
Free Pascal
Programmers’ manual

Programmers’ manual for Free Pascal, version 0.99.14
1.6

January 2000

Michaël Van Canneyt

Contents

1 Compiler directives 9

1.1 Local directives . 9

$A or $ALIGN: Align Data . 9

$ASMMODE: Assembler mode . 9

$B or $BOOLEVAL: Complete boolean evaluation 10

$C or $ASSERTIONS: Assertion support . 10

$DEFINE : Define a symbol . 10

$ELSE : Switch conditional compilation . 11

$ENDIF : End conditional compilation . 11

$ERROR: Generate error message . 11

$F : Far or near functions . 11

$FATAL : Generate fatal error message . 12

$GOTO: SupportGoto andLabel . 12

$H or $LONGSTRINGS: Use AnsiStrings . 13

$HINT : Generate hint message . 13

$HINTS : Emit hints . 13

$IF : Start conditional compilation . 13

$IFDEF Name : Start conditional compilation . 13

$IFNDEF : Start conditional compilation . 13

$IFOPT : Start conditional compilation . 14

$INFO : Generate info message . 14

$INLINE : Allow inline code. 14

$I or $IOCHECKS: Input/Output checking . 14

$I or $INCLUDE : Include file . 15

$I or $INCLUDE : Include compiler info . 15

$I386_XXX : Specify assembler format . 16

$L or $LINK : Link object file . 16

$LINKLIB : Link to a library . 17

$Mor $TYPEINFO : Generate type info . 17

$MACRO: Allow use of macros. 17

1

CONTENTS

$MAXFPUREGISTERS: Maximum number of FPU registers for variables 18

$MESSAGE: Generate info message . 18

$MMX: Intel MMX support . 18

$NOTE: Generate note message . 19

$NOTES: Emit notes . 19

$OUTPUT_FORMAT: Specify the output format . 19

$P or $OPENSTRINGS: Use open strings . 19

$PACKENUM: Minimum enumeration type size . 20

$PACKRECORDS: Alignment of record elements 20

$Q $OVERFLOWCHECKS: Overflow checking . 21

$R or $RANGECHECKS: Range checking . 21

$SATURATION: Saturation operations . 21

$SMARTLINK: Use smartlinking . 21

$STATIC : Allow use ofStatic keyword. 22

$STOP: Generate fatal error message . 22

$T or $TYPEDADDRESS: Typed address operator (@) 22

$UNDEF: Undefine a symbol . 22

$V or $VARSTRINGCHECKS: Var-string checking 22

$WAIT : Wait for enter key press . 23

$WARNING: Generate warning message . 23

$WARNINGS: Emit warnings . 23

$X or $EXTENDEDSYNTAX: Extended syntax . 23

1.2 Global directives . 24

$APPTYPE: Specify type of application (Win32 only) 24

$D or $DEBUGINFO: Debugging symbols . 24

$DESCRIPTION . 24

$E : Emulation of coprocessor . 24

$G : Generate 80286 code . 25

$INCLUDEPATH: Specify include path. 25

$L or $LOCALSYMBOLS: Local symbol information 25

$LIBRARYPATH: Specify library path. 25

$Mor $MEMORY: Memory sizes . 26

$MODE: Set compiler compatibility mode . 26

$N : Numeric processing . 26

$O : Overlay code generation . 26

$OBJECTPATH: Specify object path. 27

$S : Stack checking . 27

$UNITPATH : Specify unit path. 27

$Wor $STACKFRAMES: Generate stackframes . 28

$Y or $REFERENCEINFO: Insert Browser information 28

2

CONTENTS

2 Using conditionals, messages and macros 29

2.1 Conditionals . 29

2.2 Messages . 33

2.3 Macros . 34

3 Using Assembly language 36

3.1 Intel syntax . 36

3.2 AT&T Syntax . 39

3.3 Calling mechanism . 40

Ix86 calling conventions . 41

M680x0 calling conventions . 41

3.4 Signalling changed registers . 42

3.5 Register Conventions . 42

Intel x86 version . 42

Motorola 680x0 version . 42

4 Linking issues 43

4.1 Using external functions or procedures . 43

4.2 Using external variables . 45

4.3 Linking to an object file . 46

4.4 Linking to a library . 47

4.5 Making libraries . 48

Exporting functions . 48

Exporting variables . 49

Compiling libraries . 49

Moving units into a library . 50

Unit searching strategy . 50

4.6 Using smart linking . 51

5 Objects 52

5.1 Constructor and Destructor calls . 52

5.2 Memory storage of objects . 52

5.3 The Virtual Method Table . 52

6 Generated code 54

6.1 Units . 54

6.2 Programs . 55

7 Intel MMX support 56

7.1 What is it about ? . 56

7.2 Saturation support . 57

7.3 Restrictions of MMX support . 57

3

CONTENTS

7.4 Supported MMX operations . 58

7.5 Optimizing MMX support . 58

8 Memory issues 59

8.1 The 32-bit model. 59

8.2 The stack . 60

Intel x86 version . 60

Motorola 680x0 version . 61

8.3 The heap . 61

The heap grows . 61

Using Blocks . 62

Using the split heap . 62

8.4 UsingDOS memory under the Go32 extender . 63

9 Resource strings 65

9.1 Introduction . 65

9.2 The resource string file . 65

