accessibility of the segment.
 The parameter value is that of one of the following options or is
 constructed from two or more of those options by logical ORing. The
 options are defined as constants in the Pascal and FORTRAN constants
 include files.

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier

¦ Copyright IBM Corp. 1985, 1989
2.85 - 1

 IPCCRT creates a data structure if one does not exist.

 IPCEXL causes SHMGET to fail if IPCCRT is also set and the data
 structure already exists.

 IRUSR permits the process that owns the data structure to read
 it.

 IWUSR permits the process that owns the data structure to modify
 it.

 IRGRP permits the group associated with the data structure to
 read it.

 IWGRP permits the group associated with the data structure to
 modify it.

 IROTH permits others to read the data structure.

 IWOTH permits others to modify the data structure.

 � In Pascal, shmflg is of type integer.

 � In FORTRAN, shmflg is of type INTEGER.

 Return Values
 A shared-memory ID is returned upon successful completion of the call.
 The data structure associated with a newly created ID (smds; see Appendix
 C) is initialized. The value -1 is returned and an error code set in
 errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SHMGET
 system routine, which in these examples returns a shared-memory identifier
 associated with the value of key ("red") returned by the call to the ftok
 system subroutine.

 Pascal

 procedure shmget1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 orange : st80;
 brown : char;

 %include /usr/include/aildefs.inc

 begin
 brown := 'm';
 orange := '/tmp/junk';

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier

¦ Copyright IBM Corp. 1985, 1989
2.85 - 2

 blue := IPCCRT + IRUSR;
 red := p_ftok (orange, brown);
 green := p_shmget (red, 512, blue);
 writeln (green);
 end;

 FORTRAN

 SUBROUTINE SHMGET1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSHMGET, FFTOK, BLUE, GREEN, RED
 CHARACTER BROWN, ORANGE(80)
 BROWN = 'm'
 ORANGE = '/tmp/junk '
 BLUE = IPCCRT + IRUSR
 RED = FFTOK (ORANGE, BROWN)
 GREEN = FSHMGET (RED, 512, BLUE)
 PRINT *, GREEN
 END

VS/AIX Interface Library
SHMGET get a shared-memory-segment identifier

¦ Copyright IBM Corp. 1985, 1989
2.85 - 3

 2.86 SHUTDOWN shut down part or all of a full-duplex connection

 Description
 The SHUTDOWN system call disables a specified connected socket from
 sending or receiving or both.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_shutdown (s, how); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSHUTDOWN (S, HOW) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 s
 is the descriptor of the socket that is to be shut down.

 � In Pascal, s is of type integer.

 � In FORTRAN, s is of type INTEGER.

 how
 specifies one of three options:

 0 prevents further receives.

 1 prevents further sends.

 2 prevents further receives and sends.

 � In Pascal, how is of type integer.

 � In FORTRAN, how is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SHUTDOWN
 system routine, which in these examples, with how set to 0 (zero),
 disables the specified socket from receiving.

 Pascal

VS/AIX Interface Library
SHUTDOWN shut down part or all of a full-duplex connection

¦ Copyright IBM Corp. 1985, 1989
2.86 - 1

 procedure shutdown1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 s, green : integer;
 sv : intz;

 %include /usr/include/aildefs.inc

 begin
 s := p_socketpair (PF_UNIX, SOCK_DGRAM, 0, sv);
 if (s = -1) then showerror;
 green := p_shutdown (sv&lrbk., 0);
 writeln ('Shutdown returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SHUTDOWN1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSHUTDOWN, FSOCKETPAIR, S, GREEN, SV(2)
 S = FSOCKETPAIR (PFUNIX, SKDGRAM,, 0, SV)
 IF (S .EQ. -1) CALL ERRORS
 GREEN = FSHUTDOWN (SV(1), 0)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SHUTDOWN shut down part or all of a full-duplex connection

¦ Copyright IBM Corp. 1985, 1989
2.86 - 2

 2.87 SIGACTION specify the action to be taken upon receipt of a signal

 Description
 The SIGACTION system call enables the calling process to examine or change
 the action to be taken when it receives a specified signal.

 The signals that can be specified in a SIGACTION call are listed in the
 descriptions of the sig parameter.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigaction (sig, act, oact); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ This system call is not available in FORTRAN. ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sig
 is a number that specifies a particular signal. The signals that can
 be specified in a SIGACTION call are listed here and are defined in
 the Pascal constants include file. For more information about these
 signals, refer to Volume 1 of the AIX Operating System Technical
 Reference.

 +--+
 ¦ ¦ Signal ¦ ¦
 ¦ Signal ¦ Number ¦ Event ¦
 +--------------+------------+--¦
 ¦ SIGHUP ¦ 1 ¦ Hangup ¦
 +--------------+------------+--¦
 ¦ SIGINT ¦ 2 ¦ Interrupt ¦
 +--------------+------------+--¦
 ¦ SIGQT ¦ 3* ¦ Quit ¦
 +--------------+------------+--¦
 ¦ SIGILL ¦ 4* ¦ Illegal instruction (not reset when ¦
 ¦ ¦ ¦ caught) ¦
 +--------------+------------+--¦
 ¦ SIGTRAP ¦ 5 ¦ Trace trap (not reset when caught) ¦
 +--------------+------------+--¦
 ¦ SIGIOT ¦ 6 ¦ Abort process (see FABORT on page 2.21) ¦
 +--------------+------------+--¦
 ¦ SIGEMT ¦ 7 ¦ EMT instruction ¦
 +--------------+------------+--¦
 ¦ SIGFPE ¦ 8 ¦ Arithmetic exception, floating-point ¦
 ¦ ¦ ¦ exception, or integer divide by zero. ¦
 +--------------+------------+--¦
 ¦ SIGKIL ¦ 9 ¦ Kill (cannot be caught or ignored) ¦
 +--------------+------------+--¦
 ¦ SIGBUS ¦ 10 ¦ Specification exception ¦
 +--------------+------------+--¦

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

¦ Copyright IBM Corp. 1985, 1989
2.87 - 1

 ¦ SIGSEGV ¦ 11 ¦ Segmentation violation ¦
 +--------------+------------+--¦
 ¦ SIGSYS ¦ 12 ¦ Bad parameter to system call ¦
 +--------------+------------+--¦
 ¦ SIGPIPE ¦ 13 ¦ Write on pipe when there is no process ¦
 ¦ ¦ ¦ to ¦
 ¦ ¦ ¦ read it ¦
 +--------------+------------+--¦
 ¦ SIGALRM ¦ 14 ¦ Alarm clock ¦
 +--------------+------------+--¦
 ¦ SIGTERM ¦ 15 ¦ Software termination signal ¦
 +--------------+------------+--¦
 ¦ SIGURG ¦ 16 ¦ Urgent condition on I/O channel ¦
 +--------------+------------+--¦
 ¦ SIGSTOP ¦ 17 ¦ Stop (cannot be caught or ignored) ¦
 +--------------+------------+--¦
 ¦ SIGSTP ¦ 18 ¦ Interactive stop ¦
 +--------------+------------+--¦
 ¦ SIGCONT ¦ 19 ¦ Continue if stopped (cannot be caught or ¦
 ¦ ¦ ¦ ignored) ¦
 +--------------+------------+--¦
 ¦ SIGCHLD ¦ 20 ¦ To parent on child stop or exit ¦
 +--------------+------------+--¦
 ¦ SIGPTTIN ¦ 21 ¦ Background read attempted from control ¦
 ¦ ¦ ¦ terminal ¦
 +--------------+------------+--¦
 ¦ SIGPTTOU ¦ 22 ¦ Background write attempted to control ¦
 ¦ ¦ ¦ terminal ¦
 +--------------+------------+--¦
 ¦ SIGIO ¦ 23 ¦ Input/output possible or completed ¦
 +--------------+------------+--¦
 ¦ SIGXCPU ¦ 24 ¦ CPU time limit exceeded (see setrlimit ¦
 ¦ ¦ ¦ in AIX Operating System Technical ¦
 ¦ ¦ ¦ Reference) ¦
 +--------------+------------+--¦
 ¦ SIGXFSZ ¦ 25 ¦ File size limit exceeded (see setrlimit ¦
 ¦ ¦ ¦ in AIX Operating System Technical ¦
 ¦ ¦ ¦ Reference) ¦
 +--------------+------------+--¦
 ¦ reserved ¦ 26 ¦ ¦
 +--------------+------------+--¦
 ¦ SIGMSG ¦ 27 ¦ Input data has been stored in the HFT ¦
 ¦ ¦ ¦ monitor mode ring buffer ¦
 +--------------+------------+--¦
 ¦ SIGWINCH ¦ 28 ¦ Window-size change ¦
 +--------------+------------+--¦
 ¦ SIGPWR ¦ 29 ¦ Power-failure restart ¦
 +--------------+------------+--¦
 ¦ SIGUSR1 ¦ 30 ¦ User-defined signal 1 ¦
 +--------------+------------+--¦
 ¦ SIGUSR2 ¦ 31 ¦ User-defined signal 2 ¦
 +--------------+------------+--¦
 ¦ SIGPROF ¦ 32 ¦ Profiling time alarm (see GETITIME on ¦
 ¦ ¦ ¦ page 2.31) ¦
 +--------------+------------+--¦
 ¦ SIGDANGER ¦ 33 ¦ System crash is imminent ¦
 +--------------+------------+--¦
 ¦ SIGPROF ¦ 34 ¦ Virtual time alarm (see SETITIME on page ¦
 ¦ ¦ ¦ 2.75) ¦
 +--------------+------------+--¦

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

¦ Copyright IBM Corp. 1985, 1989
2.87 - 2

 ¦ reserved ¦ 35-58 ¦ ¦
 +--------------+------------+--¦
 ¦ SIGGRANT ¦ 60 ¦ Grant HFT monitor access ¦
 +--------------+------------+--¦
 ¦ SIGRETRACT ¦ 61 ¦ Relinquish HFT monitor access ¦
 +--------------+------------+--¦
 ¦ SIGSOUND ¦ 62 ¦ An HFT sound control has completed ¦
 ¦ ¦ ¦ execution ¦
 +--------------+------------+--¦
 ¦ reserved ¦ 63 ¦ ¦
 +--+

 Note: For more information about these signals, see AIX Operating
 System Technical Reference.

 � In Pascal, sig is of type integer.

 act
 if not nil, points to a structure that describes the action to be
 taken on receipt of the sig signal.

 � In Pascal, act is of type sigactptr.

 oact
 if not nil, points to a structure in which the signal action data in
 effect at the time of the SIGACTION system call is returned.

 � In Pascal, oact is of type sigactptr.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 Examples

 The Pascal procedure that follows calls the SIGACTION system routine,
 which in this example returns data that was in effect at the time the
 interrupt signal (SIGINT) was issued. The data is returned in the
 parameter oact.

 Pascal

 procedure sigaction1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 rc : integer;
 oact : sigactptr;

 %include /usr/include/aildefs.inc

 begin
 rc := p_sigaction (2, nil, oact);

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

¦ Copyright IBM Corp. 1985, 1989
2.87 - 3

 writeln (rc);
 end;

VS/AIX Interface Library
SIGACTION specify the action to be taken upon receipt of a signal

¦ Copyright IBM Corp. 1985, 1989
2.87 - 4

 2.88 SIGBLOCK block one or more signals

 Description

 The SIGBLOCK system call blocks one or more specified signals until a
 subsequent SIGSETMASK "unblocks" them (see page 2.89 for a complete list
 of signals).

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigblock (mask); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSIGBLOCK (MASK) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 mask
 specifies the signal(s) to be blocked by logically ORing the parameter
 value with the previous signal mask of the calling process.

 Note: To set the mask value, use a number equal to 2 (two) raised to
 the (signal-number - 1) power. For example, the mask value
 that will block SIGNAL 31 is 2¦0 (see page 2.92).

 � In Pascal, mask is of type integer.

 � In FORTRAN, mask is of type INTEGER.

 Return Values
 The value that the signal mask had prior to the SIGBLOCK call is returned
 upon successful completion of the call.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SIGBLOCK system routine, which in these examples blocks interrupt signals
 and illegal instruction signals that may be sent to the calling process.
 The return value printed out is equal to 2 (the previous masked blocked
 signal value) after the second call.

 Pascal

 procedure sigblock1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
SIGBLOCK block one or more signals

¦ Copyright IBM Corp. 1985, 1989
2.88 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

 %include /usr/include/aildefs.inc

 begin
 red := p_sigblock (2);
 blue := p_sigblock (4);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE SIGBLOCK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGBLOCK, BLUE, RED
 RED = FSIGBLOCK (2)
 BLUE = FSIGBLOCK (4)
 PRINT *, BLUE
 END

VS/AIX Interface Library
SIGBLOCK block one or more signals

¦ Copyright IBM Corp. 1985, 1989
2.88 - 2

 2.89 SIGNAL specify the process response to a signal

 Description
 The SIGNAL system call sets the calling process to respond in one of three
 ways to the receipt of a signal:

 � "catch" the signal
 � ignore the signal; o
 � terminate its own execution (EXIT). Termination is the default event

 The signals that can be specified in a SIGNAL call are listed in the
 descriptions of the sig and action parameters.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_signal (sig, action, func); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSIGNAL (SIG, ACTION, FUNC) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sig
 is a number that specifies a particular signal. If a repeated signal
 arrives before the last one can be reset, it will not be caught (see
 Notes, item 2).

 The signals that can be specified in a SIGNAL call are listed on the
 next two pages and are defined in the Pascal and FORTRAN constants
 include files.

 act
 if not nil, points to a structure that describes the action to be
 taken on receipt of the signal specified by the sig parameter. The
 signals that can be specified in a SIGNAL call are listed on the next
 two pages and are defined in the Pascal and FORTRAN constants include
 files. For more information about these signals, refer to Volume 1 of
 the AIX Operating System Technical Reference.

 +--+
 ¦ ¦ Signal ¦ ¦
 ¦ Signal ¦ Number ¦ Event ¦
 +------------+------------+--¦
 ¦ SIGHUP ¦ 1 ¦ Hangup ¦
 +------------+------------+--¦
 ¦ SIGINT ¦ 2 ¦ Interrupt ¦
 +------------+------------+--¦
 ¦ SIGQT ¦ 3* ¦ Quit ¦
 +------------+------------+--¦
 ¦ SIGILL ¦ 4* ¦ Illegal instruction (not reset when ¦
 ¦ ¦ ¦ caught) ¦

VS/AIX Interface Library
SIGNAL specify the process response to a signal

¦ Copyright IBM Corp. 1985, 1989
2.89 - 1

 +------------+------------+--¦
 ¦ SIGTRAP ¦ 5 ¦ Trace trap (not reset when caught) ¦
 +------------+------------+--¦
 ¦ SIGIOT ¦ 6 ¦ Abort process (see FABORT on page 2.21) ¦
 +------------+------------+--¦
 ¦ SIGEMT ¦ 7 ¦ EMT instruction ¦
 +------------+------------+--¦
 ¦ SIGFPE ¦ 8 ¦ Arithmetic exception, floating-point ¦
 ¦ ¦ ¦ exception, or integer divide by zero. ¦
 +------------+------------+--¦
 ¦ SIGKIL ¦ 9 ¦ Kill (cannot be caught or ignored) ¦
 +------------+------------+--¦
 ¦ SIGBUS ¦ 10 ¦ Specification exception ¦
 +------------+------------+--¦
 ¦ SIGSEGV ¦ 11 ¦ Segmentation violation ¦
 +------------+------------+--¦
 ¦ SIGSYS ¦ 12 ¦ Bad parameter to system call ¦
 +------------+------------+--¦
 ¦ SIGPIPE ¦ 13 ¦ Write on pipe when there is no process ¦
 ¦ ¦ ¦ to read it ¦
 +------------+------------+--¦
 ¦ SIGALRM ¦ 14 ¦ Alarm clock ¦
 +------------+------------+--¦
 ¦ SIGTERM ¦ 15 ¦ Software termination signal ¦
 +------------+------------+--¦
 ¦ SIGURG ¦ 16 ¦ Urgent condition on I/O channel ¦
 +------------+------------+--¦
 ¦ SIGSTOP ¦ 17 ¦ Stop (cannot be caught or ignored) ¦
 +------------+------------+--¦
 ¦ SIGSTP ¦ 18 ¦ Interactive stop ¦
 +------------+------------+--¦
 ¦ SIGCONT ¦ 19 ¦ Continue if stopped (cannot be caught or ¦
 ¦ ¦ ¦ ignored) ¦
 +------------+------------+--¦
 ¦ SIGCHLD ¦ 20 ¦ To parent on child stop or exit ¦
 +------------+------------+--¦
 ¦ SIGPTTIN ¦ 21 ¦ Background read attempted from control ¦
 ¦ ¦ ¦ terminal ¦
 +------------+------------+--¦
 ¦ SIGPTTOU ¦ 22 ¦ Background write attempted to control ¦
 ¦ ¦ ¦ terminal ¦
 +------------+------------+--¦
 ¦ SIGIO ¦ 23 ¦ Input/output possible or completed ¦
 +------------+------------+--¦
 ¦ SIGXCPU ¦ 24 ¦ CPU time limit exceeded (see setrlimit ¦
 ¦ ¦ ¦ in AIX Operating System Technical ¦
 ¦ ¦ ¦ Reference) ¦
 +------------+------------+--¦
 ¦ SIGXFSZ ¦ 25 ¦ File size limit exceeded (see setrlimit ¦
 ¦ ¦ ¦ in AIX Operating System Technical ¦
 ¦ ¦ ¦ Reference) ¦
 +------------+------------+--¦
 ¦ reserved ¦ 26 ¦ ¦
 +------------+------------+--¦
 ¦ ¦ ¦ ¦
 +------------+------------+--¦
 ¦ SIGMSG ¦ 27 ¦ Input data has been stored in the ¦
 ¦ ¦ ¦ HFT-monitor-mode ring buffer ¦
 +------------+------------+--¦
 ¦ SIGWINCH ¦ 28 ¦ Window-size change ¦

VS/AIX Interface Library
SIGNAL specify the process response to a signal

¦ Copyright IBM Corp. 1985, 1989
2.89 - 2

 +------------+------------+--¦
 ¦ SIGPWR ¦ 29 ¦ Power-failure restart ¦
 +------------+------------+--¦
 ¦ SIGUSR1 ¦ 30 ¦ User-defined signal 1 ¦
 +------------+------------+--¦
 ¦ SIGUSR2 ¦ 31 ¦ User-defined signal 2 ¦
 +------------+------------+--¦
 ¦ reserved ¦ 35-38 ¦ ¦
 +--+

 � In Pascal, action is of type integer.