9.3 Updating the string tables . 67

9.4 GNU gettext . 68

9.5 Caveat . 69

10 Optimizations 70

10.1 Non processor specific . 70

Constant folding . 70

Constant merging . 70

Short cut evaluation . 70

Constant set inlining . 70

Small sets . 71

Range checking . 71

Shifts instead of multiply or divide . 71

Automatic alignment . 71

Smart linking . 71

Inline routines . 71

Case optimization . 72

Stack frame omission . 72

Register variables . 72

Intel x86 specific . 72

Motorola 680x0 specific . 74

10.2 Optimization switches . 74

10.3 Tips to get faster code . 75

10.4 Floating point . 75

4

CONTENTS

Intel x86 specific . 75

Motorola 680x0 specific . 76

A Anatomy of a unit file 77

A.1 Basics . 77

A.2 reading ppufiles . 77

A.3 The Header . 78

A.4 The sections . 79

A.5 Creating ppufiles . 80

B Compiler and RTL source tree structure 82

B.1 The compiler source tree . 82

B.2 The RTL source tree . 82

C Compiler limits 83

D Compiler modes 84

D.1 FPC mode . 84

D.2 TP mode . 84

D.3 Delphi mode . 85

D.4 GPC mode . 85

D.5 OBJFPC mode . 85

E Using fpcmake 87

E.1 Introduction . 87

E.2 Usage . 87

E.3 Format of the configuration file . 87

Clean . 88

Defaults . 88

Dirs . 88

Info . 89

Install . 89

Libs . 90

Packages . 90

Postsettings . 90

Presettings . 90

Rules . 90

Sections . 90

Targets . 91

Tools . 92

Zip . 92

E.4 Programs needed to use the generated makefile . 92

5

CONTENTS

E.5 Variables that affect the generated makefile . 93

Environment variables . 93

Directory variables . 94

Compiler command-line variables . 94

E.6 Variables set byfpcmake . 94

Directory variables . 94

Target variables . 95

Compiler command-line variables . 96

Program names . 96

File extensions . 97

Target files . 97

E.7 Rules and targets created byfpcmake . 98

Pattern rules . 98

Build rules . 98

Cleaning rules . 98

archiving rules . 98

Informative rules . 99

F Compiling the compiler yourself 100

F.1 Introduction . 100

F.2 Before you begin . 100

F.3 Compiling usingmake . 101

F.4 Compiling by hand . 102

Compiling the RTL . 102

Compiling the compiler . 103

6

List of Tables

1.1 Formats generated by the x86 compiler . 20

2.1 Symbols defined by the compiler. 30

2.2 Predefined macros . 35

3.1 Calling mechanisms in Free Pascal . 41

5.1 Object memory layout . 53

5.2 Virtual Method Table memory layout . 53

8.1 Stack frame when calling a procedure . 60

F.1 Possible defines when compiling FPC . 104

7

LIST OF TABLES

About this document

This is the programmer’s manual for Free Pascal.

It describes some of the peculiarities of the Free Pascal compiler, and provides a glimpse of how
the compiler generates its code, and how you can change the generated code. It will not, however,
provide you with a detailed account of the inner workings of the compiler, nor will it tell you how to
use the compiler (described in the Users’ guide). It also will not describe the inner workings of the
Run-Time Library (RTL). The best way to learn about the way the RTL is implemented is from the
sources themselves.

The things described here are useful if you want to do things which need greater flexibility than the
standard Pascal language constructs (described in the Reference guide).

Since the compiler is continuously under development, this document may get out of date. Wherever
possible, the information in this manual will be updated. If you find something which isn’t correct,
or you think something is missing, feel free to contact me1.

1atMichael.VanCanneyt@wisa.be

8

file:../user/user.html
file:../ref/ref.html

Chapter 1

Compiler directives

Free Pascal supports compiler directives in your source file. They are not the same as Turbo Pascal
directives, although some are supported for compatibility. There is a distinction between local and
global directives; local directives take effect from the moment they are encountered, global directives
have an effect on all of the compiled code.

Many switches have a long form also. If they do, then the name of the long form is given also. For
long switches, the + or - character to switch the option on or off, may be replaced byONor OFF
keywords.

Thus{$I+} is equivalent to{$IOCHECKS ON} or {$IOCHECKS +} and{$C-} is equivalent
to {$ASSERTIONS OFF} or {$ASSERTIONS -}

The long forms of the switches are the same as their Delphi counterparts.

1.1 Local directives

Local directives can occur more than once in a unit or program, If they have a command-line coun-
terpart, the command-line artgument is restored as the default for each compiled file. The local
directives influence the compiler’s behaviour from the moment they’re encountered until the moment
another switch annihilates their behaviour, or the end of the current unit or program is reached.

$A or $ALIGN: Align Data
This switch is recognized for Turbo Pascal Compatibility, but is not yet implemented. The alignment
of data will be different in any case, since Free Pascal is a 32-bit compiler.

$ASMMODE: Assembler mode
The {$ASMMODE XXX}directive informs the compiler what kind of assembler it can expect in an
asm block. TheXXXshould be replaced by one of the following:

att Indicates thatasm blocks contain AT&T syntax assembler.

intel Indicates thatasm blocks contain Intel syntax assembler.

direct Tells the compiler that asm blocks should be copied directly to the assembler file.

9

1.1. LOCAL DIRECTIVES

These switches are local, and retain their value to the end of the unit that is compiled, unless they are
replaced by another directive of the same type. The command-line switch that corresponds to this
switch is-R .

The default assembler reader is the AT&T reader.

$B or $BOOLEVAL: Complete boolean evaluation
This switch is understood by the Free Pascal compiler, but is ignored. The compiler always uses
shortcut evaluation, i.e. the evaluation of a boolean expression is stopped once the result of the total
exression is known with certainty.

So, in the following example, the functionBofu , which has a boolean result, will never get called.

If False and Bofu then
...

This has as a consequence that any additional actions that are done byBofu are not executed.

$C or $ASSERTIONS: Assertion support
The {$ASSERTION} switch determines if assert statements are compiled into the binary or not. If
the switch is on, the statement

Assert(BooleanExpression,AssertMessage);

Will be compiled in the binary. If teBooleanExpression evaluates toFalse , the RTL will
check if theAssertErrorProc is set. If it is set, it will be called with as parameters theAs-
sertMessage message, the name of the file, the LineNumber and the address. If it is not set, a
runtime error 227 is generated.

TheAssertErrorProc is defined as

Type
TAssertErrorProc=procedure(const msg,fname:string;lineno,erroraddr:longint);

Var
AssertErrorProc = TAssertErrorProc;

This can be used mainly for debugging purposes. TheSYSTEM unit sets theAssertErrorProc
to a handler that displays a message onstderr and simply exits. TheSYSUTILS unit catches the
run-time error 227 and raises anEAssertionFailed exception.

$DEFINE : Define a symbol
The directive

{$DEFINE name}

defines the symbolname. This symbol remains defined until the end of the current module (i.e. unit
or program), or until a$UNDEF namedirective is encountered.

If name is already defined, this has no effect.Nameis case insensitive.

The symbols that are defined in a unit, are not saved in the unit file, so they are also not exported
from a unit.

10

1.1. LOCAL DIRECTIVES

$ELSE : Switch conditional compilation
The{$ELSE } switches between compiling and ignoring the source text delimited by the preceding
{$IFxxx} and following {$ENDIF} . Any text after theELSE keyword but before the brace is
ignored:

{$ELSE some ignored text}

is the same as

{$ELSE}

This is useful for indication what switch is meant.

$ENDIF : End conditional compilation
The{$ENDIF} directive ends the conditional compilation initiated by the last{$IFxxx} directive.
Any text after theENDIF keyword but before the closing brace is ignored:

{$ENDIF some ignored text}

is the same as

{$ENDIF}

This is useful for indication what switch is meant to be ended.

$ERROR: Generate error message
The following code

{$ERROR This code is erroneous !}

will display an error message when the compiler encounters it, and increase the error count of the
compiler. The compiler will continue to compile, but no code will be emitted.

$F : Far or near functions
This directive is recognized for compatibility with Turbo Pascal. Under the 32-bit programming
model, the concept of near and far calls have no meaning, hence the directive is ignored. A warning
is printed to the screen, telling you so.

As an example, the following piece of code :

{$F+}

Procedure TestProc;

begin
Writeln (’Hello From TestProc’);

end;

begin
testProc

end.

11

1.1. LOCAL DIRECTIVES

Generates the following compiler output:

malpertuus: >pp -vw testf
Compiler: ppc386
Units are searched in: /home/michael;/usr/bin/;/usr/lib/ppc/0.9.1/linuxunits
Target OS: Linux
Compiling testf.pp
testf.pp(1) Warning: illegal compiler switch
7739 kB free
Calling assembler...
Assembled...
Calling linker...
12 lines compiled,

1.00000000000000E+0000

You can see that the verbosity level was set to display warnings.

If you declare a function asFar (this has the same effect as setting it between{$F+}...{$F-}
directives), the compiler also generates a warning :

testf.pp(3) Warning: FAR ignored

The same story is true for procedures declared asNear . The warning displayed in that case is:

testf.pp(3) Warning: NEAR ignored

$FATAL : Generate fatal error message
The following code

{$FATAL This code is erroneous !}

will display an error message when the compiler encounters it, and the compiler will immediatly stop
the compilation process.