 � In FORTRAN, action is of type INTEGER.

 func
 is used when a signal is to be caught and action is set equal to
 SIGFNC. This parameter directs the receiving process of the signal to
 execute the function specified. The func parameter is given the value
 nil in Pascal and 0 (zero) in FORTRAN if the value of action is SIGDFL
 or SIGIGN.

 When calling a function from Pascal or FORTRAN, the function name
 should be the parameter.

 � In Pascal, func is a function name.

 � In FORTRAN, func is a function name.

 Return Values
 The previous value of action is returned for the specified sig upon
 successful completion of the call. The value -1 is returned and an error
 code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

 The Pascal procedure and FORTRAN subroutines on the next page call the
 SIGNAL system routine. In this example, sig is assigned a value of 2
 (SIGINT, interrupt signal). The action parameter is given the prescribed
 action SIGIGN, which causes the process to ignore the interrupt signal
 (that is, it does not terminate). The func parameter is sent as nil since
 no function address is needed in this instance.

 Pascal

 procedure signal1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red, yellow : integer;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
SIGNAL specify the process response to a signal

¦ Copyright IBM Corp. 1985, 1989
2.89 - 3

 begin
 blue := 1;
 red := 2;
 yellow := p_signal (red, blue, nil);
 writeln (yellow)
 end;

 FORTRAN

 SUBROUTINE SIGNAL1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGNAL, BLUE, RED, YELLOW
 BLUE = 1
 RED = 2
 YELLOW = FSIGNAL (RED, BLUE, 0)
 PRINT *, YELLOW
 END

 Notes

 1. The SIGKIL signal cannot be caught and it cannot be ignored.

 2. The SIGVEC system call provides an enhanced signal-handling capacity
 that avoids this difficulty (see page 2.95).

VS/AIX Interface Library
SIGNAL specify the process response to a signal

¦ Copyright IBM Corp. 1985, 1989
2.89 - 4

 2.90 SIGPAUSE release a blocked signal and wait for an interrupt

 Description
 The SIGPAUSE system call resets the signal mask of the calling process and
 causes the calling process to wait for a signal to arrive. The arrival of
 the signal terminates the call and restores the signal mask to its
 previous value.

 Note: This system call allows the masking of signals 1-31.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigpause (sigmask); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSIGPAUSE (SIGMASK) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sigmask
 is the value to which the signal mask of the calling process is set
 when the call is issued.

 � In Pascal, sigmask is of type integer.

 � In FORTRAN, sigmask is of type INTEGER.

 Return Values
 If the signal is caught by the calling process and control is returned
 from the signal handler, the calling process resumes execution after the
 SIGPAUSE system call, which always returns the value -1 and sets an error
 code in errno.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SIGPAUSE system routine. In these examples, the first call is to the
 ALARM system routine, which sends a signal to the calling process after 10
 seconds. The call to SIGPAUSE sets the signal mask to the value of the
 sigsetmask parameter ("blue") to block interrupts.

 Pascal

 procedure sigpause1;

 const
 %include /usr/include/ailpconsts.inc

VS/AIX Interface Library
SIGPAUSE release a blocked signal and wait for an interrupt

¦ Copyright IBM Corp. 1985, 1989
2.90 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, orange, red : integer;

 %include /usr/include/aildefs.inc

 begin
 orange := 10;
 green := p_alarm (orange);
 blue := 2;
 red := p_sigpause (blue)
 end;

 FORTRAN

 SUBROUTINE SIGPAUSE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGPAUSE, FALARM, BLUE, GREEN, ORANGE, RED
 ORANGE = 10
 GREEN = FALARM (ORANGE)
 BLUE = 2
 RED = FSIGPAUSE (BLUE)
 END

VS/AIX Interface Library
SIGPAUSE release a blocked signal and wait for an interrupt

¦ Copyright IBM Corp. 1985, 1989
2.90 - 2

 2.91 SIGPROCMASK set the current signal mask

 Description
 The SIGPROCMASK system call changes the signal mask of the calling
 process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigprocmask (how, set, oset); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ F_SIGPROCMASK (HOW, SET, OSET) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 how
 specifies the manner in which the signal mask (the set of signals to
 be blocked) is defined. It may have one of three values:

 SIG_BLOCK the resulting set is a union of the current set of signals
 and the signal set pointed to by the set parameter.
 SIG_UNBLOCK the resulting set is the intersection of the current set
 of signals and the complement of the signal set pointed to
 by the set parameter.
 SIGSETMASK the resulting set is the set of signals pointed to by the
 set parameter.

 � In Pascal, how is of type integer.

 � In FORTRAN, how is of type INTEGER.

 set
 points to a set of signals to be used to change the currently blocked
 set.

 � In Pascal, set is of type sigset_t.

 � In FORTRAN, set is an array of 4 elements of type INTEGER. This
 array corresponds to a Pascal data struncture defined in the
 ailtypes.inc file (see Appendix C) as follows:

 SET(1) = set.setsize

 SET(2) = set.sigs[1]

 SET(3) = set.sigs[2]

 SET(4) = sigmsk.sigs[3]

 oset
 is not nil, points to the space in which the call stores the signal

VS/AIX Interface Library
SIGPROCMASK set the current signal mask

¦ Copyright IBM Corp. 1985, 1989
2.91 - 1

 mask in effect at that time.

 � In Pascal, oset is of type sigset_t.

 � In FORTRAN, oset is an array of 4 elements of type INTEGER. This
 array corresponds to a Pascal data struncture defined in the
 ailtypes.inc file (see Appendix C) as follows:

 OSET(1) = set.setsize

 OSET(2) = set.sigs[1]

 OSET(3) = set.sigs[2]

 OSET(4) = sigmsk.sigs[3]

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 SIGPROCMASK system routine, which in these examples blocks signal 14
 (alarm clock). The call to SIGBLOCK returns the previous mask value,
 which should be what it has just been set to (8192). This mask value is
 also printed out.

 Pascal

 procedure sigprocmask1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 orange, pink, red : integer;
 blue : sigset_t;

 %include /usr/include/aildefs.inc

 begin
 blue.setsize := 1; := 8192;
 blue.sigs[1] := 8192;
 red := p_sigprocmask (SIG_SETMASK, blue, pink);
 writeln (red);
 orange := p_sigblock (0);
 writeln (orange);
 end;

 FORTRAN

 SUBROUTINE SIGPROCMASK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGPROCMASK, FSIGBLOCK, BLUE(4), ORANGE, PINK, RED
 BLUE(1) = 1
 BLUE(2) = 8192
 RED = FSIGPROCMASK (SIG_SETMASK, BLUE, PINK)

VS/AIX Interface Library
SIGPROCMASK set the current signal mask

¦ Copyright IBM Corp. 1985, 1989
2.91 - 2

 PRINT *, RED
 ORANGE = FSIGBLOCK (0)
 PRINT *, ORANGE
 END

VS/AIX Interface Library
SIGPROCMASK set the current signal mask

¦ Copyright IBM Corp. 1985, 1989
2.91 - 3

 2.92 SIGSETMASK set the signal mask of the current process

 Description
 The SIGSETMASK system call sets the signal mask of the current process to
 a particular value, thereby specifying which signal will be blocked from
 receiving (that is, which signal the calling process will block).

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigsetmask (mask); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSIGSETMASK (MASK) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 mask
 specifies the signal(s) to be blocked.

 Note: To set the mask, use a number equal to 2 (two) raised to the
 (signal-number - 1) power. For example, the mask value that will
 block SIGNAL 31 is 2¦0.

 � In Pascal, mask is of type integer.

 � In FORTRAN, mask is of type INTEGER.

 Return Values
 The value that the signal mask had before SIGBLOCK was called is returned
 on successful completion of the SIGSETMASK call.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SIGSETMASK system routine, which in these examples blocks signal 14 (alarm
 clock). The call to SIGBLOCK returns the previous mask value, which
 should be what it has just been set to (8192). This mask value is also
 printed out ("orange").

 Pascal

 procedure sigsetmask1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc

VS/AIX Interface Library
SIGSETMASK set the signal mask of the current process

¦ Copyright IBM Corp. 1985, 1989
2.92 - 1

 var
 blue, orange, red : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := 8192;
 red := p_sigsetmask (blue);
 writeln (red);
 orange := p_sigblock (0);
 writeln (orange);
 end;

 FORTRAN

 SUBROUTINE SIGSETMASK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGSETMASK, FSIGBLOCK, BLUE, ORANGE, RED
 BLUE = 8192
 RED = FSIGSETMASK (BLUE)
 PRINT *, RED
 ORANGE = FSIGBLOCK (0)
 PRINT *, ORANGE
 END

VS/AIX Interface Library
SIGSETMASK set the signal mask of the current process

¦ Copyright IBM Corp. 1985, 1989
2.92 - 2

 2.93 SIGSTACK set and get a signal-stack context

 Description
 The SIGSTACK system call defines an alternate stack on which signals are
 to be processed.

 Warning: A signal stack does not automatically increase in size as a
 normal stack does. If the stack overflows, unpredictable results may
 occur.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigstack (instack, outstack); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ This system call is not available in FORTRAN. ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 instack
 points to a signal-stack data structure if the parameter value is not
 nil. If the parameter value is nil, then the signal-stack state is
 not set.

 � instack is of type stackptr.

 outstack
 points to a signal-stack data structure if the parameter value is not
 nil. If the parameter value is nil, the previous signal-stack state
 is not reported.

 � outstack is of type stackptr.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � The return value is of type integer

 Examples
 The Pascal procedure on the next page calls the SIGSTACK system routine.
 In this example the values being passed to SIGSTACK are the instack
 ("yellow") and outstack ("green") parameters. The example merely shows
 the proper call: it neither sets a new stack nor stores the old (both
 parameters are set to nil).

 Pascal

 procedure sigstack1;

VS/AIX Interface Library
SIGSTACK set and get a signal-stack context

¦ Copyright IBM Corp. 1985, 1989
2.93 - 1

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 green, yellow : stackptr;

 %include /usr/include/aildefs.inc

 begin
 new (yellow);
 new (green);
 new (yellow@.ss_sp);
 new (green@.ss_sp);
 yellow@.ss_sp := nil;
 green@.ss_sp := nil;
 red := p_sigstack (green, yellow);
 writeln (red);
 end;

VS/AIX Interface Library
SIGSTACK set and get a signal-stack context

¦ Copyright IBM Corp. 1985, 1989
2.93 - 2

 2.94 SIGSUSPEND reset the signal mask and wait for an interrupt

 Description
 The SIGSUSPEND system call resets the signal mask of the calling process
 and causes the calling process to wait for a signal to arrive. The
 arrival of the signal terminates the call and restores the signal mask to
 its previous value.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigsuspend (sigmsk); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSIGSUSPEND (SIGMSK) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sigmsk
 is the value to which the signals mask of the calling process is set
 when the call is issued.

 � In Pascal, sigmsk is of type sigset_t.

 � In FORTRAN, sigmsk is an array of 4 elements of type INTEGER.
 This array corresponds to a Pascal data struncture defined in the
 ailtypes.inc file (see Appendix C) as follows:

 SIGMSK(1) = sigmsk.setsize

 SIGMSK(2) = sigmsk.sigs[1]

 SIGMSK(3) = sigmsk.sigs[2]

 SIGMSK(4) = sigmsk.sigs[3]

 Return Values
 If the signal is caught by the calling process and control is returned
 from the signal handler, the calling process resumes execution after the
 SIGSUSPEND system call, which always returns the value -1 and sets an
 error code in errno.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SIGSUSPEND system routine. In these examples, the first call is to the
 ALARM system routine, which sends a signal to the calling process after 10
 seconds. The call to SIGSUSPEND sets the signal mask to the value of the
 sigmsk parameter ("blue") to block interrupts.

VS/AIX Interface Library
SIGSUSPEND reset the signal mask and wait for an interrupt

¦ Copyright IBM Corp. 1985, 1989
2.94 - 1

 Pascal

 procedure sigsuspend1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green, orange, red : integer;
 blue : sigset_t;

 %include /usr/include/aildefs.inc

 begin
 orange := 10;
 green := p_alarm (orange);
 blue := setsize := 1;
 blue := sig[1] := 3;
 red := p_sigsuspend (blue)
 end;

 FORTRAN

 SUBROUTINE SIGSUSPEND1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSIGSUSPEND, FALARM, BLUE(4), GREEN, ORANGE, RED
 ORANGE = 10
 GREEN = FALARM (ORANGE)
 BLUE(1) = 1
 BLUE(2) = 3
 RED = FSIGSUSPEND (BLUE)
 END

VS/AIX Interface Library
SIGSUSPEND reset the signal mask and wait for an interrupt

¦ Copyright IBM Corp. 1985, 1989
2.94 - 2

 2.95 SIGVEC select signal-handling facilities

 Description
 The SIGVEC system call allows the user to select standard or enhanced
 signal-handling facilities. Like the SIGNAL call, it specifies the action
 to be taken on receipt of a given signal.

 Warning: The SIGVEC call does not check the validity of the sv_handler
 pointer. If this pointer is pointing outside the address space of the
 process, a memory-fault message is returned to the process when the system
 attempts to use the signal handler.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sigvec (sig, invec, outvec); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ This system call is not available in FORTRAN. ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 sig
 is the identifying number of a signal (See page 2.89 for a complete
 list of signals.).

 � sig is of type integer.

 invec
 specifies a handler routine and mask for use in delivering a signal
 when the parameter value is not nil. When the parameter value is nil,
 the signal-handler information is not set. The value of the sv_onstak
 field of the invec record specifies one of three options:

 0 the enhanced signal and the process signal on the process stack
 are used.

 1 the enhanced signal and the process signal on a separate stack are
 used.

 2 standard signal processing is used.

 � invec is of type sigvecptr.

 outvec
 points to a record where the previous handling information for the
 signal in the structure is stored, when it is not nil. Information
 for the signal is stored in the SIGVEC data structure pointed to by
 outvec. If the value of the outvec parameter is nil, the previous
 signal-handler information is not reported.

 � outvec is of type sigvecptr.

VS/AIX Interface Library
SIGVEC select signal-handling facilities

¦ Copyright IBM Corp. 1985, 1989
2.95 - 1

 Return Values
 There is no return value from a successful SIGVEC call.

 Examples
 The Pascal procedure that follows calls the SIGVEC system routine. In
 these examples, the value passed to SIGVEC by the parameter sig
 ("yellow"), specifies signal (2) and the invec and outvec parameters
 ("blue" and "red", respectively). The default action is specified by the
 variable "orange"; the invec and outvec parameters are set equal to 'nil'
 because they are not necessary for this action.

 Pascal

 procedure sigvec1;

 const
 %include usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : sigvecptr;
 green, orange, yellow : integer;

 %include /usr/include/aildefs.inc

 begin
 yellow := 2;
 orange := SIGDFL;
 new (blue);
 new (red);
 red := nil;
 blue@.sv_handler := nil;
 blue@.sv_mask := 0;
 blue@.sv_onstack := 0;
 green := p_sigvec (yellow, orange, blue, red)
 end;

VS/AIX Interface Library
SIGVEC select signal-handling facilities

¦ Copyright IBM Corp. 1985, 1989
2.95 - 2

 2.96 SOCKET create an endpoint for communication

 Description
 The SOCKET system call creates an endpoint for communication and returns a
 descriptor.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_socket (domain, ttype, protocol) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSOCKET (DOMAIN, TTYPE, PROTOCOL) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 domain
 specifies one of two "domains" of communication:

 PF_UNIX AIX path names

 PF_INET ARPA internet addresses.

 Note: In FORTRAN, the underscore is omitted (for example, "PFUNIX").

 � In Pascal, domain is of type integer.

 � In FORTRAN, domain is of type INTEGER.

 ttype
 specifies one of two types of communication semantics:

 SOCK_STREAM sequenced streams with a transmission mechanism for
 out-of-band data.

 Note: In FORTRAN, use SKSTRM.

 SOCK_DGRAM datagrams, or connectionless messages, of a fixed maximum
 length (usually small).

 Note: In FORTRAN, use SKDGRAM.

 � In Pascal, ttype is of type integer.

 � In FORTRAN, ttype is of type INTEGER.

 protocol
 specifies a particular protocol to be used with the socket.

 � In Pascal, protocol is of type integer.

 � In FORTRAN, protocol is of type INTEGER.

VS/AIX Interface Library
SOCKET create an endpoint for communication

¦ Copyright IBM Corp. 1985, 1989
2.96 - 1

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SOCKET
 system routine, which in these examples is issued with domain set to
 "PF_UNIX", type to "SOCK_STREAM", and protocol to 0. A socket descriptor
 is returned in "green".

 Pascal

 procedure socket1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;

 %include /usr/include/aildefs.inc

 begin
 green := p_socket (PF_UNIX, SOCK_STREAM, 0);
 writeln ('Socket returned: ', green : 2);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SOCKET1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSOCKET, GREEN
 GREEN = FSOCKET (PFUNIX, SKSTRM, 0)
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SOCKET create an endpoint for communication

¦ Copyright IBM Corp. 1985, 1989
2.96 - 2

 2.97 SOCKETPAIR create a pair of connected sockets

 Description
 The SOCKETPAIR system call creates an unnamed pair of connected sockets.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_socketpair (domain, type, protocol, sv) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSOCKETPAIR (DOMAIN, TYPE, PROTOCOL, SV) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 domain
 specifies one of two "domains" of communication:

 PF_UNIX AIX path names

 PF_INET ARPA internet addresses.

 Note: In FORTRAN, the underscore is omitted (for example,
 "PFUNIX").

 � In Pascal, domain is of type integer.

 � In FORTRAN, domain is of type INTEGER.

 type
 specifies one of two types of communication semantics:

 SOCK_STREAM sequenced streams with a transmission mechanism for
 out-of-band data.

 Note: In FORTRAN, use SKSTRM.

 SOCK_DGRAM datagrams, or connectionless messages of a fixed maximum
 length (usually small).

 Note: In FORTRAN, use SKDGRAM.

 � In Pascal, type is of type integer.

 � In FORTRAN, type is of type INTEGER.

 protocol
 specifies a particular protocol to be used with the socketpair.

 � In Pascal, protocol is of type integer.

 � In FORTRAN, protocol is of type INTEGER.

VS/AIX Interface Library
SOCKETPAIR create a pair of connected sockets

¦ Copyright IBM Corp. 1985, 1989
2.97 - 1

 sv
 is an array in which two descriptors are returned upon completion of
 the call.

 � In Pascal, sv is of type int2 (defined as an array[1..2] of
 integer in the ailtypes.inc file; see Appendix C).

 � In FORTRAN, sv is an array of type integer with two elements.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the
 SOCKETPAIR system routine, which in these examples is issued with domain
 set to "PF_UNIX" and type to "SOCK_STREAM". The protocol parameter is
 optional. The socketpair descriptors are returned in sv[1] and sv[2].

 Pascal

 procedure socketpair1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 sv : int2;

 %include /usr/include/aildefs.inc

 begin
 green := p_socketpair (PF_UNIX, SOCK_STREAM, 0, sv);
 if (green = -1) then showerror;
 end;

 FORTRAN

 SUBROUTINE SOCKETPAIR1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSOCKETPAIR, SV(2), GREEN
 GREEN = FSOCKETPAIR (PFUNIX, SKSTRM, 0, SV)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 END

VS/AIX Interface Library
SOCKETPAIR create a pair of connected sockets

¦ Copyright IBM Corp. 1985, 1989
2.97 - 2

 2.98 STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

 Description

 These calls obtain status information about files, including hidden
 directories and symbolic links.

 � STATX and FSTATX obtain status information about a specified file,
 hidden directory, or symbolic link.

 � STAT and FSTAT obtain status information about a specified file.

 � LSTAT obtains status information about a specified symbolic link.

 � FULLSTAT and FFULLSTAT obtain status information about a specified
 file.

 Note: STATX and FSTATX replace five system calls: STAT, FSTAT, LSTAT,
 FULLSTAT, and FFULLSTAT. All five calls have been included in this
 manual for reasons of compatibility (see Notes at the end of this
 section).

 Note: Only the file owner and the super-user may issue these calls.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ ¦
 ¦ p_statx (path, buf, len, cmd); ¦
 ¦ ¦
 ¦ p_fstatx (fildes, buf, len, cmd); ¦
 ¦ ¦
 ¦ p_stat (path, buf); ¦
 ¦ ¦
 ¦ p_fstat (fildes, buf); ¦
 ¦ ¦
 ¦ p_lstat (path, buf); ¦
 ¦ ¦
 ¦ p_fullstat (path, cmd, buf); ¦
 ¦ ¦
 ¦ p_ffullstat (fildes, cmd, buf); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFSTATX (PATH, BUF, LEN, CMD) ¦
 ¦ ¦
 ¦ FFFSTATX (FILDES, BUF, LEN, CMD) ¦
 ¦ ¦
 ¦ FFSTAT (PATH, BUF) ¦
 ¦ ¦
 ¦ FFFSTAT (FILDES, BUF) ¦
 ¦ ¦
 ¦ FLSTAT (PATH, BUF) ¦
 ¦ ¦
 ¦ FFFULLSTAT (PATH, CMD, BUF) ¦
 ¦ ¦

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

¦ Copyright IBM Corp. 1985, 1989
2.98 - 1

 ¦ FFFFULLSTAT (FILDES, CMD, BUF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is used only in the STATX, STAT and LSTAT system calls. It specifies
 the file whose status is to be checked.

 � In Pascal, path is a string variable or constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 fildes
 is used only in the FSTATX, FSTAT, FULLSTAT, and FFULLSTAT system
 calls. It is a descriptor obtained from a successful FCNTL, OPEN,
 PIPE, SOCKET, or SOCKETPAIR system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 buf
 is required for all five system calls. It points to a buffer where
 status information about the specified file is returned.

 � In Pascal, buf is of type statrec.

 � In FORTRAN, buf is the name of an array of 30 elements of type
 INTEGER. This array corresponds to the Pascal data
 structure--defined in the ailtypes.inc file (Appendix C)--as
 follows:

 BUF(1) = buf.st_dev

 BUF(2) = buf.st_ino

 BUF(3) = buf.st_mode

 BUF(4) = buf.st_nlink

 BUF(5) = buf.st_uid

 BUF(6) = buf.st_gid

 BUF(7) = buf.st_rdev

 BUF(8) = buf.st_size

 BUF(9) = buf.st_atime

 BUF(10) = buf.st_mtime

 BUF(11) = buf.st_ctime

 BUF(12) = buf.fst.uid_raw

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

¦ Copyright IBM Corp. 1985, 1989
2.98 - 2

 BUF(13) = buf.fst.gid_raw

 BUF(14) = buf.fst_type

 BUF(15) = buf.uid_rev_tag

 BUF(16) = buf.gid_rev_tag

 BUF(17) = buf.fst_other_gid_list

 BUF(18) = buf.fst_other_gid_count

 BUF(19) = buf.fst_vfs

 BUF(20) = buf.fst_nid

 BUF(21) = buf.fst_flag

 BUF(20) = buf.fst_i_gen

 BUF(23...BUF(30) = buf.fst_reserved[1]...buf.fst_reserved[8]

 len
 specifies the amount of information to be returned.

 � In Pascal, len is of type integer.

 � In FORTRAN, len is of type INTEGER.

 cmd
 determines the interpretation of path:

 STX_LINK specifies that path identifies a symbolic link.

 STX_HIDDEN specifies that path identifies a hidden directory.

 STX_MOUNT specifies that path identifies a mounted-over file or
 directory.

 Note: In FORTRAN, the underscore is omitted (for example,
 "STXLINK").

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the STATX
 system routine. In these examples, information about the file specified
 by the path parameter ("blue") is returned in the buf parameter

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

¦ Copyright IBM Corp. 1985, 1989
2.98 - 3

 ("yellow"). The value of the file mode for file /usr/include/aildefs.inc
 is the value printed out.

 Pascal

 procedure statx1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 red : integer;
 blue : st80;
 yellow : statrec;

 %include /usr/include/aildefs.inc

 begin
 blue := '/usr/include/aildefs.inc';
 red := p_statx (blue, yellow, STATSIZE, 0);
 writeln (yellow@.st_mode);
 end;

 FORTRAN

 SUBROUTINE STATX1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFSTATX, RED, YELLOW(18)
 CHARACTER*80 BLUE
 BLUE = '/usr/include/aildef.inc '
 RED = FFSTATX (BLUE, YELLOW, STATSIZE, 0)
 PRINT *, YELLOW(3)
 END

 Notes

 The following interfaces provide compatibility with programs written for
 AIX/RT or other versions of the UNIX operating system.

 � stat (path, stbuf) is equivalent to

 statx (path, buf, STATSIZE, O)

 � lstat (path, buf)

 is equivalent to

 statx (path, buf, STATSIZE, STX_LINK)

 � fstat (fildes, buf)

 is equivalent to

 fstatx (fildes, buf, STATSIZE, O)

 � fullstat (path, cmd, buf)

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

¦ Copyright IBM Corp. 1985, 1989
2.98 - 4

 is equivalent to

 statx (path, buf, FULLSTATSIZE, cmd)

 � ffullstat (fildes, cmd, buf)

 is equivalent to

 statx (fildes, buf, FULLSTATSIZE, cmd)

VS/AIX Interface Library
STATX, FSTATX, STAT, FSTAT, LSTAT, FULLSTAT, FFULLSTAT return the status of a file

¦ Copyright IBM Corp. 1985, 1989
2.98 - 5

 2.99 STIME set the system clock

 Description
 The STIME system call sets the system's internal clock to a time and date
 that are calculated from a value specified in the call.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_stime (tp); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSTIME (TP) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 tp
 is the number of seconds that have elapsed since 00:00:00 January 1,
 1970 GMT. Given this number, the routine calculates the time and date
 and resets the system's internal clock accordingly.

 � In Pascal, tp is of type integer.

 � In FORTRAN, tp is of type INTEGER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call is issued by
 anyone other than the super-user or if it fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 STIME system routine. The value of "cronos" is the interval (in seconds)
 between 00:00:00 January 1, 1970 GMT and the time to which the system
 clock is to be set. The return value of the call is in the variable
 "titan".

 Pascal

 procedure stime1;

 const
 %include /usr/include/ailpconsts.inc
 type

VS/AIX Interface Library
STIME set the system clock

¦ Copyright IBM Corp. 1985, 1989
2.99 - 1

 %include /usr/include/ailtypes.inc
 var
 cronos, titan : integer;

 %include /usr/include/aildefs.inc

 begin
 cronos := 31536000;
 titan := p_stime (cronos);
 writeln (titan);
 end;

 FORTRAN

 SUBROUTINE STIME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSTIME, CRONOS, TITAN
 CRONOS = 31536000
 TITAN = FSTIME (CRONOS)
 PRINT *, TITAN
 END

VS/AIX Interface Library
STIME set the system clock

¦ Copyright IBM Corp. 1985, 1989
2.99 - 2

 2.100 SYMLINK create a symbolic link to a file

 Description
 The SYMLINK system call creates a symbolic link to a file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_symlink (path1, path2); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FSYMLINK (PATH1, PATH2); ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path1
 is the name of the existing file to which a link is created. If path1
 is not a full pathname (that is, does not begin with "/"), it is
 evaluated in the context of path2, not the current working directory.

 � In Pascal, path1 is a string variable or constant of type st80.

 � In FORTRAN, path1 is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 path2
 is the name of the file created.

 � In Pascal, path2 is a string variable or constant of type st80.

 � In FORTRAN, path2 is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine on the next page call the
 SYMLINK system routine, which in these examples creates a symbolic link to
 a physical file (/usr/include/aildefs.inc) by creating /bushel/light/hide.
 After the successful completion of the call, the two files are unlinked by
 a call to UNLINK.
 Pascal

VS/AIX Interface Library
SYMLINK create a symbolic link to a file

¦ Copyright IBM Corp. 1985, 1989
2.100 - 1

 procedure symlink1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 path1, path2 : st80;

 %include /usr/include/aildefs.inc

 begin
 path1 := '/usr/include/aildefs.inc';
 path2 := '/bushel/light/hide';
 green := p_symlink (path1, path2);
 writeln ('Symlink returned: ', green : 2);
 if (green = -1) then showerror;
 green := p_unlink (path2);
 end;

 FORTRAN

 SUBROUTINE SYMLINK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FSYMLINK, FUNLINK, GREEN
 CHARACTER*80 P1, P2
 P1 = '/usr/include/aildefs.inc '
 P2 = '/bushel/light/hide '
 GREEN = FSYMLINK (P1, P2)
 PRINT *, GREEN
 IF (GREEN .EQ. -1) CALL ERRORS
 GREEN = FUNLINK (P2)
 END

VS/AIX Interface Library
SYMLINK create a symbolic link to a file

¦ Copyright IBM Corp. 1985, 1989
2.100 - 2

 2.101 SYNC update a file system

 Description
 The SYNC system call writes modified information in core memory to disk,
 including modified super-blocks, i-nodes, and delayed block I/O.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_sync; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFSYNC () ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 This system call has no parameters.

 Return Values
 The write operation may be scheduled but is not necessarily complete upon
 return from the SYNC call, and no value is returned.

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the SYNC
 system routine. In these examples, all information in memory that should
 be on disk is written to disk.

 Pascal

 procedure sync1;

 const
 %include /usr/include/ailpconsts.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_sync
 end;

 FORTRAN

 SUBROUTINE SYNC1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FFSYNC, BLUE
 BLUE = FFSYNC ()
 END

VS/AIX Interface Library
SYNC update a file system

¦ Copyright IBM Corp. 1985, 1989
2.101 - 1

 2.102 TIME get the system time

 Description
 The TIME system call returns the length of the interval (in seconds) from
 00:00:00 Jan. 1, 1970 GMT to the current (system) time.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_time (tloc); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FTIME (TLOC) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 tloc
 is a variable that receives the length of the interval (in seconds
 from 00:00:00 Jan. 1, 1970 GMT to the current time) upon return from
 the call.

 � In Pascal, tloc is of type integer.

 � In FORTRAN, tloc is of type INTEGER.

 Return Values
 The current time is returned upon successful completion of the call. When
 the value returned is other than 0 (zero), it is also stored in the
 location to which tloc points.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the TIME
 system routine. The length of the interval, expressed in seconds, is
 returned in the variable "perdu". The return value of the call is in the
 variable "temps".

 Pascal

 procedure time1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 temps, perdu : integer;

VS/AIX Interface Library
TIME get the system time

¦ Copyright IBM Corp. 1985, 1989
2.102 - 1

 %include /usr/include/aildefs.inc

 begin
 temps := p_time (perdu);
 writeln (perdu);
 end;

 FORTRAN

 SUBROUTINE TIME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FTIME, TEMPS, PERDU
 TEMPS = FTIME (PERDU)
 PRINT *, PERDU
 END

VS/AIX Interface Library
TIME get the system time

¦ Copyright IBM Corp. 1985, 1989
2.102 - 2

 2.103 TIMES get the process times

 Description
 The TIMES system call returns time-accounting information about the
 current process and about the terminated child processes of the current
 process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_times (buf); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FTIMES (BUF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 buf
 is a pointer to a data structure in which information about the
 current process times is placed.

 � In Pascal, buf is of type tms.

 � In FORTRAN, buf is an array(4) of type INTEGER. This array
 corresponds to the Pascal data structure--defined in in the
 ailtypes.inc file (Appendix C)--as follows:

 BUF(1) = buf.tms_utime

 BUF(2) = buf.tms_stime

 BUF(3) = buf.tms_cutime

 BUF(4) = buf.tms_cstime

 Return Values
 The elapsed time from a system-defined reference date to the current
 process time is returned upon successful completion of the call. The
 value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow issue a TIMES
 system call. A child process is created by a call to FORK. The return
 value is in the variable "green". The call to TIMES stores information in
 the buffer "colors". Both examples print the value in the tms_stime
 field, which is the CPU time used by the system on behalf of the calling
 process.

VS/AIX Interface Library
TIMES get the process times

¦ Copyright IBM Corp. 1985, 1989
2.103 - 1

 Pascal

 procedure times1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, red : integer;
 colors : tms;

 %include /usr/include/aildefs.inc

 begin
 green := p_fork;
 if green = 0 then
 red := p_execl ('/bin/sh', 'sh', '-c' , 'date', '')
 else
 begin
 blue := 0 ;
 green := p_wait (blue);
 red := p_times (colors);
 writeln ('stime ', colors.tms_stime);
 end
 end;

 FORTRAN

 SUBROUTINE TIMES1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FTIMES, FEXECL, FFORK, FWAIT
 INTEGER BLUE, COLORS(4), GREEN, RED
 GREEN = FFORK ()
 IF (GREEN .EQ. 0) THEN
 RED = FEXECL ('/bin/sh ', 'sh ', '-c ', 'date ', ' ')
 ELSE
 BLUE = 0
 GREEN = FWAIT (BLUE)
 RED = FTIMES (COLORS)
 PRINT *, 'stime ', COLORS(2)
 ENDIF
 END

VS/AIX Interface Library
TIMES get the process times

¦ Copyright IBM Corp. 1985, 1989
2.103 - 2

 2.104 ULIMIT get and set process limits

 Description
 The ULIMIT system call controls the limits of a process file.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ulimit (cmd, newlim); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FULIMIT (CMD, NEWLIM) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 cmd
 is a constant or a variable that can have one of the following values:

 1 gets the process file-size limit.

 2 sets the limit of the file size of the process to the value of
 newlim (see next parameter).

 Note: Any process may decrease the limit, but only a process
 with an effective user ID of super-user may increase the
 limit.

 3 retrieves the maximum possible break value (see BRK on page 2.7).

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 newlim
 is used only with cmd option 2 to increment the limit.

 � In Pascal, newlim is of type integer.

 � In FORTRAN, newlim is of type INTEGER.

 Return Values
 A nonnegative value is returned upon successful completion of the call.
 The value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

VS/AIX Interface Library
ULIMIT get and set process limits

¦ Copyright IBM Corp. 1985, 1989
2.104 - 1

 The Pascal procedure and FORTRAN subroutine that follow call the ULIMIT
 system routine, which in these examples returns the maximum possible break
 value (specified by the cmd parameter value of 3) in the variable "blue".