This is mainly useful inc conjunction wih{$IFDEF } or {$IFOPT } statements.

$GOTO: Support Goto and Label

If {$GOTO ON}is specified, the compiler will supportGoto statements andLabel declarations.
By default,$GOTO OFFis assumed. This directive corresponds to the-Sg command-line option.

As an example, the following code can be compiled:

{$GOTO ON}

label Theend;

begin
If ParamCount=0 then

GoTo TheEnd;
Writeln (’You specified command-line options’);

TheEnd:
end.

12

1.1. LOCAL DIRECTIVES

Remark: If you compile assembler code not in direct mode (using the intel or assembler readers) you must
declare any labels you use in the assembler code and use{$GOTO ON}. If you compile in Direct
mode then this is not necessary.

$H or $LONGSTRINGS: Use AnsiStrings
If {$LONGSTRINGS ON}is specified, the keywordString (no length specifier) will be treated
asAnsiString , and the compiler will treat the corresponding varible as an ansistring, and will
generate corresponding code.

By default, the use of ansistrings is off, corresponding to{$H-} . The system unit is compiled
without ansistrings, all its functions accept shortstrng arguments. The same is true for all RTL units,
except thesysutils unit, which is compiled with ansistrings.

$HINT : Generate hint message
If the generation of hints is turned on, through the-vh command-line option or the{$HINTS ON}
directive, then

{$Hint This code should be optimized }

will display a hint message when the compiler encounters it.

By default, no hints are generated.

$HINTS : Emit hints
{$HINTS ON} switches the generation of hints on.{$HINTS OFF} switches the generation of
hints off. Contrary to the command-line option-vh this is a local switch, this is useful for checking
parts of your code.

$IF : Start conditional compilation
The directive{$IF expr} will continue the compilation if the boolean expressionexpr evaluates
to true . If the compilation evaluates to false, then the source is skipped to the first{$ELSE} or
{$ENDIF} directive.

The compiler must be able to evaluate the expression at parse time. This means that you cannot use
variables or constants that are defined in the source. Macros and symbols may be used, however.

More information on this can be found in the section about conditionals.

$IFDEF Name : Start conditional compilation
If the symbolNameis not defined then the{$IFDEF name} will skip the compilation of the text
that follows it to the first{$ELSE} or {$ENDIF} directive. If Nameis defined, then compilation
continues as if the directive wasn’t there.

$IFNDEF : Start conditional compilation
If the symbolName is defined then the{$IFNDEF name} will skip the compilation of the text
that follows it to the first{$ELSE} or {$ENDIF} directive. If it is not defined, then compilation
continues as if the directive wasn’t there.

13

1.1. LOCAL DIRECTIVES

$IFOPT : Start conditional compilation
The{$IFOPT switch} will compile the text that follows it if the switchswitch is currently in
the specified state. If it isn’t in the specified state, then compilation continues after the corresponding
{$ELSE} or {$ENDIF} directive.

As an example:

{$IFOPT M+}
Writeln (’Compiled with type information’);

{$ENDIF}

Will compile the writeln statement if generation of type information is on.

Remark: The {$IFOPT} directive accepts only short options, i.e.{$IFOPT TYPEINFO} will not be
accepted.

$INFO : Generate info message
If the generation of info is turned on, through the-vi command-line option, then

{$INFO This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it.

This is useful in conjunction with the{$IFDEF} directive, to show information about which part of
the code is being compiled.

$INLINE : Allow inline code.
The {$INLINE ON} directive tells the compiler that theInline procedure modifier should be
allowed. Procedures that are declared inline are copied to the places where they are called. This has
the effect that there is no actual procedure call, the code of the procedure is just copied to where the
procedure is needed, this results in faster execution speed if the function or procedure is used a lot.

By default,Inline procedures are not allowed. You need to specify this directive if you want to
use inlined code. This directive is equivalent to the command-line switch-Si .

Remark:

1. Inline code is NOT exported from a unit. This means that if you call an inline procedure
from another unit, a normal procedure call will be performed. Only inside units,Inline
procedures are really inline.

2. You cannot make recursive inline functions. i.e. an inline function that calls itself is not
allowed.

$I or $IOCHECKS: Input/Output checking
The{$I-} or {$IOCHECKS OFF} directive tells the compiler not to generate input/output check-
ing code in your program. By default, the compiler generates this code1, you must switch it on using
the-Ci command-line switch.

If you compile using the-Ci compiler switch, the Free Pascal compiler inserts input/output checking
code after every input/output call in your program. If an error occurred during input or output, then a
run-time error will be generated. Use this switch if you wish to avoid this behavior. If you still want

1This behaviour changed in the 0.99.13 release of the compiler. Earlier versions by default did not generate this code.