 Pascal

 procedure ulimit1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue : integer;

 %include /usr/include/aildefs.inc

 begin
 blue := p_ulimit (3, 0);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE ULIMIT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FULIMIT, BLUE
 BLUE = FULIMIT (3, 0)
 PRINT *, BLUE
 END

VS/AIX Interface Library
ULIMIT get and set process limits

¦ Copyright IBM Corp. 1985, 1989
2.104 - 2

 2.105 UMASK get and set a file-creation-mode mask

 Description
 The UMASK system call sets a mask that is used whenever a file is created
 by a CREAT or MKNOD call. The access mode of the newly created file (see
 CHMOD on page 2.10) is set to the value of cmask. Only the low-order nine
 bits of the mask (the protection bits) participate.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_umask (cmask); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUMASK (CMASK) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 cmask
 is the boolean complement of the new file's access mode.

 � In Pascal, cmask is of type integer.

 � In FORTRAN, cmask is of type INTEGER.

 Return Values
 The previous value of the mask is returned upon successful completion of
 the call. The initial value of the mask is 0 (zero), specifying"no
 restrictions."

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the UMASK
 system routine with the value of the cmask parameter ("red") equal to 0
 (zero). This value specifies the elimination of all restrictions on the
 file-creation mode. The value printed out is the previous value of the
 mask.

 Pascal

 procedure umask1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;

VS/AIX Interface Library
UMASK get and set a file-creation-mode mask

¦ Copyright IBM Corp. 1985, 1989
2.105 - 1

 %include /usr/include/aildefs.inc

 begin
 red := 0;
 blue := p_umask (red);
 writeln (blue);
 end;

 FORTRAN

 SUBROUTINE UMASK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUMASK, BLUE, RED
 RED = 0
 BLUE = FUMASK (RED)
 PRINT *, BLUE
 END

VS/AIX Interface Library
UMASK get and set a file-creation-mode mask

¦ Copyright IBM Corp. 1985, 1989
2.105 - 2

 2.106 UNAME, UNAMEX get the name of the current operating system

 Description
 The UNAME and UNAMEX system calls retrieve and store information that
 identifies the current operating system. They store this information in a
 data structure specified in the call.

 The UNAMEX call is used in local area networks where a binary node is
 appropriate.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_uname (name); ¦
 ¦ ¦
 ¦ p_unamex (xname); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUNCTION FUNAME (NAME) ¦
 ¦ ¦
 ¦ FUNCTION FUNAMEX (XNAME) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 name
 is used only with the UNAME call. It points to the appropriate data
 structure (unam).

 � In Pascal, name is of type unam.

 � In FORTRAN, name is an array(5) of type CHARACTER*32.

 xname
 is used only with the UNAMEX call. It points to the appropriate data
 structure (xunam).

 � In Pascal, xname is of type xunam.

 � In FORTRAN, xname is an array(4) of type INTEGER.

 Return Values
 A nonnegative number is returned upon successful completion of the call
 (see Notes). The value -1 is returned and an error code set in errno if
 the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow print the name of
 the current operating system. The return value for UNAME is in the

VS/AIX Interface Library
UNAME, UNAMEX get the name of the current operating system

¦ Copyright IBM Corp. 1985, 1989
2.106 - 1

 variable "nemo". Other information returned concerning the current
 operating system is located in the four remaining fields of the record
 "verne".

 The UNAMEX call, which is used in a local-area-network environment,
 returns the binary node number in a variable parameter of type xunam.

 Pascal

 procedure uname1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 nemo : integer;
 verne : unam;

 %include /usr/include/aildefs.inc

 begin
 nemo := p_uname (verne);
 writeln (verne.sysname);
 end;

 FORTRAN

 SUBROUTINE UNAME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUNAME, NEMO
 CHARACTER*32 VERNE(5)
 NEMO = FUNAME (VERNE)
 PRINT *, VERNE(1)
 END

 Notes
 If the unamx.nid field of the parameter's return value is a negative
 number, add 4 294 967 296 to that number to obtain the correct value.

VS/AIX Interface Library
UNAME, UNAMEX get the name of the current operating system

¦ Copyright IBM Corp. 1985, 1989
2.106 - 2

 2.107 UNLINK delete a directory entry

 Description
 The UNLINK system call deletes the directory entry of a specified file.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_unlink (path); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUNLINK (PATH) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file to be deleted.

 � In Pascal, path is a string variable or constant of type st80,

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type INTEGER

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the UNLINK
 system routine, which in these examples removes the directory entry
 specified in the path parameter ("blue"), assuming that file /tmp/xxx
 exists.

 Pascal

 procedure unlink1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 yellow : integer;
 blue : st80;

 %include /usr/include/aildefs.inc

VS/AIX Interface Library
UNLINK delete a directory entry

¦ Copyright IBM Corp. 1985, 1989
2.107 - 1

 begin
 blue := '/tmp/xxx';
 yellow := p_unlink (blue);
 writeln (yellow);
 end;

 FORTRAN

 SUBROUTINE UNLINK1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUNLINK, YELLOW
 CHARACTER*80 BLUE
 BLUE = '/tmp/xxx '
 YELLOW = FUNLINK (BLUE)
 PRINT *, YELLOW
 END

VS/AIX Interface Library
UNLINK delete a directory entry

¦ Copyright IBM Corp. 1985, 1989
2.107 - 2

 2.108 USRINFO get and set user information

 Description
 The USRINFO system call gets and sets information about the owner of the
 calling process.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_usrinfo (cmd, buf, count); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUSRINFO (CMD, BUF, COUNT) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 cmd
 is a constant or a variable with two possible arguments (SETUINF or
 GETUINF) as defined in the Pascal and FORTRAN constants include files.

 � In Pascal, cmd is of type integer.

 � In FORTRAN, cmd is of type INTEGER.

 buf
 is a pointer to a user buffer. The length of this buffer, in bytes,
 is usually equal to the constant INFSIZ(64).

 � In Pascal, buf is of type charinfsiz.

 � In FORTRAN, buf is a user-defined array of type CHARACTER.

 count
 is the number of bytes to be copied from or to the user buffer.

 � In Pascal, count is of type integer.

 � In FORTRAN, count is of type INTEGER.

 Return Values
 A nonnegative number indicating the number of bytes read is returned upon
 successful completion of the call. The value -1 is returned and an error
 code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the USRINFO
 system routine, which gets information about the owner of the current
 process. In these examples, the information is written to the array

VS/AIX Interface Library
USRINFO get and set user information

¦ Copyright IBM Corp. 1985, 1989
2.108 - 1

 pointed to (Pascal) or specified by (FORTRAN) the variable "yellow". The
 number of bytes written to the array is returned in the variable "blue".
 Note that, in Pascal, "yellow" is the user-defined array (of type usrary)
 pointed to by usrptr.

 Pascal

 procedure usrinfo1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 yellow : charinfsiz;

 begin
 blue := p_usrinfo (GETINF, yellow, INFSIZ);
 writeln (blue);
 for red := 1 to blue do
 write (yellow[red]);
 writeln;
 end;

 FORTRAN

 SUBROUTINE USRINFO1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUSRINFO, BLUE
 CHARACTER*64 YELLOW
 BLUE = FUSRINFO (GETINF, YELLOW, INFSIZ)
 PRINT *, BLUE
 PRINT *, YELLOW (1 : BLUE)
 END

VS/AIX Interface Library
USRINFO get and set user information

¦ Copyright IBM Corp. 1985, 1989
2.108 - 2

 2.109 USTAT get file-system information

 Description
 The USTAT system call retrieves and stores information about a mounted
 file system.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ustat (dev, buf); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUSTAT (DEV, ABUF, BBUF) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 dev
 is the ID of the device corresponding to the element strdev of the
 data structure returned by STAT.

 � In Pascal, dev is of type integer.

 � In FORTRAN, dev is of type INTEGER.

 buf
 is the pointer to the data structure that holds the retrieved
 information.

 � In Pascal, buf if of type ustatrec.

 � In FORTRAN, buf is divided into two parameters:

 - abuf is an array(2) of type INTEGER.

 - bbuf is an array(2,6) of type CHARACTER.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the USTAT
 system routine. In these examples, information about the device specified
 by the dev parameter ("blue") is returned in the buf parameter ("yellow").
 The value assigned to dev(1) specifies /dev/hd1. Normally this parameter
 value is obtained from a field of the information returned by a STAT call.
 Pascal

VS/AIX Interface Library
USTAT get file-system information

¦ Copyright IBM Corp. 1985, 1989
2.109 - 1

 procedure ustat1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, red : integer;
 yellow : ustatrec;

 %include /usr/include/aildefs.inc

 begin
 blue := 1;
 red := p_ustat (blue, yellow);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE USTAT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUSTAT, BLUE, GREEN(2), RED
 CHARACTER YELLOW(2,6)
 BLUE = 1
 RED = FUSTAT (BLUE, GREEN, YELLOW)
 PRINT *, RED
 END

VS/AIX Interface Library
USTAT get file-system information

¦ Copyright IBM Corp. 1985, 1989
2.109 - 2

 2.110 UTIME set the file times

 Description
 The UTIME system call sets the access and modification times of a
 specified file. The 'i-node changed' time of the file is set to the
 current time.

 Note: Only users with an effective user ID of super-user may issue this
 call.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_utime (path, times); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUTIME (PATH, TIMES) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the name of the file whose times are to be set.

 � In Pascal, path is a string variable or a constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 times
 is a pointer to a two-element array. The first element holds the new
 accessed time. The second element holds the new updated time.

 � In Pascal, times is of type utimptr.

 � In FORTRAN, times is the name of an array consisting of two
 elements of type INTEGER.

 Note: If times is given the value nil in Pascal or -1 in FORTRAN, the
 access and modification times of the file in path are set equal
 to the current time.

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the UTIME

VS/AIX Interface Library
UTIME set the file times

¦ Copyright IBM Corp. 1985, 1989
2.110 - 1

 system routine. In these examples, the access and modification times of
 the file specified by the path parameter ("blue") are set to the current
 time.

 Pascal

 procedure utime1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 red : integer;
 blue : st80;
 yellow : utimptr;

 %include /usr/include/aildefs.inc

 begin
 blue := '/usr/include/ailtypes.inc';
 yellow := nil;
 red := p_utime (blue, yellow);
 writeln (red);
 end;

 FORTRAN

 SUBROUTINE UTIME1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUTIME, RED, YELLOW(2)
 CHARACTER*80 BLUE
 BLUE = '/usr/include/ailtypes.inc '
 YELLOW(1) = -1
 RED = FUTIME (BLUE, YELLOW)
 PRINT *, RED
 END

VS/AIX Interface Library
UTIME set the file times

¦ Copyright IBM Corp. 1985, 1989
2.110 - 2

 2.111 UTIMES set the file times

 Description
 The UTIMES system call sets the accessed and updated times of a specified
 file to specified values.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_utimes (ffile, tvp); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FUTIMES (FFILE, TVP) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 ffile
 is the name of the file whose times are to be set.

 � In Pascal, ffile is a string variable or a constant of type st80.

 � In FORTRAN, path is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 tvp
 contains the updated times.

 � In Pascal, tvp is of type timeval2 (an array of two timeval
 records).

 � In FORTRAN, tvp is an integer array of four elements. This array
 corresponds to the Pascal data structure--defined in the
 ailtypes.inc file (Appendix C)--as follows:

 TVP(1) = tvp[1].tv_sec

 TVP(2) = tvp[1].tv_usec

 TVP(3) = tvp[2].tv_sec

 TVP(4) = tvp[2].tv_usec

 Return Values
 The value 0 is returned upon successful completion of the call. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples

VS/AIX Interface Library
UTIMES set the file times

¦ Copyright IBM Corp. 1985, 1989
2.111 - 1

 The Pascal procedure and FORTRAN subroutine that follow call the UTIMES
 system routine.

 Pascal

 procedure utimes1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 green : integer;
 ffile : st80;
 tvp : timeval2;

 %include /usr/include/aildefs.inc

 begin
 ffile := '/tmp/junk';
 green :- p_open (ffile, CREATE, 0);
 tvp[1].tv_sec := 1;
 tvp[1].tv_usec := 2;
 tvp[2].tv_sec := 3;
 tvp[2].tv_usec := 4;
 green := p_utimes (ffile, tvp);
 if green = -1 then
 writeln ('Utimes: ERROR')
 else
 writeln ('Utimes: ok ');
 green := p_unlink (ffile);
 end;

 FORTRAN

 SUBROUTINE UTIMES1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FUTIMES, FOPEN, TVP(4), GREEN
 CHARACTER*80 FFILE
 FFILE = '/tmp/junk '
 GREEN = FOPEN (FFILE, CREATE, 0)
 TVP(1) = 1
 TVP(2) = 2
 TVP(3) = 3
 TVP(4) = 4
 GREEN = FUTIMES (FFILE, TVP)
 IF (GREEN .EQ1. -1) THEN
 PRINT *, 'UTIMES: ERROR'
 CALL ERRORS
 ELSE
 PRINT *, 'UTIMES: OK'
 ENDIF
 END

VS/AIX Interface Library
UTIMES set the file times

¦ Copyright IBM Corp. 1985, 1989
2.111 - 2

 2.112 WAIT, WAIT3 wait for a child process to terminate

 Description
 The WAIT and WAIT3 system calls cause the calling process to delay until a
 signal is received or until one of the child processes terminates or stops
 in a trace mode. However, the routine does not delay the calling process
 if a child process that has not been waited for has already stopped or
 terminated before the call was issued.

 WAIT3 returns more information than WAIT.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_wait (stinfo); ¦
 ¦ ¦
 ¦ p_wait3 (status, options, usage) ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FWAIT (STINFO) ¦
 ¦ ¦
 ¦ FWAIT3 (STATUS, OPTIONS, USAGE) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 stinfo
 is the termination status returned by one of the child processes to
 the parent process.

 � In Pascal, the termination status is of type integer.

 � In FORTRAN, the termination status is of type INTEGER.

 status
 is the termination status returned by one of the children of the
 calling process.

 � In Pascal, status is of type integer.

 � In FORTRAN, the status is of type INTEGER.

 options
 specifies either or (by logical ORing) both of two conditions of
 execution:

 WNOHANG causes WAIT3 not to delay if no processes are ready to
 report their status.

 WUNTRACED causes WAIT3 to return information when children of the
 calling process have stopped.

 � In Pascal, options is of type integer.

VS/AIX Interface Library
WAIT, WAIT3 wait for a child process to terminate

¦ Copyright IBM Corp. 1985, 1989
2.112 - 1

 � In FORTRAN, the options is of type INTEGER.

 usage
 describes the total resources used on all sites by the terminated
 process.

 � In Pascal, usage is of type rusageptr.

 � In FORTRAN, rusage is of type INTEGER USAGE(23).

 Return Values
 The process ID of a stopped or terminated child process is returned upon
 successful completion of the WAIT system call. The value 0 is returned
 upon successful completion of the WAIT3 system call. The value -1 is
 returned and an error code set in errno if either call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the WAIT
 system routine as well as two others that are commonly used in the context
 of a wait call: FORK and EXECL.

 In both examples, the result is the creation of a new process that is a
 copy of the parent process. The WAIT call allows the inner loop of the
 child process to complete execution before the parent process proceeds
 further. Without the WAIT call, it is likely that the child process
 cannot complete the inner loop before the parent issues the EXECL call and
 prints the date. The WAIT call guarantees that the child process will
 complete the loop before the EXECL call is issued.

 Pascal

 procedure wait1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 var
 blue, green, orange, pink, purple, red, yellow : integer;

 %include /usr/include/aildefs.inc

 begin
 green := p_fork;
 if green = 0 then
 begin
 for orange := 1 to 40 do
 writeln ('child process');
 purple := p_exit (pink)
 end;
 blue := p_wait (red);
 writeln (blue);
 yellow := p_execl ('/bin/sh', 'sh', '-c', 'date', '')
 end;

VS/AIX Interface Library
WAIT, WAIT3 wait for a child process to terminate

¦ Copyright IBM Corp. 1985, 1989
2.112 - 2

 FORTRAN

 SUBROUTINE WAIT1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FWAIT, FEXECL, FEXIT, FFORK, BLUE, GREEN, ORANGE
 INTEGER PINK, PURPLE, RED, YELLOW
 GREEN = FFORK ()
 IF (GREEN .EQ. 0) THEN
 DO 10 ORANGE = 1,40
 PRINT *, 'CHILD PROCESS'

 10 CONTINUE
 PURPLE = FEXIT (PINK)
 ENDIF
 BLUE = FWAIT (RED)
 PRINT *, BLUE
 YELLOW = FEXECL ('/bin/sh ', 'sh ', '-c ', 'date ', ' ')
 END

VS/AIX Interface Library
WAIT, WAIT3 wait for a child process to terminate

¦ Copyright IBM Corp. 1985, 1989
2.112 - 3

 2.113 WRITE, WRITEX write to a file

 Description
 The WRITE system call writes a specified number of bytes from a specified
 area to a specified file.

 The WRITEX system call invokes additional communications facilities.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_write (fildes, buffer, nbytes); ¦
 ¦ ¦
 ¦ p_writex (fildes, buffer, nbytes, ext); ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definitions -------------------------------+
 ¦ ¦
 ¦ function p_write (fildes : integer; buffer : writptr; ¦
 ¦ nbytes : integer) : integer; external; ¦
 ¦ ¦
 ¦ function p_writex (fildes : integer; buffer : writptr; ¦
 ¦ nbytes, ext : integer) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FWRITE (FILDES, BUFFER, NBYTES) ¦
 ¦ ¦
 ¦ FWRITEX (FILDES, BUFFER, NBYTES, EXT) ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 fildes
 is the descriptor of the file to be written to and is returned by a
 successful CREAT, DUP, DUP2, FCNTL, OPEN, PIPE, SOCKET, or SOCKETPAIR
 system call.