14

1.1. LOCAL DIRECTIVES

to check if something went wrong, you can use theIOResult function to see if everything went
without problems.

Conversely,{$I+} will turn error-checking back on, until another directive is encountered which
turns it off again.

The most common use for this switch is to check if the opening of a file went without problems, as
in the following piece of code:

...
assign (f,’file.txt’);
{$I-}
rewrite (f);
{$I+}
if IOResult<>0 then

begin
Writeln (’Error opening file : "file.txt"’);
exit
end;

...

See theIOResult function explanantion in the referece manual for a detailed description of the
possible errors that can occur when using input/output checking.

$I or $INCLUDE : Include file
The {$I filename} or {$INCLUDE filename} directive tells the compiler to read further
statements from the filefilename . The statements read there will be inserted as if they occurred
in the current file.

The compiler will append the.pp extension to the file if you don’t specify an extension yourself. Do
not put the filename between quotes, as they will be regarded as part of the file’s name.

You can nest included files, but not infinitely deep. The number of files is restricted to the number of
file descriptors available to the Free Pascal compiler.

Contrary to Turbo Pascal, include files can cross blocks. I.e. you can start a block in one file (with a
Begin keyword) and end it in another (with aEnd keyword). The smallest entity in an include file
must be a token, i.e. an identifier, keyword or operator.

The compiler will look for the file to include in the following places:

1. It will look in the path specified in the include file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add directories to the include file search path with the-I command-line option.

$I or $INCLUDE : Include compiler info
In this form:

{$INCLUDE %xxx%}

15

1.1. LOCAL DIRECTIVES

wherexxx is one ofTIME, DATE, FPCVERSIONor FPCTARGET, will generate a macro with the
value of these things. Ifxxx is none of the above, then it is assumed to be the value of an environment
variable. It’s value will be fetched, and inserted in the code as if it were a string.

For example, the following program

Program InfoDemo;

Const User = {$I %USER%};

begin
Write (’This program was compiled at ’,{$I %TIME%});
Writeln (’ on ’,{$I %DATE%});
Writeln (’By ’,User);
Writeln (’Compiler version : ’,{$I %FPCVERSION%});
Writeln (’Target CPU : ’,{$I %FPCTARGET%});

end.

Creates the following output :

This program was compiled at 17:40:18 on 1998/09/09
By michael
Compiler version : 0.99.7
Target CPU : i386

$I386_XXX : Specify assembler format
This switch selects the assembler reader.{$I386_XXX} has the same effect as{$ASMMODE
XXX}, section 1.1, page 9

This switch is deprecated, the{$ASMMODE XXX}directive should be used instead.

$L or $LINK : Link object file
The{$L filename} or {$LINK filename} directive tells the compiler that the filefilename
should be linked to your program. This cannot be used for libraries, see section section 2, page 17
for that.

The compiler will look for this file in the following way:

1. It will look in the path specified in the object file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the object file search path.

You can add directories to the object file search path with the-Fo option.

On LINUX systems, the name is case sensitive, and must be typed exactly as it appears on your
system.

Remark: Take care that the object file you’re linking is in a format the linker understands. Which format this
is, depends on the platform you’re on. Typingld on the command line gives a list of formatsld
knows about.

You can pass other files and options to the linker using the-k command-line option. You can specify
more than one of these options, and they will be passed to the linker, in the order that you specified
them on the command line, just before the names of the object files that must be linked.

16

1.1. LOCAL DIRECTIVES

$LINKLIB : Link to a library
The{$LINKLIB name} will link to a library name. This has the effect of passing-lname to the
linker.

As an example, consider the following unit:

unit getlen;

interface
{$LINKLIB c}

function strlen (P : pchar) : longint;cdecl;

implementation

function strlen (P : pchar) : longint;cdecl;external;

end.

If one would issue the command

ppc386 foo.pp

where foo.pp has the above unit in itsuses clause, then the compiler would link your program to
the c library, by passing the linker the-lc option.

The same effect could be obtained by removing the linklib directive in the above unit, and specify
-k-lc on the command-line:

ppc386 -k-lc foo.pp

$Mor $TYPEINFO : Generate type info
For classes that are compiled in the{$M+ } or {$TYPEINFO ON} state, the compiler will generate
Run-Time Type Information (RTTI). All descendent objects of an object that was compiled in the
{$M+} state will get RTTI information too, as well as any published classes. By default, no Run-
Time Type Information is generated. TheTPersistent object that is present in the FCL (Free
Component Library) is generated in the{$M+} state. The generation of RTTI allows programmers
to stream objects, and to access published properties of objects, without knowing the actual class of
the object.

The run-time type information is accessible through theTypInfo unit, which is part of the Free
Pascal Run-Time Library.

Remark: that the streaming system implemented by Free Pascal requires that you make streamable compo-
nents descendent fromTPersistent .