 � In Pascal, fildes is of type integer.

 � In FORTRAN, fildes is of type INTEGER.

 buffer
 is a pointer to a buffer of nbytes contiguous bytes that are written
 to the output file. The number of characters actually written is
 returned. It should be regarded as an error if the return value
 differs from the number requested.

 � In Pascal, buffer is a pointer of type writptr. (Writptr is a
 pointer to a user-defined packed array of type char.)

 � In FORTRAN, buffer is a user-defined array of type CHARACTER.

VS/AIX Interface Library
WRITE, WRITEX write to a file

¦ Copyright IBM Corp. 1985, 1989
2.113 - 1

 nbytes
 is the number of bytes to be written to the specified file.

 � In Pascal, nbytes is of type integer.

 � In FORTRAN, nbytes is of type INTEGER.

 ext
 is a parameter of the WRITEX call. It provides a value or a pointer
 to a communications area for specific devices.

 � In Pascal, ext is of type integer.

 � In FORTRAN, ext is of type INTEGER.

 In Pascal and FORTRAN, ext is device-dependent (see AIX Technical
 Reference).

 Return Values
 The return value is the number of bytes written to the specified file.
 The value -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine that follow call the WRITE
 system routine, which writes a specified number of bytes to a file that
 has been opened for writing. In these examples, 35 bytes are written to
 the file /tmp/junk from the Pascal packed array "yellow" and from the
 FORTRAN array "YELLOW".

 Pascal

 procedure write1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 writary = packed array[1..35] of char;
 writptr = @writary;
 var
 blue, orange, red : integer;
 yellow : writptr;

 function p_write (fildes : integer; buf : writptr;
 nbytes : integer) : integer; external;

 begin
 new(yellow);
 yellow@ := 'test file for the WRITE system call';
 blue := p_open ('/tmp/junk', WRONLY, 0);
 red := 35;
 orange := p_write (blue, yellow, red);
 writeln (orange);

VS/AIX Interface Library
WRITE, WRITEX write to a file

¦ Copyright IBM Corp. 1985, 1989
2.113 - 2

 end;

 FORTRAN

 SUBROUTINE WRITE1
 INCLUDE (/usr/include/ailfconsts.inc)
 INTEGER FWRITE, FOPEN, BLUE, ORANGE, RED
 CHARACTER*35 YELLOW
 BLUE = FOPEN ('/tmp/junk ', WRONLY, 0)
 YELLOW = 'test file for the WRITE system call '
 RED = 35
 ORANGE = FWRITE (BLUE, YELLOW, RED)
 PRINT *, ORANGE
 END

VS/AIX Interface Library
WRITE, WRITEX write to a file

¦ Copyright IBM Corp. 1985, 1989
2.113 - 3

 2.114 WRITEV write output from multiple buffers

 Description
 The WRITEV system call obtains data from a specified set of buffers and
 writes it to a specified object.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_writev (d, iov, iovcnt); ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- Pascal external function definition --------------------------------+
 ¦ ¦
 ¦ function p_writev (d : integer; var iov : iovarr; ¦
 ¦ iovcnt : integer) : integer; external; ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ This system call is not available in FORTRAN. ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 d
 is a file descriptor or a socket descriptor.

 � In Pascal, d is of type integer.

 � In FORTRAN, d is of type INTEGER.

 iov
 is an array of buffers.

 � In Pascal, iov is an array of records of type iovrec
 (user-defined).

 iovcnt
 is the number of buffers of the type specified by iov

 � In Pascal, iovcnt is of type integer.

 Return Values

 The number of bytes written is returned upon successful completion of the
 call. The value -1 is returned and an error code set in errno if the call
 fails.

 � In Pascal, the return value is of type integer

VS/AIX Interface Library
WRITEV write output from multiple buffers

¦ Copyright IBM Corp. 1985, 1989
2.114 - 1

 Examples
 In the Pascal procedure that follows, five iovec records are initialized
 with base addresses and a buffer length of 10. The buffers are filled
 with "123456789" strings. File descriptor "s" is created by an OPEN
 system call, and WRITEV is called to write information to file "s" from
 the five buffers pointed to by iov.

 Pascal

 procedure writev1;

 const
 %include /usr/include/ailpconsts.inc
 type
 %include /usr/include/ailtypes.inc
 buf = packed array[1..10] of char;
 bufptr = ^buf;
 iovrec = record
 iov_len : integer;
 iov_base : bufptr;
 end;
 iovarr = array[1..5] of iovrec;
 var
 i, s, green : integer;
 arr : st5;
 iov : iovarr;

 %include /usr/include/aildefs.inc

 function p_writev (d : integer; var iov : iovarr;
 iovcnt : integer) : integer; external;

 begin
 for i := 1 to 5 do
 begin
 iov[i].iov_len := 10;
 iov[i].iov_base^ := '123456789';
 end;
 s := p_open ('/tmp/junk', RDWR + CREATE, 0);
 green := p_writev (s, iov, 5);
 if (green <> -1) then
 writeln ('Writev returned: OK')
 else
 writeln ('Writev returned: ERROR')
 if (green = -1) then showerror;
 s := p_unlink ('/tmp/junk');
 end;

VS/AIX Interface Library
WRITEV write output from multiple buffers

¦ Copyright IBM Corp. 1985, 1989
2.114 - 2

 A.0 Appendix A. Error Codes and Error Messages

 This appendix describes the errors that can occur when a system call is
 issued. Some subroutines that invoke system calls indicate errors in a
 similar way.

 System calls indicate the occurrence of an error by returning a special
 value. This value is almost always -1, but you should check the
 description of the particular system call to be sure. A number
 identifying the error condition is stored in an external variable called
 errno (see "Return Values, Error Codes, and Error Messages" in Chapter 1
 for information on how to access errno). This variable is not cleared
 when a system call is successful, so its value is meaningful only after
 one error has occurred and before another.

 The errno.h header file declares the errno variable and defines the name
 of each error condition.

 For each error code the following list gives the code number, the symbolic
 name defined in the errno.h, header file, and the associated error
 message. (For additional information, see perror in AIX Operating System
 Technical Reference.)

 1 EPERM Not the owner
 2 ENOENT No such file or directory
 3 ESRCH No such process
 4 EINTR Interrupted system call
 5 EIO I/O error
 6 ENXIO No such device or address
 7 E2BIG Argument list too long
 8 ENOEXEC Exec format error
 9 EBADF Bad file number
 10 ECHILD No child process
 11 EAGAIN No more processes
 12 ENOMEM Not enough space
 13 EACCES Permission denied
 14 EFAULT Bad address
 15 ENOTBLK Block device required
 16 EBUSY Mount device busy
 17 EEXIST File exists
 18 EXDEV Cross-device link
 19 ENODEV No such device
 20 ENOTDIR Not a directory
 21 EISDIR Is a directory
 22 EINVAL Invalid argument
 23 ENFILE File table overflow
 24 EMFILE Too many open files
 25 ENOTTY Not a typewriter
 26 ETXTBSY Text file busy
 27 EFBIG File too large
 28 ENOSPC No space left on device
 29 ESPIPE Illegal seek
 30 EROFS Read-only file system
 31 EMLINK Too many links
 32 EPIPE Broken pipe
 33 EDOM Math argument
 34 ERANGE Result too large
 35 ENOMSG No message of desired type
 36 EIDRM Identifier removed
 37 ECHRNG Channel number out of range

VS/AIX Interface Library
Appendix A. Error Codes and Error Messages

¦ Copyright IBM Corp. 1985, 1989
A.0 - 1

 38 EL2NSYNC Level 2 not synchronized
 39 EL3HLT Level 3 halted
 40 EL3RST Level 3 reset
 41 ELNRNG Link number out of range
 42 EUNATCH Protocol driver not attached
 43 ENOCSI No CSI structure available
 44 EL2HLT Level 2 halted
 45 EDEADLK Potential deadlock

VS/AIX Interface Library
Appendix A. Error Codes and Error Messages

¦ Copyright IBM Corp. 1985, 1989
A.0 - 2

 B.0 Appendix B. Pascal Constants

 The following definitions of constants are required for Pascal calling
 sequences.

 ACCESS

 F_OK = 0 { search for a file }
 X_OK = 1 { test for execute permission }
 W_OK = 2 { test for write permission }
 R_OK = 4 { test for read permission }

 CHOWNX

 T_OWNER_AS_IS = 4
 T_GROUP_AS_IS = 32

 DISCLAIM

 ZERO_MEM = 0

 FCNTL

 F_DUPFD = 0
 F_GETFD = 1
 F_SETFD = 2
 F_GETFL = 3
 F_SETFL = 4
 F_GETLK = 5
 F_SETLK = 6
 F_SETLKW = 7
 F_OPENLOCK = 8
 F_GETOWN = 9
 F_SETOWN = 10

 F_RDLCK = 1
 F_WRLCK = 2
 F_UNLCK = 3

 FULLSTAT and FFULLSTAT

 FLSTAT = 0
 FLSTRV = 1
 FLSTOT = 2

 FS_VMP = 1

 GETGRP

 NGROUP = 26 { maximum number of group access entries allowed }

 GETITIMER and SETITIMER

 ITIMER_REAL = 0
 ITIMER_VIRTUAL = 1
 ITIMER_PROF = 2

 GETSOCKOPT and SETSOCKOPT

 SO_DEBUG = 1

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 1

 SO_ACCEPTCONN = 2
 SO_REUSEADDR = 4
 SO_KEEPALIVE = 8
 SO_DONTROUTE = 16
 SO_BROADCAST = 32
 SO_USELOOPBACK = 64
 SO_LINGER = 128
 SO_OOBINLINE = 256
 SOL_SOCKET = 65530

 IOCTL

 IOCTYP = 65280
 IOCINF = 65281

 { device types }

 DDLP = 'l' { line printer }
 DDTAPE = 'M' { mag tape }
 DDTTY = 'T' { terminal }
 DDDISK = 'R' { disk }
 DDRTC = 'c' { real-time (calendar) clock }
 DDPSEU = 'Z' { pseudo-device }
 DDNET = 'N' { networks }
 DDEN = 'E' { Ethernet interface }
 DDEM78 = 'e' { 3278/79 emulator }

 { tape-drive types }

 STREAM = 1 { streaming tape drive }
 STRSTP = 2 { start-stop tape drive }

 { flags }

 DFIXED = 01 { non-removable }
 DFRAND = 02 { random access possible }
 DFFAST = 04

 LOCKF

 F_ULOCK = 0
 F_LOCK = 1
 F_TLOCK = 2
 F_TEST = 3

 LSEEK

 SEEK_SET = 0
 SEEK_CUR = 1
 SEEK_END = 2

 MOUNT

 MC_MOUNTS = 0

 MOUNT and UMOUNT

 {flags}

 MNTRDO = 1

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 2

 MNTRMB = 2
 MNTDEV = 4
 MNTREM = 256

 { types }

 MNTAIX = 0
 MNTDS = 1

 MSGGET

 IXOTH = 1 { other: execute, search permission }
 IWOTH = 2 { other: write permission }
 IROTH = 4 { other: read permission }
 IRWXO = 7 { other: execute, read, write permission }
 IXGRP = 8 { group: execute, search permission }
 IWGRP = 16 { group: write permission }
 IRGRP = 32 { group: read permission }
 IRWXG = 56 { group: execute, read, write permission }
 IXUSR = 64 { owner: execute, search permission }
 IWUSR = 128 { owner: write permission }
 IRUSR = 256 { owner: read permission }
 IRWXU = 448 { owner: execute, read, write permission }
 IPCCRT = 512 { create entry if key doesn't exist }
 IPCEXL = 1024 { fail if key exists }
 IPCALC = 32768 { use if identifier exists }
 ENFMT = ISGID { enables enforcement-mode record locking }

 MSGRCV

 IPCNWT = 2048 { specify response to non-existent message;
 also used in SEMOP as a sem_flg value }
 IPCNER = 4096 { truncate a message that is too long }

 OPEN

 CREATE = 256 { open with file create; uses third OPEN arg }
 TTRUNC = 4096 { open with truncation }
 EXCL = 8192 { exclusive open }

 OPEN and CREAT

 RDONLY = 0
 WRONLY = 1
 RDWR = 2
 NDELAY = 4 { non-blocking I/O }
 APPEND = 8 { append; writes guaranteed at the end) }
 DEFERC = 32

 OPEN, CREAT, MKNOD, AND CHMOD

 IEXEC = 64 { owner: execute, search permission }
 IWRITE = 128 { owner: write permission }
 IREAD = 256 { owner: read permission }

 ISVTX = 512 { save text even after use }
 ISGID = 1024 { set group id on execution }
 ISUID = 2048 { set user id on execution }
 IFIFO = 4096 { fifo }
 IFCHR = 8192 { character special }

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 3

 IFDIR = 16384 { directory }
 IFBLK = 24576 { block special }
 IFREG = 32768 { regular }
 IFMT = 61440 { type of file }
 IFMPX = IFCHR + ISVTX { multiplexed character-special file }

 PLOCK

 UNLOCK = 0
 PROCLOCK = 1
 TXTLOCK = 2
 DATLOCK = 4

 REBOOT { these flags are defined in the file newconsts.inc }

 RBASKNAME = 1
 RBNOSYNC = 4
 RBHALT = 8

 SEMCTL

 IPCRMD = 0
 IPCSET = 1
 IPCSTT = 2
 GTNCNT = 3
 GETPID = 4
 GETVAL = 5
 GETALL = 6
 GTZCNT = 7
 SETVAL = 8
 SETALL = 9

 SEMOP

 SEMNDO = 4096

 SENDTO, SENDMSG, SENDFROM, RECV, RECVMSG, and RECVFROM
 { these constants are defined in the file newconsts.inc)

 MSG_OOB = 1
 MSG_PEEK = 2
 MSG_DONTROUTE = 4
 MSG_MAXIOVLEN = 16

 SHMAT

 SHMMAP = 2048
 SHMRDO = 4096
 SHMRND = 8192
 SHMCPY = 16384
 SHMLBA = 268435456

 SIGNAL

 SIG_BLOCK = 0
 SIG_UNBLOCK = 1
 SIG_SETMASK = 2

 SIGHUP = 1 { hangup }
 SIGINT = 2 { interrupt or rubout }

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 4

 SIGQIT = 3 { quit (ASCII FS) }
 SIGILL = 4 { illegal instruction (not reset when caught) }
 SIGTRP = 5 { trace trap, not reset when caught }
 SIGIOT = 6 { IOT instruction (abort) }

 SIGEMT = 7 { EMT instruction }
 SIGFPE = 8 { floating point exception }
 SIGKIL = 9 { kill (cannot be caught or ignored) }
 SIGBUS = 10 { bus error }
 SIGSGV = 11 { segmentation violation }
 SIGSYS = 12 { bad argument to system call }
 SIGPIP = 13 { write on a pipe with no one to read it }
 SIGALM = 14 { alarm clock }
 SIGTRM = 15 { software termination signal from kill }
 SIGU1 = 16 { user-defined signal 1 }

 SIGSTOP = 17
 SIGTSTP = 18
 SIGCONT = 19
 SIGCHLD = 20
 SIGTTIN = 21
 SIGTTOU = 22
 SIGIO = 23
 SIGXCPU = 24
 SIGXFSZ = 25
 SIGMSG = 27

 SIGWINCH = 28
 SIGPWR = 29
 SIGUSR1 = 30
 SIGUSR2 = 31
 SIGPROF = 32
 SIGDANGER = 33
 SIGVTALRM = 34
 SIGGRANT = 60
 SIGRETRACT = 61
 SIGSOUND = 62

 SIGDFL = 0 { for signal code parameter default }
 SIGIGN = 1 { for signal code parameter ignore }
 SIGADDR = 2 { for sigvec code parameter handler address }

 SOCKET

 PF_UNIX = 1
 PF_INET = 2

 SOCK_STREAM = 1
 SOCK_DGRAM = 2

 STATX and FSTATX

 STX_LINK = 1
 STX_MOUNT = 2
 STX_HIDDEN = 4

 STATSIZE = 100

 USRINFO

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 5

 GETINF = 1 { used as a parameter in the system call }
 SETINF = 2 { used as a parameter in the system call }
 INFSIZ = 64 { a constant equal to the size of the user buffer
 in the system call }

 WAIT3 { these constants are defined in the file newconsts.inc }

 WNOHANG = 1
 WUNTRACED = 2

VS/AIX Interface Library
Appendix B. Pascal Constants

¦ Copyright IBM Corp. 1985, 1989
B.0 - 6

 C.0 Appendix C. Pascal Type Declarations

 The following declarations of types are required for Pascal calling
 sequences.

 cargv = array[1..80] of cstrptr;
 charinfsiz = packed array[1..64] of char;
 charnine = packed array[1..9] of char;
 charptr = @char;
 char160 = packed array[1..160] of char;
 char32 = packed array[1..32] of char;
 char45 = packed array[1..45] of char;
 cstring = packed array[1..81] of char;
 cstrptr = @cstring;
 cstr12 = packed array[1..13] of char;
 intngroup = packed array[1..26] of integer;
 intptr = @integer;
 pasargv = array[1..80] of st80;
 piparray = array[1..2] of integer;
 short = -32767..32767;
 shrtptr = @short;
 st12 = string(12);
 st12ptr = @st12;
 st512 = string(255); {changed from 512 because of limit}
 st512ptr = @st512;
 st80 = string(80);
 st80ptr = @st80;
 ushrt = -32767..32767;
 usign = integer;

 FULLSTAT and FFULLSTAT

 vset = (VDIR, VCHR, VBLK, VREG, VMPC, VFIFO, VBAD, VUNDEF);
 tagset = (CALLER, OTHER, SOMONE, NOONE);
 vtype = VDIR..VUNDEF;
 tagtype = CALLER..NOONE;

 fullstatrec = record
 st_dev : integer;
 st_ino : integer;
 st_mode : integer;
 st_nlink : ushrt;
 spare0 : ushrt;
 st_uid : integer;
 st_gid : integer;
 st_rdev : integer;
 st_size : integer;
 st_atime : integer;
 spare1 : integer;
 st_mtime : integer;
 spare2 : integer;
 st_ctime : integer;

 st_spare3 : integer;
 st_blksize : integer;
 st_blocks : integer;
 fst_i_gen : integer;
 fst_vfs : integer;
 fst_flag : integer;
 st_cmtcnt : integer;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 1

 st_fstore : integer;
 st_version : integer;
 st_css : short;
 st_ss : short;
 st_rdevsite : short;
 st_spare4 : short;
 fst_nid : integer;
 fst_uid_raw : usign;
 fst_gid_raw : usign;
 fst_uid_rev_tag : usign;
 fst_gid_rev_tag : usign;
 end;
 fullstatptr = @fullstatrec;
 fullstatarr = array[1..30] of integer;

 Message routines

 msgxbuf = record
 mtime : integer;
 muid : short;
 mgid : short;
 mnid : integer;
 mpid : short;
 mtype : integer;
 mtext : st80;
 end;
 msgxptr = @msgxbuf;

 msg = record
 next : msgptr;
 mattr : msgxbuf;
 mtxtsz : short;
 mloc : short;
 end;
 msgptr = @msg;
 msgary = array[1..100] of msg;

 msqid_ds = record
 msg_perm : perm;
 msg_first : msgptr;
 msg_last : msgptr;
 msg_cbytes : ushrt;
 msg_qnum : ushrt;
 msg_qbytes : ushrt;
 msg_lspid : integer;
 msg_lrpid : integer;
 msg_stime : integer;
 msg_rtime : integer;
 msg_ctime : integer;
 end;
 mdsptr = @msqid_ds;

 msgbuf = record
 mtype : integer;
 mtext : st80;
 end;
 mbufptr = @msgbuf;

 perm = record
 uid : short;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 2

 gid : short;
 cuid : short;
 cgid : short;
 mode : short;
 seq : short;
 key : integer;
 end;

 Semaphore routines

 sem = record
 semval : short;
 sempid : short;
 semncnt : short;
 semzcnt : short;
 end;

 semptr = @sem;

 semid_ds = record
 sem_perm : perm;
 sem_base : semptr;
 sem_nsems : short;
 semlcnt : short;
 sem_otime : integer;
 sem_ctime : integer;
 end;
 semidptr = @semid_ds;

 semary = array [1..1000] of short;
 semaryptr = @semary;
 abc = 0..2;
 semrec = record
 case abc of
 0 : (val : integer);
 1 : (buf : semidptr);
 2 : (arry : semaryptr);
 end;

 sembuf = record
 sem_num : short;
 sem_op : short;
 sem_flg : short;
 end;
 semopary = array[1..1000] of sembuf;

 Shared-memory routines

 smds = record
 shperm : perm;
 shsegsz : integer;
 shlpid : integer;
 shcpid : integer;
 shnattach : short;
 shcnattach : short;
 shatime : integer;
 shdtime : integer;
 shctime : integer;
 spare0 : integer;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 3

 end;
 smdsptr = @smds;

 Signal routines

 signalstack = record
 ss_sp : cstrptr;
 ss_onstack : integer;
 end;
 stackptr = @signalstack;

 signalvec = record
 sv_handler : intptr;
 sv_mask : integer;
 sv_onstack : integer;
 end;
 sigvecptr = @signalvec;

 New signal calls

 nsigtype = array[1..3] of usign;

 sigset_t = record
 setsize : integer;
 sigs : nsigtype;
 end;
 sigset_tptr = @sigset_t;

 sigact = record
 sa_mask : sigset_t;
 sa_flags : integer;
 sa_handler : integer;
 end;
 sigactptr = ¬sigact;

 flock = record
 l_type : short;
 l_whence : short;
 l_start : integer;
 l_len : integer;
 l_sysid : usign;
 l_pid : short;
 end;

 flockptr = @flock;

 Calls to SIGVEC

 The following definitions are used strictly with a call to SIGVEC to
 restore the process previous execution context, information pushed on the
 stack when a signal is delivered. This is used by the kernel to restore
 state following execution of the signal handler. It is also made
 available to the handler to allow it to properly restore state if a
 non-standard exit is performed.

 FP_STATUS = integer; { holds the following information:
 bit 1 : SIGFPE on exception
 bit 2 : exception occurred
 bit 3 : invalid operation occurred

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 4

 bit 4 : exception on invalid operation
 bit 5 : divide by zero occurred
 bit 6 : exception on divide by zero
 bit 7 : overflow occurred
 bit 8 : exception on overflow
 bit 9 : underflow occurred
 bit 10 : exception on underflow
 bits 11-21 : reserved
 bits 22&23 : comparison result
 bits 24&25 : rounding mode
 bit 26 : inexact result occurred
 bit 27 : exception on inexact result
 bits 28&29 : reserved
 bits 30-32 : machine communications type}

 choice = 0..2;
 fpreg = record
 case choice of
 0 : (hp : usign;
 lp : usign);
 2 : (freg : array[1..2] of real);
 end;

 fptrapinfo = integer;

 fptrap = record
 info : fptrapinfo;
 designated_result : fpreg;
 end;

 fpvmach = record
 fpregarray : array[1..8] of fpreg;
 statusreg : FP_STATUS ;
 fptrapvar : fptrap;
 end;

 sigcontext = record
 sc_onstack : integer; { Sigstack state to restore }
 sc_mask : integer; { Signal mask to restore }
 sc_sp : integer; { sp to restore (ignored) }
 sc_pc : integer; { pc to restore }
 sc_ps : integer; { psl to restore (ignored) }
 fpvmp : @fpvmach; { pointer to virtual fp machine }
 end;
 contextptr = @sigcontext;

 char14 = array[1..14] of char;
 int4 = array[1..4] of integer;

 prof = record
 p_low : integer;
 p_high : integer;
 p_buff : shrtptr;
 p_bufsize : integer;
 p_scale : integer;
 end;

 timeval= record
 tv_sec : integer;
 tv_usec : integer;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 5

 end;
 timevalptr = @timeval;
 timeval2 = array[1..2] of timeval;

 timezone = record
 tz_minuteswest : integer;
 tz_dsttime : integer;
 end;
 timezoneptr = @timezone;

 itimerval = record
 it_interval : timeval;
 it_value : timeval;
 end;
 itimervalptr = @itimerval;

 rusage = record
 ru_utime : timeval;
 ru_stime : timeval;
 ru_maxrss : integer;
 ru_ixrss : integer;
 ru_idrss : integer;
 ru_isrss : integer;
 ru_mainflt : integer;
 ru_majflt : integer;
 ru_nswap : integer;
 ru_inblock : integer;
 ru_outblock : integer;
 ru_msgsnd : integer;
 ru_msgrcv : integer;
 ru_nsignals : integer;
 ru_nvcsw : integer;
 ru_cw : integer;

 ru_steal : integer;
 ru_swap : integer;
 ru_file : integer;
 ru_demand : integer;
 end;
 rusageptr = @rusage;

 iovec = record
 iov_base : charptr;
 iov_len : integer;
 end;
 iovecptr = @iovec;

 msghdr = record
 msg_name : cstring;
 msg_namelen : integer;
 msg_iov : iovecptr;
 msg_iovlen : integer;
 msg_accrights : cstring;
 msg_accrightslen : integer;
 end;
 msghdrptr = @msghdr;
 int2 = array[1..2] of integer;

 sockaddr = record
 sa_family : ushrt;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 6

 sa_data : packed array[1..14] of char;
 end;
 sockaddrptr = @sockaddr;

 mminfo = record
 m_nid : usign;
 m_object : cstring;
 m_stub : cstring;
 m_flag : usign;
 m_date : short;
 end;
 minfoptr = @mminfo;

 bheader = record
 nid : integer;
 reserved : integer;
 size : usign;
 minfo : mminfo;
 end;
 bheaderptr = @bheader;

 ltable = record
 ttype : char;
 id : integer;
 mode : char;
 nid : integer;
 reserved : array[1..4] of integer;
 end;
 ltableptr = @ltable;

 idrow = record
 wireid : integer;
 localid : short;
 pad : short;
 end;

 dsxlate = record
 rlv1 : short;
 gid : short;
 uid : short;
 flag : char;
 pad1 : char;
 numuids : ushrt;
 numgids : ushrt;
 pad2 : short;
 idrow1 : idrow;
 end;

 ds_state = record
 i_state : short; { input state }
 i_kprocs : short; { input number of kprocs }
 r_state : short; { result state }
 r_kprocs : short; { result number of kprocs }
 reserved : array[1..4] of integer; { reserved }
 end;
 dsstateptr = @ds_state;

 ddsipc = record
 inkey : integer;
 nid : integer;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 7

 outkey : integer;
 end;

 STAT and FSTAT

 statrec = record
 st_dev : integer;
 st_ino : integer;
 st_mode : integer;
 st_nlink : ushrt;
 spare0 : ushrt;
 st_uid : integer;
 st_gid : integer;
 st_rdev : integer;
 st_size : integer;
 st_atime : integer;
 spare1 : integer;
 st_mtime : integer;
 spare2 : integer;
 st_ctime : integer;
 st_spare3 : integer;
 st_blksize : integer;
 st_blocks : integer;
 st_gen : integer;
 st_type : integer;
 end;
 statptr = @statrec;

 Time routines

 tms = record
 tms_utime : integer;
 tms_stime : integer;
 tms_cutime : integer;
 tms_cstime : integer;
 end;

 UNAME

 unam = record
 sysname : char32;
 nodename : char32;
 release : char32;
 version : char32;
 machine : char32;
 end;
 unptr = @unam;

 xunam = record
 nid : usign;
 reserved : array[1..3] of integer;
 end;
 xunptr = @xunam;

 USTAT

 ustatrec = record
 f_tfree : integer;
 f_tinode : usign;
 f_fname : array[1..6] of char;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 8

 f_fpack : array[1..6] of char;
 end;
 ustatptr = @ustatrec;
 devkind = (disk, map, ether, mag);

 devinfo = record
 devtyp_flg : packed array[1..2] of char;
 { devinfo and flags chars needed... }
 { ...for proper allignment }

 hold : short;
 case devkind of
 disk : (bytpsec : short; { bytes per sector }
 secptrk : short; { sectors per track }
 trkpcyl : short; { tracks per cylinder }
 numblks : integer); { blocks this partition }
 map : (capab : char; { capabilities }
 mode : char; { current mode }
 hres : short; { horizontal resolution }
 vres : short); { vertical resolution }
 ether: (capabs : short; { capabilities }
 haddr : array[1..6] of char); { hardware address }
 mag : (typ : short) { what flavor of tape }
 end;
 devptr = @devinfo;

 UTIME

 utimbuf = record
 actime : integer;
 modtime : integer;
 end;
 utimptr = @utimbuf;

VS/AIX Interface Library
Appendix C. Pascal Type Declarations

¦ Copyright IBM Corp. 1985, 1989
C.0 - 9

 D.0 Appendix D. Pascal Procedure and Function Declarations

 The following declarations are required for Pascal calling sequences.

 function p_accept (s : integer; addr : sockaddrptr; var addrlen : integer) : integer; external;
 function p_access (path : st80; amode : integer) : integer; external;
 function p_acct (path : st80) : integer; external;
 function p_adjtime (var delta, olddelta : timeval) : integer; external;
 function p_alarm (sec : usign) : usign; external;

 function p_bind (s : integer; name : sockaddrptr; namelen : integer) : integer; external;
 function p_brk (endds : integer) : integer; external;

 function p_chdir (path : st80) : integer; external;
 function p_chhidden (path : st80; flag : integer) : integer; external;
 function p_chmod (path : st80; mode : integer) : integer; external;
 function p_chown (path : st80; owner, group : integer) : integer; external;
 function p_chownx (path : st80; owner, group, tflag : integer) : integer; external;
 function p_chroot (path : st80) : integer; external;
 function p_close (fildes : integer) : integer; external;
 function p_connect (s : integer; name : sockaddrptr; namelen : integer) : integer; external;
 function p_creat (path : st80; mode : integer) : integer; external;

 function p_dup (fildes : integer) : integer; external;
 function p_dup2 (oldfd, newfd : integer) : integer; external;

 function p_ercode : integer; external;
 function p_execl (path, arg0, arg1, arg2, arg3 : st80) : integer; external;
 function p_execle (path, arg0, arg1, arg2, arg3 : st80; envp : pasargv) : integer; external;
 function p_execlp (filename, arg0, arg1, arg2, arg3 : st80) : integer; external;
 function p_execv (path : st80; args : pasargv) : integer; external;
 function p_execve (path : st80; args, envp : pasargv) : integer; external;
 function p_execvp (filenm : st80; args : pasargv) : integer; external;
 function p_exit (status : integer) : integer; external;
 function p__exit (status : integer) : integer; external;

 function p_fabort (fildes : integer) : integer; external;
 function p_fclear (fildes : integer; nbytes : usign) : usign; external;
 function p_fcommit (fildes : integer) : integer; external;
 function p_ffullstat (fildes, cmd : integer; var buf : fullstatrec) : integer; external;
 function p_fork : integer; external;
 function p_fstat (fildes : integer; var buf : statrec) : integer; external;
 function p_fstatx (fildes : integer; var buf : statrec; len, cmd : integer) : integer; external;
 function p_fsync (fildes : integer) : integer; external;
 function p_ftok (path : st80; id : char) : integer; external;
 function p_ftruncate (fildes : integer; len : usign) : integer; external;
 function p_fullstat (path : st80; cmd : integer; var buf : fullstatrec) : integer; external;

 function p_getdtablesize : integer; external;
 function p_getegid : ushrt; external;
 function p_geteuid : ushrt; external;
 function p_getgid : ushrt; external;
 function p_getgroups (ngrp :integer; var gidset : intgroup) : integer; external;
 function p_gethostid : integer; external;
 function p_gethostname (var name : st80; namelen : integer) : integer; external;
 function p_getitimer (which : integer; var vvalue : itimerval) : integer; external;
 function p_getlocal (var localname : st80; maxlength : integer) : integer; external;
 function p_getpeername (s : integer; name : sockaddrptr; var namelen : integer) : integer; external;
 function p_getpgrp : integer; external;
 function p_getpid : integer; external;

VS/AIX Interface Library
Appendix D. Pascal Procedure and Function Declarations

¦ Copyright IBM Corp. 1985, 1989
D.0 - 1

 function p_getppid : integer; external;
 function p_getsockname (s : integer; name : sockaddrptr; var namelen : integer) : integer; external;
 function p_gettimeofday (var tp : timevalptr; var tzp : timezone) : integer; external;
 function p_getuid : ushrt; external;
 function p_getxvers (var xvers : st80; length : integer) : integer; external;

 function p_ioctl (fildes, request : integer; argp : devptr) : integer; external;

 function p_kill (pid, sig : integer) : integer; external;
 function p_killpg (pgrp, sig : integer) : integer; external;

 function p_link (path1, path2 : st80) : integer; external;
 function p_listen (s, backlog : integer) : integer; external;
 function p_loadtbl (cntl : ltableptr; buf : st80; size : integer) : integer; external;
 function p_lockf (fildes, request, size : integer) : integer; external;
 function p_lseek (fildes, offset, whence : integer) : integer; external;
 function p_lstat (path : st80; var buf : statrec) : integer; external;

 function p_mkdir (var path : st80; mode : integer) : integer; external;
 function p_mknod (path : st80; mode, dev : integer) : integer; external;
 function p_mount (dev, dir : st80; rwflag : integer) : integer; external;
 function p_msgctl (msqid, cmd : integer; buf : mdsptr) : integer; external;
 function p_msgget (key, msgflg : integer) : integer; external;
 function p_msgrcv (msqid : integer; msgp : mbufptr; msgsz, msgtyp, msgflg : integer) : integer; external;
 function p_msgsnd (msqid : integer; msgp : mbufptr; msgsz, msgflg : integer) :
 function p_msgxrcv (msqid : integer; msgpt : msgxptr; msgsz, msgtyp, msgflg : integer) : integer; external;

 function p_nice (incr : integer) : integer; external;

 function p_open (oath : st80; oflag, mode : integer) : integer; external;

 function p_pause : integer; external;
 procedure p_perror (a : st80); external;
 function p_pipe (var fildes : piparray) : integer; external;
 function p_plock (op : integer) : integer; external;
 function p_profil (var buff : intptr; bufsiz, offset, scale : usign) : integer; external;
 function p_ptrace (request, pid : integer; addr : intptr; data : integer; buff : intptr) : integer;

 function p_readlink (path : st80; var buf : st80; bufsiz : integer) : integer; external;
 function p_reboot (dev : integer) : integer; external;
 function p_recvmsg (s : integer; msg : msghdrptr; flags : integer) : integer; external;
 function p_rename (var frompath, topath : st80) : integer; external;
 function p_rmdir (var path : st80) : integer; external;

 function p_sbrk (incr : integer) : integer; external;
 function p_select (nfds : integer; var read, write, except : integer; timeout : timevalptr) : integer;

 function p_semctl (semid, semnum, cmd : integer; var arg : semrec) : integer; external;
 function p_semget (key, nsems, semflg : integer) : integer; external;
 function p_semop (semid : integer; var sops : semopary; nsops : integer) : integer; external;
 function p_sendmsg (s : integer; msg : msghdrptr; flags : integer) : integer; external;
 function p_setgid (uid : integer) : integer; external;
 function p_setgroups (ngrp :integer; var gidset : intgroup) : integer; external;
 function p_sethostid (hostid : integer) : integer; external;
 function p_sethostname (var name : st80; namelen : integer) : integer; external;
 function p_setitimer (which : integer; var vvalue, ovalue : itimerval) : integer; external;
 function p_setlocal (var localname : st80) : integer; external;
 function p_setpgid (pid : integer; pgid : integer) : integer; external;
 function p_setpgrp (flag : integer) : integer; external;