$MACRO: Allow use of macros.
In the {$MACRO ON}state, the compiler allows you to use C-style (although not as elaborate)
macros. Macros provide a means for simple text substitution. More information on using macros can
be found in the section 2.3, page 34 section. This directive is equivalent to the command-line switch
-Sm.

By default, macros are not allowed.

17

1.1. LOCAL DIRECTIVES

$MAXFPUREGISTERS: Maximum number of FPU registers for variables
The {$MAXFPUREGISTERS XXX}directive tells the compiler how much floating point variables
can be kept in the floating point processor registers. This switch is ignored unless the-Or (use
register variables) optimization is used.

Since version 0.99.14, the Free Pascal compiler supports floating point register variables; the content
of these variables is not stored on the stack, but is kept in the floating point processor stack.

This is quite tricky because the Intel FPU stack is limited to 8 entries. The compiler uses a heuristic
algorithm to determine how much variables should be put onto the stack: in leaf procedures it is
limited to 3 and in non leaf procedures to 1. But in case of a deep call tree or, even worse, a recursive
procedure this can still lead to a FPU stack overflow, so the user can tell the compiler how much
(floating point) variables should be kept in registers.

The directive accepts the following arguments:

N whereN is the maximum number of FPU registers to use. Currently this can be in the range 0 to
7.

Normal restores the heuristic and standard behavior.

Default restores the heuristic and standard behaviour.

Remark: The directive is valid untill the end of the current procedure.

$MESSAGE: Generate info message
If the generation of info is turned on, through the-vi command-line option, then

{$MESSAGE This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it. The effect is the same as the{$INFO}
directive.

$MMX: Intel MMX support
As of version 0.9.8, Free Pascal supports optimization for theMMX Intel processor (see also 7).

This optimizes certain code parts for theMMX Intel processor, thus greatly improving speed. The
speed is noticed mostly when moving large amounts of data. Things that change are

• Data with a size that is a multiple of 8 bytes is moved using themovq assembler instruction,
which moves 8 bytes at a time

Remark: MMX support is NOT emulated on non-MMX systems, i.e. if the processor doesn’t have the MMX
extensions, you cannot use the MMX optimizations.

WhenMMX support is on, you aren’t allowed to do floating point arithmetic. You are allowed to
move floating point data, but no arithmetic can be done. If you wish to do floating point math anyway,
you must first switch ofMMX support and clear the FPU using theemmsfunction of thecpu unit.

The following example will make this more clear:

Program MMXDemo;

uses cpu;

18

1.1. LOCAL DIRECTIVES

var
d1 : double;
a : array[0..10000] of double;
i : longint;

begin
d1:=1.0;

{$mmx+}
{ floating point data is used, but we do _no_ arithmetic }
for i:=0 to 10000 do

a[i]:=d2; { this is done with 64 bit moves }
{$mmx-}

emms; { clear fpu }
{ now we can do floating point arithmetic }
....

end.

See, however, the chapter on MMX (7) for more information on this topic.

$NOTE: Generate note message
If the generation of notes is turned on, through the-vn command-line option or the{$NOTES ON}
directive, then

{$NOTE Ask Santa Claus to look at this code }

will display a note message when the compiler encounters it.

$NOTES: Emit notes
{$NOTES ON}switches the generation of notes on.{$NOTES OFF} switches the generation of
notes off. Contrary to the command-line option-vn this is a local switch, this is useful for checking
parts of your code.

By default,{$NOTES } is off.

$OUTPUT_FORMAT: Specify the output format
{$OUTPUT_FORMAT format} has the same functionality as the-A command-line option : It
tells the compiler what kind of object file must be generated. You can specify this switch onlybefore
theProgram or Unit clause in your source file. The different kinds of formats are shown in table
(1.1).

The default output format depends on the platform the compiler was compiled on.

$P or $OPENSTRINGS: Use open strings
If this switch is on, all function or procedure parameters of type string are considered to be open
string parameters; this parameter only has effect for short strings, not for ansistrings.

When using openstrings, the declared type of the string can be different from the type of string that is
actually passed, even for strings that are passed by reference. The declared size of the string passed
can be examined with theHigh(P) call.

Default the use of openstrings is off.

19

1.1. LOCAL DIRECTIVES

Table 1.1: Formats generated by the x86 compiler

Switch value Generated format
AS AT&T assembler file.
AS_AOUT Go32v1 assembler file.
ASW AT&T Win32 assembler file.
COFF Go32v2 COFF object file.
MASM Masm assembler file.
NASM Nasm assembler file.
NASMCOFF Nasm assembler file (COFF format).
NASMELF Nasm assembler file (ELF format).
PECOFF PECOFF object file (Win32).
TASM Tasm assembler file.

$PACKENUM: Minimum enumeration type size
This directive tells the compiler the minimum number of bytes it should use when storing enumerated
types. It is of the following form:

{$PACKENUM xxx}
{$MINENUMSIZE xxx}

Where the form with$MINENUMSIZEis for Delphi compatibility.xxx can be one of1,2 or 4, or
NORMALor DEFAULT, corresponding to the default value of 4.