VS/AIX Interface Library
Appendix D. Pascal Procedure and Function Declarations

¦ Copyright IBM Corp. 1985, 1989
D.0 - 2

 function p_settimeofday (var tp : timeval; var tzp : timezone) : integer; external;
 function p_setuid (uid : integer) : integer; external;
 function p_setxvers (xvers : st80) : integer; external;
 function p_shmat (shmid, shmadr, shmflg : integer) : integer; external;
 function p_shmctl (shmid, cmd : integer; buf : smds) : integer; external;
 function p_shmdt (shmadr : integer) : integer; external;
 function p_shmget (key, size, shmflg : integer) : integer; external;
 function p_shutdown (s, how : integer) : integer; external;
 function p_sigaction (sig : integer; act,oact : sigactptr) : integer; external;
 function p_sigblock (mask : integer) : integer; external;
 function p_signal (sig : integer; func : integer) : integer; external;
 function p_sigpause (sigmsk : integer) : integer; external;
 function p_sigprocmask (how : integer; var sset, oset : sigset_t) : integer; external;
 function p_sigsetmask (mask : integer) : integer; external;
 function p_sigstack (instack, outstack : stackptr) : integer; external;
 function p_sigsuspend (sigmask : sigset_t) : integer; external;
 function p_sigvec (sig, code : integer; invec,outvec : sigvecptr) : integer; external;
 function p_socket (domain, ttype, protocol : integer) : integer; external;
 function p_socketpair (domain, ttype, protocol : integer; var sv : int2) : integer; external;
 function p_stat (path : st80; var buf : statrec) : integer; external;
 function p_statx (path : st80; var buf : statrec; len,cmd : integer) : integer; external;
 function p_stime (tp : integer) : integer; external;
 function p_symlink (path1, path2 : st80) : integer; external;
 function p_sync : integer; external;
 function p_system (str : st80) : integer; external;

 function p_time (var tloc : integer) : integer; external;
 function p_times (var buf : tms) : integer; external;

 function p_ulimit (cmd, newlimit : integer) : integer; external;
 function p_umask (cmask : integer) : integer; external;
 function p_umount (dev : st80; flag : integer) : integer; external;
 function p_uname (var name : unam) : integer; external;
 function p_unamex (xname : xunam) : integer; external;
 function p_unlink (path : st80) : integer; external;
 function p_usrinfo (cmd : integer; var buf : charinfsiz; count : integer) : integer; external;
 function p_ustat (dev : integer; var buf : ustatrec) : integer; external;
 function p_utime (path : st80; times : utimptr) : integer; external;
 function p_utimes (ffile : st80; tvp : timeval2) : integer; external;

 function p_wait (status : integer) : integer; external;
 function p_wait3 (var status : integer; options : integer; usage : rusageptr) : integer; external;

VS/AIX Interface Library
Appendix D. Pascal Procedure and Function Declarations

¦ Copyright IBM Corp. 1985, 1989
D.0 - 3

 E.0 Appendix E. The ftok System Subroutine

 Description
 The ftok system subroutine returns a key that can be used to obtain
 interprocess-communication identifiers.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_ftok (path, id); ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FFTOK (PATH, ID) ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 path
 is the path name of an existing file that can be accessed by the
 calling process.

 � In Pascal, path is of type st80.

 � In FORTRAN, path is a string or constant of type CHARACTER*80.
 The terminating character of the string must be a blank space.

 id
 is a character that uniquely identifies a project.

 � In Pascal, id is of type char.

 � In FORTRAN, id is of type CHARACTER.

 Return Values

 A key is returned upon successful completion of a call to ftok. The value
 -1 is returned and an error code set in errno if the call fails.

 � In Pascal, the return value is of type integer

 � In FORTRAN, the return value is of type INTEGER

 Examples
 The Pascal procedure and FORTRAN subroutine shown on the next page issue a
 call to the ftok system subroutine, which returns a key associated with
 the file /tmp/sample.
 Pascal

 procedure ftok1;

VS/AIX Interface Library
Appendix E. The ftok System Subroutine

¦ Copyright IBM Corp. 1985, 1989
E.0 - 1

 type
 %include /usr/include/ailtypes.inc
 var
 red : integer;
 blue : st80;
 green : char;

 %include /usr/include/aildefs.inc

 begin
 green := 'z';
 blue := '/tmp/sample';
 red := p_ftok (blue, green);
 writeln (red)
 end;

 FORTRAN

 SUBROUTINE FTOK1
 INTEGER RED
 CHARACTER*80 BLUE , GREEN
 GREEN = 'z'
 BLUE = '/tmp/sample '
 RED = FFTOK (BLUE, GREEN)
 PRINT *, RED
 END

VS/AIX Interface Library
Appendix E. The ftok System Subroutine

¦ Copyright IBM Corp. 1985, 1989
E.0 - 2

 F.0 Appendix F. The perror System Subroutine

 Description
 The perror system subroutine writes a message explaining a system-call
 error.

 Syntax

 +--- Pascal ---+
 ¦ ¦
 ¦ p_perror (pmsg); ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 +--- FORTRAN --+
 ¦ ¦
 ¦ FPERROR (PMSG) ¦
 ¦ ¦
 ¦ ¦
 ¦ ¦
 +--+

 Parameters

 pmsg
 is a user-defined message that precedes the standard error message.

 � In Pascal, pmsg is of type st80.

 � In FORTRAN, pmsg is a string variable or constant of type
 CHARACTER*80. The terminating character of the string must be a
 blank space.

 Return Values

 There is no return value from a successful perror call.

 Examples
 The Pascal procedure and FORTRAN subroutine shown on the next page print
 an error code number and the associated error message if the path
 parameter (in the CHDIR call) specifies a nonexistent directory.
 Pascal

 %include /usr/include/aildefs.inc
 procedure showerror;

 var
 result, code : integer;
 pmsg : st80;

 begin
 pmsg = 'MEANING OF ERROR';
 result := p_chdir ('/usr/nonexist');
 if result = -1 then
 begin
 code := p_ercode;
 writeln (code);

VS/AIX Interface Library
Appendix F. The perror System Subroutine

¦ Copyright IBM Corp. 1985, 1989
F.0 - 1

 p_perror (pmsg)
 end
 end;

 FORTRAN

 SUBROUTINE ERRORS
 INTEGER RESULT, CODE, ERCODE
 RESULT = CHDIR ('/usr/nonexist ')
 IF (RESULT .EQ. -1) THEN
 CODE = ERCODE ()
 PRINT *, CODE
 CALL FPERROR
 ENDIF
 END

VS/AIX Interface Library
Appendix F. The perror System Subroutine

¦ Copyright IBM Corp. 1985, 1989
F.0 - 2

 A
 ACCEPT system call 2.1
 See also sockets
 access attributes 2.10
 access mode 2.2 2.15
 changing 2.10
 checking 2.2
 in CREAT system call 2.15
 in MKNOD system call 2.47
 in OPEN system call 2.54
 options 2.10
 protection bits 2.105
 ACCESS system call 2.2
 See also input-output
 accounting file 2.3
 accounting function 2.3
 ACCT system call 2.3
 See also process tracking
 ADJTIME system call 2.4
 See also system utilities
 advisory locks 2.44
 ALARM system call 2.5
 See also signals
 allocation, data-segment space 2.7
 alternate stack (in signal processing) 2.93
 assigning a process priority 2.53
 attaching a mapped file 2.82
 attaching a shared-memory segment 2.82
 B
 BIND system call 2.6
 See also sockets
 blocking a signal 2.88 2.92
 breakpoint, setting a 2.7
 BRK system call 2.7
 See also process control
 C
 calling up a file 2.15
 calls
 See system calls
 catching a signal 2.89
 changing a group ID 2.11
 changing a memory image 2.59
 changing a process priority 2.53
 changing a user ID 2.11
 changing data-segment space allocation 2.7
 changing ownership of a file 2.11
 changing the access mode 2.10
 changing the directory 2.8
 channel, intercommunication 2.56
 CHDIR system call 2.8
 See also system utilities
 system calls
 CHDIR 2.8
 CHHIDDEN 2.9
 CHMOD 2.10
 CHOWN 2.11
 CHOWNX 2.11
 CHROOT 2.12
 FABORT 2.21
 FCNTL 2.23

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 1

 FFULLSTAT 2.98
 FSTAT 2.98
 FSTATX 2.98
 FULLSTAT 2.98
 LINK 2.42
 LSTAT 2.98
 MKDIR 2.46
 MKNOD 2.47
 MOUNT 2.48
 READLINK 2.61
 RENAME 2.65
 RMDIR 2.66
 STAT 2.98
 STATX 2.98
 SYMLINK 2.100
 SYNC 2.101
 UMASK 2.105
 UMOUNT 2.48
 UNLINK 2.107
 USTAT 2.109
 UTIME 2.110
 UTIMES 2.111
 checking file access 2.2
 CHHIDDEN system call 2.9
 See also file maintenance
 CHMOD system call 2.10
 See also file maintenance
 CHOWN system call 2.11
 See also file maintenance
 CHOWNX system call 2.11
 See also file maintenance
 CHROOT system call 2.12
 See also file maintenance
 clearing a file 2.22
 clearing a file lock 2.23
 clock
 "alarm" 2.5
 system calls
 ADJTIME 2.4
 DISCLAIM 2.16
 GETITIMER 2.31
 GETTIMEOFDAY 2.37
 GETXVERS 2.39
 REBOOT 2.63
 SETITIMER 2.75
 SETTIMEOFDAY 2.79
 SETXVERS 2.81
 STIME 2.99
 TIME 2.102
 UNAME 2.106
 UNAMEX 2.106
 system, setting 2.99
 system, synchronizing 2.4
 CLOSE system call 2.13
 See also input-output
 close-on-exec flag 2.23
 closing a file 2.13
 communicating with character devices 2.60
 communication
 between processes 2.56

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 2

 CONNECT system call 2.14
 See also sockets
 connecting a socket 2.1 2.14
 constant definitions B.0
 controlling a device 2.40
 controlling an open-file descriptor 2.23
 controlling block files 2.40
 controlling character special files 2.40
 controlling semaphores 2.68
 converting a directory 2.9
 CREAT system call 2.15
 See also input-output
 creating a directory 2.46 2.47
 creating a file 2.15
 creating a group access list 2.72
 creating a message-queue ID 2.50
 creating a pipe 2.56
 creating a shared-memory ID 2.85
 creating a socket endpoint 2.96
 creating a socket pair 2.97
 creating a special file 2.47
 creating a symbolic link 2.100
 D
 data
 locking 2.57
 passing, between processes 2.56
 space allocation 2.7
 unlocking 2.57
 data-segment space allocation 2.7
 declarations
 FORTRAN 1.7.1
 Pascal 1.6.1
 Pascal function D.0
 Pascal procedure D.0
 Pascal type C.0
 defining an alternate stack 2.93
 delaying a process 2.112
 deleting an entry from a directory 2.107
 descriptor table
 See process identification
 detaching a mapped-file 2.84
 detaching a shared-memory segment 2.84
 direction
 changing 2.8
 creating 2.46 2.47
 deleting an entry 2.107
 MKNOD system call 2.47
 removing 2.66
 renaming 2.65
 setting the root 2.12
 directory conversion 2.9
 disabling a socket 2.86
 DISCLAIM system call 2.16
 See also system utilities
 disclaiming memory 2.16
 DUP system call 2.17
 See also input-output
 DUP2 system call 2.17
 See also input-output
 duplicating a file descriptor 2.17

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 3

 E
 effective group ID
 getting 2.38
 setting 2.80
 effective user ID
 getting 2.38
 setting 2.80
 endpoint, socket 2.96
 enforced locks 2.44
 errno variable A.0
 errno.h header file A.0
 error codes 1.8 A.0
 error messages 1.8 A.0
 EXEC system calls
 See also process control
 EXECL 2.18
 EXECLE 2.18
 EXECLP 2.18
 EXECV 2.19
 EXECVE 2.19
 EXECVP 2.19
 executing a file 2.18 2.19
 execution-time profile 2.58
 EXIT system call 2.20
 See also process control
 _EXIT system call 2.20
 See also process contol
 F
 FABORT system call 2.21
 See also file maintenance
 FCLEAR system call 2.22
 See also input-output
 FCNTL system call 2.23
 See also file maintenance
 FCOMMIT system call 2.25
 See also input-output
 FFULLSTAT system call 2.98
 See also file maintenance
 file access
 See also access mode
 See also file maintenance
 testing for file permissions 2.2
 file descriptor, controlling 2.23
 file maintenance
 See also access mode
 See also files
 canceling a file change 2.21
 changing a group ID 2.11
 changing a user ID 2.11
 changing the access mode 2.10
 clearing a file lock 2.23
 controlling an open-file descriptor 2.23
 creating a directory 2.47
 creating a special file 2.47
 deleting an entry from a directory 2.107
 file ownership 2.11
 getting a file lock 2.23
 getting a file status flag 2.23
 getting a process group ID 2.23
 getting a process ID 2.23

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 4

 getting file-system information 2.109
 getting the close-on-exec flag 2.23
 linking to a file 2.42
 mounting a file system 2.48
 opening a file lock 2.23
 reading a symbolic link 2.61
 removing a directory 2.66
 removing a file system 2.48
 renaming a directory 2.65
 setting a file lock 2.23
 setting a file status flag 2.23
 setting a process group ID 2.23
 setting a process ID 2.23
 setting file times 2.111
 setting recorded times 2.110
 setting the close-on-exec flag 2.23
 setting the root directory 2.12
 status of a file 2.98
 storing file-system information 2.109
 symbolic link 2.98
 unmounting a file system 2.48
 updating a file system 2.101
 file permissions 2.2
 file status 2.98
 file status flag 2.23
 file system, mounting and unmounting 2.48
 file system, updating 2.101
 file times 2.98
 file-access mode
 See access mode
 file-creation-mode mask 2.105
 files
 See also file maintenance
 executing 2.18 2.19
 file access 2.10
 file maintenance 2.10
 freeing space in 2.22
 linking to 2.42
 locking 2.44
 reading from 2.60
 truncating 2.26
 writing to 2.113
 zeroing 2.22
 flag
 See also file maintenance
 close-on-exec 2.23
 status 2.23
 FORK system call 2.24
 See also process control
 FORTRAN declarations 1.7.1
 freeing space in a file 2.22
 FSTAT system call 2.98
 See also file maintenance
 FSTATX system call 2.98
 See also file maintenance
 FSYNC system call 2.25
 See also input-output
 ftok system subroutine E.0
 FTRUNCATE system call 2.26
 See also input-output

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 5

 FULLSTAT system call 2.98
 See also file maintenance
 function declarations D.0
 G
 GETDTABLESIZE system call 2.27
 See also process identification
 GETEGID system call 2.38
 See also process identification
 GETEUID system call 2.38
 See also process identification
 GETGID system call 2.38
 See also process identification
 GETGROUPS system call 2.28
 See also process identification
 GETHOSTID system call 2.29
 See also process identification
 GETHOSTNAME system call 2.30
 See also process identification
 GETITIMER system call 2.31
 See also system utilities
 GETLOCAL system call 2.32
 See also process identification
 GETPEERNAME system call 2.33
 See also sockets
 GETPGRP system call 2.34
 See also process identification
 GETPID system call 2.34
 See also process identification
 GETPPID system call 2.34
 See also process identification
 GETSOCKNAME system call 2.35
 See also sockets
 GETSOCKOPT system call 2.36
 GETTIMEOFDAY system call 2.37
 See also system utilities
 getting a file lock 2.23
 getting a file status flag 2.23
 getting a file-creation-mode mask 2.105
 getting a group access list 2.28
 getting a message-queue ID 2.50
 getting a process group ID 2.23 2.34
 getting a process ID 2.23 2.34
 getting a process ID of a parent 2.34
 getting a real group ID 2.38
 getting a real user ID 2.38
 getting a semaphore 2.69
 getting a semaphore ID 2.69
 getting a semaphore value 2.68
 getting a shared-memory ID 2.85
 getting a socket name 2.33 2.35
 getting an alias 2.32
 getting an effective user ID 2.38
 getting descriptor-table size 2.27
 getting file-system information 2.109
 getting process limits 2.104
 getting process times 2.103
 getting socket options 2.36
 getting the close-on-exec flag 2.23
 getting the current host ID 2.30
 getting the current-host ID 2.29