As an alternative form one can use{$Z1} , {$Z2} {$Z4} . Contrary to Delphi, the default size is 4
bytes ({$Z4}).

So the following code

{$PACKENUM 1}
Type

Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

will use 1 byte to store a variable of typeDays , whereas it nomally would use 4 bytes. The above
code is equivalent to

{$Z1}
Type

Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

Remark: Sets are always put in 32 bits or 32 bytes, this cannot be changed (yet).

$PACKRECORDS: Alignment of record elements
This directive controls the byte alignment of the elements in a record, object or class type definition.

It is of the following form:

{$PACKRECORDS n}

Wheren is one of 1,2,4,16,C, NORMALor DEFAULT. This means that the elements of a record that
have size greater thann will be aligned onn byte boundaries. Elements with size less than or equal

20

1.1. LOCAL DIRECTIVES

to n will be aligned to a natural boundary, i.e. to a power of two that is equal to or larger than the
element’s size. The typeC is used to specify alignment as by the GNU CC compiler. It should be
used only when making import units for C routines.

The default alignment (which can be selected withDEFAULT) is 2, contrary to Turbo Pascal, where
it is 1.

More information on this and an example program can be found in the reference guide, in the section
about record types.

Remark: Sets are always put in 32 bit or 32 bytes, this cannot be changed

$Q $OVERFLOWCHECKS: Overflow checking
The {$Q+} or {$OVERFLOWCHECKS ON}directive turns on integer overflow checking. This
means that the compiler inserts code to check for overflow when doing computations with integers.
When an overflow occurs, the run-time library will print a messageOverflow at xxx , and exit
the program with exit code 215.

Remark: Overflow checking behaviour is not the same as in Turbo Pascal since all arithmetic operations are
done via 32-bit values. Furthermore, theInc() andDec standard system proceduresare checked
for overflow in Free Pascal, while in Turbo Pascal they are not.

Using the{$Q-} switch switches off the overflow checking code generation.

The generation of overflow checking code can also be controlled using the-Co command line com-
piler option (see Users’ guide).

$R or $RANGECHECKS: Range checking
By default, the compiler doesn’t generate code to check the ranges of array indices, enumeration
types, subrange types, etc. Specifying the{$R+} switch tells the computer to generate code to
check these indices. If, at run-time, an index or enumeration type is specified that is out of the
declared range of the compiler, then a run-time error is generated, and the program exits with exit
code 201.

The {$RANGECHECKS OFF}switch tells the compiler not to generate range checking code. This
may result in faulty program behaviour, but no run-time errors will be generated.

Remark: Range checking for sets and enumerations are not yet fully implemented.

$SATURATION: Saturation operations
This works only on the intel compiler, and MMX support must be on ({$MMX +}) for this to have
any effect. See the section on saturation support (section 7.2, page 57) for more information on the
effect of this directive.

$SMARTLINK: Use smartlinking
A unit that is compiled in the{$SMARTLINK ON} state will be compiled in such a way that it can
be used for smartlinking. This means that the unit is chopped in logical pieces: each procedure is put
in it’s own object file, and all object files are put together in a big archive. When using such a unit,
only the pieces of code that you really need or call, will be linked in your program, thus reducing the
size of your executable substantially.

Beware: using smartlinked units slows down the compilation process, because a separate object file
must be created for each procedure. If you have units with many functions and procedures, this can

21

file:../user/user.html

1.1. LOCAL DIRECTIVES

be a time consuming process, even more so if you use an external assembler (the assembler is called
to assemble each procedure or function code block separately).

The smartlinking directive should be specifiedbeforethe unit declaration part:

{$SMARTLINK ON}

Unit MyUnit;

Interface
...

This directive is equivalent to the-Cx command-line switch.

$STATIC : Allow use of Static keyword.
If you specify the{$STATIC ON} directive, thenStatic methods are allowed for objects.Static
objects methods do not require aSelf variable. They are equivalent toClass methods for classes.
By default,Static methods are not allowed. Class methods are always allowed.

By default, the address operator returns an untyped pointer.

This directive is equivalent to the-St command-line option.

$STOP: Generate fatal error message
The following code

{$STOP This code is erroneous !}

will display an error message when the compiler encounters it. The compiler will immediatly stop
the compilation process.

It has the same effect as the{$FATAL} directive.

$T or $TYPEDADDRESS: Typed address operator (@)
In the{$T+} or {$TYPEDADDRESS ON}state the @ operator, when applied to a variable, returns
a result of typêT , if the type of the variable isT. In the{$T-} state, the result is always an untyped
pointer, which is assignment compatible with all other pointer types.

$UNDEF: Undefine a symbol
The directive

{$UNDEF name}

un-defines the symbolname if it was previously defined.Nameis case insensitive.