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 6

 getting the time 2.31 2.37
 getting the UNIX version string 2.39
 getting user information 2.108
 GETUID system call 2.38
 See also process identification
 GETXVERS system call 2.39
 See also system utilities
 group access list
 getting 2.28
 setting 2.72
 group ID
 effective 2.38
 process 2.34
 real 2.38
 H
 "hidden" attribute 2.9
 I
 identifiers (IDs)
 See process identification
 ignoring a signal 2.89
 information
 file status 2.98
 file system 2.109
 symbolic link 2.98
 user information 2.108
 input-output
 calling up a file 2.15
 checking file access 2.2
 checking status 2.67
 clearing a file 2.22
 closing a file 2.13
 communicating with character devices 2.60
 controlling a device 2.40
 controlling block files 2.40
 controlling character special files 2.40
 creating a file 2.15
 duplicating a file descriptor 2.17
 for reading 2.54
 for writing 2.54
 freeing space 2.22
 moving a read pointer 2.45
 moving a write pointer 2.45
 reading from a file 2.60
 reading to a buffer 2.62
 setting a read pointer 2.45
 setting a write pointer 2.44 2.45
 system calls
 ACCESS 2.2
 CLOSE 2.13
 CREAT 2.15
 DUP 2.17
 DUP2 2.17
 FCLEAR 2.22
 FCOMMIT 2.25
 FSYNC 2.25
 FTRUNCATE 2.26
 IOCTL 2.40
 LOCKF 2.44
 LSEEK 2.45
 OPEN 2.54

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 7

 READ 2.60
 READV 2.62
 READX 2.60
 SELECT 2.67
 WRITE 2.113
 WRITEV 2.114
 WRITEX 2.113
 truncating a file 2.26
 writing from multiple buffers 2.114
 writing to permanent storage 2.25
 intercommunication channel 2.56
 interface library
 FORTRAN declaration files in 1.7.1
 linking to FORTRAN 1.7.2
 linking to Pascal 1.6.2
 Pascal declaration files in 1.6.1
 requirements for operation 1.1
 using with VS FORTRAN 1.7
 using with VS Pascal 1.6
 interprocess communication 2.56
 IOCTL system call 2.40
 See also input-output
 K
 KILL system call 2.41
 See also signals
 KILLPG system call 2.41
 See also signals
 L
 LINK system call 2.42
 See also file maintenance
 linking
 Interface Library to FORTRAN 1.7.2
 Interface Library to Pascal 1.6.2
 LISTEN system call 2.43
 See also sockets
 listening for socket connections 2.43
 local area network 2.106
 LOCKF system call 2.44
 See also input-output
 locking a file 2.44
 locks
 advisory 2.44
 data 2.57
 enforced 2.44
 process 2.57
 removing 2.57
 text 2.57
 LSEEK system call 2.45
 See also input-output
 LSTAT system call 2.98
 See also file maintenance
 M
 mapped file 2.82
 attaching 2.82
 detaching 2.84
 mask
 See also file maintenance
 file-creation-mode, getting 2.105
 file-creation-mode, setting 2.105
 restoring 2.92

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 8

 setting a signal 2.92
 signal 2.88
 maximum size of a process file 2.104
 memory
 changing 2.59
 locking 2.57
 unlocking 2.57
 memory image, changing 2.59
 message queue
 See also messages
 creating an ID 2.50
 getting an ID 2.50
 setting 2.49
 storing 2.49
 message-control operations 2.49
 messages
 See also ?
 See also message queue
 See also signals
 reading 2.51 2.64
 receiving a message 2.64
 sending 2.52 2.71
 storing 2.51
 system calls
 MSGCTL 2.49
 MSGGET 2.50
 MSGRCV 2.51
 MSGSND 2.52
 MSGXRCV 2.51
 RECV 2.64
 RECVFROM 2.64
 RECVMSG 2.64
 SEND 2.71
 SENDMSG 2.71
 SENDTO 2.71
 MKDIR system call 2.46
 See also file maintenance
 MKNOD system call 2.47
 See also file maintenance
 mode
 changing the access 2.10
 checking the access 2.2
 file-creation 2.105
 monitoring the program counter 2.58
 MOUNT system call 2.48
 See also file maintenance
 mounting a file system 2.48
 MSGCTL system call 2.49
 See also messages
 MSGGET system call 2.50
 See also messages
 MSGRCV system call 2.51
 See also messages
 MSGSND system call 2.52
 See also messages
 MSGXRCV system call 2.51
 See also messages
 N
 naming a socket 2.6
 NICE system call 2.53

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 9

 See also process control
 O
 OPEN system call 2.54
 See also input-output
 opening a file for reading 2.54
 opening a file for writing 2.54
 opening a file lock 2.23
 operating system
 getting the name 2.106
 restarting 2.63
 setting 2.99
 P
 parent process ID 2.34
 Pascal constant definitions B.0
 Pascal declarations 1.6.1
 Pascal function declarations D.0
 Pascal procedure declarations D.0
 Pascal type declarations C.0
 path status 2.98
 PAUSE system call 2.55
 See also signals
 permissions
 execute 2.2
 read 2.2
 testing for 2.2
 write 2.2
 perror system subroutine 1.8 F.0
 PIPE system call 2.56
 See also process control
 PLOCK system call 2.57
 See also process control
 priority of a process 2.53
 procedure declarations D.0
 process control
 &I2@PCRR.
 BRK 2.7
 EXECL 2.18
 EXECLE 2.18
 EXECLP 2.18
 EXECV 2.19
 EXECVE 2.19
 EXECVP 2.19
 FORK 2.24
 NICE 2.53
 PIPE 2.56
 PLOCK 2.57
 SBRK 2.7
 WAIT 2.112
 WAIT3 2.112
 creating a process 2.24
 delaying a process 2.112
 executing a process 2.18 2.19
 EXIT system call 2.20
 _EXIT system call 2.20
 locking a process 2.57
 priority 2.53
 space allocation 2.7
 system calls
 terminating a process 2.20
 unlocking a process 2.57

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 10

 process group ID 2.34
 getting 2.34
 setting 2.77
 process ID
 getting 2.34
 of a parent 2.34
 setting 2.80
 process identification
 creating a group access list 2.72
 getting a group access list 2.28
 getting an alias 2.32
 getting identification
 effective group ID 2.38
 effective user ID 2.38
 host ID 2.29 2.30
 process group ID 2.34
 process ID 2.34
 process ID of a parent 2.34
 process limits 2.104
 real group ID 2.38
 real user ID 2.38
 user information 2.108
 setting an alias 2.76
 setting identification
 effective group ID 2.80
 effective user ID 2.80
 group access list 2.72
 host ID 2.73 2.74
 process group ID 2.77
 process limits 2.104
 real group ID 2.80
 real user ID 2.80
 user information 2.108
 storing a group access list 2.28
 system calls
 GETDTABLESIZE 2.27
 GETEGID 2.38
 GETEUID 2.38
 GETGID 2.38
 GETGROUPS 2.28
 GETHOSTID 2.29
 GETHOSTNAME 2.30
 GETLOCAL 2.32
 GETPGRP 2.34
 GETPID 2.34
 GETPPID 2.34
 GETUID 2.38
 SETGID 2.80
 SETGROUPS 2.72
 SETHOSTID 2.73
 SETHOSTNAME 2.74
 SETLOCAL 2.76
 SETPGID 2.77
 SETPGRP 2.77
 SETUID 2.80
 ULIMIT 2.104
 USRINFO 2.108
 process limits 2.104
 process lock 2.57
 process priority 2.53

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 11

 process times 2.103
 process tracking
 in debugging 2.59
 records of 2.3
 system calls
 ACCT 2.3
 PROFIL 2.58
 PTRACE 2.59
 TIMES 2.103
 process, suspending 2.55
 processes
 accounting information 2.103
 changing priority of 2.53
 communication between 2.56
 controlling execution of child 2.59
 creating 2.24
 delaying 2.112
 locking 2.57
 records of terminated 2.3
 suspending 2.55
 terminating 2.20
 time profile of 2.58
 unlocking 2.57
 processing a signal 2.93
 PROFIL system call 2.58
 See also process tracking
 profile, execution-time 2.58
 profiling function 2.58
 program counter, monitoring 2.58
 protection bits 2.105
 PTRACE system call 2.59
 See also process tracking
 R
 READ system call 2.60
 See also input-output
 reading a message 2.51
 reading a symbolic link 2.61
 reading from a file 2.60
 READLINK system call 2.61
 See also file maintenance
 READV system call 2.62
 See also input-output
 READX system call 2.60
 See also input-output
 real group ID
 getting 2.38
 setting 2.80
 real user ID
 getting 2.38
 setting 2.80
 REBOOT system call 2.63
 See also system utilities
 receiving a message 2.64
 recorded times 2.110
 records of a process 2.3
 RECV system call 2.64
 See also messages
 RECVFROM system call 2.64
 See also messages
 RECVMSG system call 2.64

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 12

 See also messages
 releasing a signal 2.90 2.94
 removing a directory 2.66
 removing a file system 2.48
 removing a lock 2.57
 removing a process identifier 2.83
 RENAME system call 2.65
 See also file maintenance
 renaming a directory 2.65
 resetting a signal mask 2.90 2.94
 responding to a signal 2.87
 response to a signal, specifying 2.87 2.89
 restarting the operating system 2.63
 restoring a signal mask 2.92
 return values 1.8
 RMDIR system call 2.66
 See also file maintenance
 root directory, setting 2.12
 S
 SBRK system call 2.7
 See also process control
 SELECT system call 2.67
 See also input-output
 semaphore operations 2.70
 semaphore-control operations 2.68
 semaphore-set ID 2.69
 semaphores
 See also ?
 See also messages
 See also signals
 control operations 2.68
 getting a value 2.68
 operations 2.70
 options in call 2.68
 setting a value 2.68
 setting an ID 2.69
 system calls
 SEMCTL 2.68
 SEMGET 2.69
 SEMOP 2.70
 SEMCTL system call 2.68
 See also semaphores
 SEMGET system call 2.69
 See also semaphores
 SEMOP system call 2.70
 See also semaphores
 SEND system call 2.71
 See also messages
 sending a message 2.52 2.71
 SENDMSG system call 2.71
 See also messages
 SENDTO system call 2.71
 See also messages
 SETGID system call 2.80
 See also process identification
 SETGROUPS system call 2.72
 See also process identification
 SETHOSTID system call 2.73
 See also process identification
 SETHOSTNAME system call 2.74

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 13

 See also process identification
 SETITIMER system call 2.75
 See also system utilities
 SETLOCAL system call 2.76
 See also process identification
 SETPGID system call 2.77
 See also process identification
 SETPGRP system call 2.77
 See also process identification
 SETSOCKOPT system call 2.78
 See also sockets
 SETTIMEOFDAY system call 2.79
 See also system utilities
 setting a breakpoint 2.7
 setting a file lock 2.23
 setting a file status flag 2.23
 setting a file-creation-mode mask 2.105
 setting a group access list 2.72
 setting a process group ID 2.23 2.77
 setting a process ID 2.23
 setting a process priority 2.53
 setting a read pointer 2.45
 setting a semaphore ID 2.69
 setting a semaphore value 2.68
 setting a signal mask 2.92
 setting a write pointer 2.44 2.45
 setting an alias 2.76
 setting file times 2.98
 setting internal timers 2.75
 setting process limits 2.104
 setting recorded times 2.110
 setting socket options 2.78
 setting the close-on-exec flag 2.23
 setting the current-host ID 2.73 2.74
 setting the root directory 2.12
 setting the system clock 2.99
 setting the time 2.79 2.99
 setting the UNIX version string 2.81
 setting user information 2.108
 SETUID system call 2.80
 See also process identification
 SETXVERS system call 2.81
 See also system utilities
 shared memory
 See also messages
 See also semaphores
 See also signals
 attaching addresses 2.82
 creating an ID 2.85
 detaching segments 2.84
 getting an ID 2.85
 removing a process identifier 2.83
 system calls
 SHMAT 2.82
 SHMCTL 2.83
 SHMDT 2.84
 SHMGET 2.85
 shared-memory segment 2.82
 shared-memory-control operations 2.83
 SHMAT system call 2.82

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 14

 See also shared memory
 SHMCTL system call 2.83
 See also shared memory
 SHMDT system call 2.84
 See also shared-memory
 SHMGET system call 2.85
 See also shared memory
 SHUTDOWN system call 2.86
 See also sockets
 shutting down a socket 2.86
 SIGACTION system call 2.87
 See also signals
 SIGBLOCK system call 2.88
 See also signals
 signal handling, selecting 2.91 2.95
 signal mask 2.88
 signal selection 2.91 2.95
 SIGNAL system call 2.89
 See also signals
 signal-handling facilities 2.91 2.95
 signals
 blocking 2.88 2.92
 catching 2.89
 ignoring 2.89
 list 2.87 2.89
 processing 2.91 2.93 2.95
 releasing 2.90 2.94
 resetting a mask 2.90 2.94
 responding to 2.87
 restoring a mask 2.92
 setting 2.92
 signal-handling facilities 2.91 2.95
 specifying 2.88
 specifying a response 2.87 2.89
 stack, alternate 2.93
 system calls
 ALARM 2.5
 KILL 2.41
 KILLPG 2.41
 PAUSE 2.55
 SIGACTION 2.87
 SIGBLOCK 2.88
 SIGNAL 2.89
 SIGPAUSE 2.90
 SIGPROCMASK 2.91
 SIGSETMASK 2.92
 SIGSTACK 2.93
 SIGSUSPEND 2.94
 SIGVEC 2.95
 terminating a process 2.5 2.41
 terminating a process group 2.41
 unblocking 2.90 2.94
 waiting for 2.55
 SIGPAUSE system call 2.90
 See also signals
 SIGPROCMASK system call 2.91
 See also signals
 SIGSETMASK system call 2.92
 See also signals
 SIGSTACK system call 2.93

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 15

 See also signals
 SIGSUSPEND system call 2.94
 See also signals
 SIGVEC system call 2.95
 See also signals
 socket pair, creating 2.97
 SOCKET system call 2.96
 See also sockets
 SOCKETPAIR system call 2.97
 See also sockets
 sockets
 connecting 2.1 2.14
 creating 2.97
 disabling 2.86
 endpoint, creating 2.96
 getting a name 2.33 2.35
 getting options 2.36
 listening for 2.43
 naming 2.6
 pending connections 2.43
 setting options 2.78
 shutting down 2.86
 system calls
 ACCEPT 2.1
 BIND 2.6
 CONNECT 2.14
 GETPEERNAME 2.33
 GETSOCKNAME 2.35
 GETSOCKOPT 2.36
 LISTEN 2.43
 SETSOCKOPT 2.78
 SHUTDOWN 2.86
 SOCKET 2.96
 SOCKETPAIR 2.97
 special file, creating 2.47
 specifying a signal 2.88
 stack, alternate signal 2.93
 standard signal processing 2.91 2.95
 STAT system call 2.98
 See also file maintenance
 status flags 2.23
 status of a file 2.98
 status of a path 2.98
 status of a symbolic link 2.98
 STATX system call 2.98
 See also file maintenance
 STIME system call 2.99
 See also system utilities
 storing a group access list 2.28
 storing a message 2.51
 storing file-system information 2.109
 suspending a process 2.55
 symbolic link
 creating 2.100
 reading 2.61
 symbolic link, status 2.98
 SYMLINK system call 2.100
 See also file maintenance
 SYNC system call 2.101
 See also file maintenance

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 16

 synchronizing the system clock 2.4
 synonymous file descriptors 2.17
 system calls
 file maintenance 1.4.5
 input-output 1.4.4
 interprocess communication 1.4.6
 See also messages
 See also semaphores
 See also shared memory
 See also signals
 process 1.4.1
 See also process control
 See also process identification
 See also process tracking
 return values 1.8
 shared memory 1.4.9
 sockets 1.4.10
 system utilities 1.4.11
 system routines
 See system calls
 system subroutines
 ftok 1.5 E.0
 perror 1.8 F.0
 system utilities
 disclaiming memory 2.16
 used in local area network 2.106
 T
 terminated process 2.3
 terminating a process 2.5 2.20 2.41
 terminating a process group 2.41
 testing for file permissions 2.2
 text
 locking 2.57
 unlocking 2.57
 time
 access 2.110
 accessed 2.111
 accounting information 2.103
 execution 2.58
 getting the 2.31 2.37 2.102
 i-node-changed 2.110
 modification 2.98 2.110
 profile, generating 2.58 2.59
 setting 2.99
 setting the 2.75 2.79
 synchronizing 2.4
 system calls 2.4 2.31 2.37 2.75 2.79 2.99 2.102
 updated 2.98
 time profile 2.58
 TIME system call 2.102
 See also system utilities
 TIMES system call 2.103
 See also process tracking
 truncating a file 2.26
 turning accounting process on or off 2.3
 type declarations C.0
 U
 ULIMIT system call 2.104
 See also process identification
 UMASK system call 2.105

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 17

 See also file maintenance
 UMOUNT system call 2.48
 See also file maintenance
 UNAME system call 2.106
 See also system utilities
 UNAMEX system call 2.106
 See also system utilities
 UNIX version string, getting 2.39
 UNIX version string, setting 2.81
 UNLINK system call 2.107
 See also file maintenance
 unmounting a file system 2.48
 updating a file system 2.101
 user ID
 effective 2.38
 real 2.38
 user information 2.108
 USRINFO system call 2.108
 See also process identification
 USTAT system call 2.109
 See also file maintenance
 UTIME system call 2.110
 See also file maintenance
 UTIMES system call 2.111
 See also file maintenance
 W
 WAIT system call 2.112
 See also process control
 used with FORK and EXECL 2.112
 WAIT3 system call 2.112
 See also process control
 waiting for a signal 2.55
 waiting for an interrupt 2.90 2.94
 WRITE system call 2.113
 See also input-output
 write-enabled file system 2.48
 write-protected file system 2.48
 WRITEV system call 2.114
 See also input-output
 WRITEX system call 2.113
 See also input-output
 writing to a file 2.113
 writing to permanent storage 2.25
 writing updates to disk 2.101
 Z
 zeroing a file 2.22

VS/AIX Interface Library
Index

¦ Copyright IBM Corp. 1985, 1989
INDEX - 18