$V or $VARSTRINGCHECKS: Var-string checking
When in the+ or ONstate, the compiler checks that strings passed as parameters are of the same,
identical, string type as the declared parameters of the procedure.

22

1.1. LOCAL DIRECTIVES

$WAIT : Wait for enter key press
If the compiler encounters a

{$WAIT }

directive, it will resume compiling only after the user has pressed the enter key. If the generation of
info messages is turned on, then the compiler will display the follwing message:

Press <return> to continue

before waiting for a keypress. Careful ! This may interfere with automatic compilation processes. It
should be used for debugging purposes only.

$WARNING: Generate warning message
If the generation of warnings is turned on, through the-vw command-line option or the{$WARN-
INGS ON} directive, then

{$WARNING This is dubious code }

will display a warning message when the compiler encounters it.

$WARNINGS: Emit warnings
{$WARNINGS ON}switches the generation of warnings on.{$WARNINGS OFF}switches the
generation of warnings off. Contrary to the command-line option-vw this is a local switch, this is
useful for checking parts of your code.

By default, no warnings are emitted.

$X or $EXTENDEDSYNTAX: Extended syntax
Extended syntax allows you to drop the result of a function. This means that you can use a function
call as if it were a procedure. Standard this feature is on. You can switch it off using the{$X-} or
{$EXTENDEDSYNTAX OFF}directive.

The following, for instance, will not compile :

function Func (var Arg : sometype) : longint;
begin
... { declaration of Func }
end;

...

{$X-}
Func (A);

The reason this construct is supported is that you may wish to call a function for certain side-effects
it has, but you don’t need the function result. In this case you don’t need to assign the function result,
saving you an extra variable.

The command-line compiler switch-Sa1 has the same effect as the{$X+} directive.

By default, extended syntax is assumed.

23

1.2. GLOBAL DIRECTIVES

1.2 Global directives

Global directives affect the whole of the compilation process. That is why they also have a command-
line counterpart. The command-line counterpart is given for each of the directives.

$APPTYPE: Specify type of application (Win32 only)
The {$APPTYPE XXX} accepts one argument that can have two possible values :GUI or CON-
SOLE. It is used to tell the windows Operating system if an application is a console application or
a graphical application. By default, a program compiled by Free Pascal is a console application.
Running it will display a console window. Specifying the{$APPTYPE GUI} directive will mark
the application as a graphical application; no console window will be opened when the application
is run. If run from the command-line, the command prompt will be returned immediatly after the
application was started.

Care should be taken when compilingGUI applications; theInput andOutput files are not avail-
able in a GUI application, and attempting to read from or write to them will result in a run-time
error.

It is possible to determine the application type of a windows application at runtime. TheIsConsole
constant, declared in the Win32 system unit as

Const
IsConsole : Boolean

containsTrue if the application is a console application,False if the application is a GUI applica-
tion.

$D or $DEBUGINFO: Debugging symbols
When this switch is on ({$DEBUGINFO ON}), the compiler inserts GNU debugging information in
the executable. The effect of this switch is the same as the command-line switch-g .

By default, insertion of debugging information is off.

$DESCRIPTION

This switch is recognised for compatibility only, but is ignored completely by the compiler. At a later
stage, this switch may be activated.

$E : Emulation of coprocessor
This directive controls the emulation of the coprocessor. There is no command-line counterpart for
this directive.

Intel x86 version

When this switch is enabled, all floating point instructions which are not supported by standard
coprocessor emulators will give out a warning.

The compiler itself doesn’t do the emulation of the coprocessor.

To use coprocessor emulation underDOS go32v1 there is nothing special required, as it is handled
automatically. (As of version 0.99.10, the go32v1 platform is no longer be supported)

24

1.2. GLOBAL DIRECTIVES

To use coprocessor emulation underDOS go32v2 you must use the emu387 unit, which contains
correct initialization code for the emulator.

UnderLINUX , the kernel takes care of the coprocessor support.

Motorola 680x0 version

When the switch is on, no floating point opcodes are emitted by the code generator. Instead, internal
run-time library routines are called to do the necessary calculations. In this case all real types are
mapped to the single IEEE floating point type.

Remark: By default, emulation is on. It is possible to intermix emulation code with real floating point opcodes,
as long as the only type used is single or real.

$G : Generate 80286 code
This option is recognised for Turbo Pascal compatibility, but is ignored, since the compiler works
only on 386 or higher Intel processors.

$INCLUDEPATH: Specify include path.
This option serves to specify the include path, where the compiler looks for include files.{$IN-
CLUDEPATH XXX}will add XXXto the include path.XXXcan contain one or more paths, separated
by semi-colons or colons.

for example

{$INCLUDEPATH ../inc;../i386}

{$I strings.inc}

Will add the directories../inc and../i386 to the include path of the compiler. The compiler will look
for the filestrings.inc in both these directories, and will include the first found file. This directive is
equivalent to the-Fi command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usingabsolutepaths, instead userelativepaths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

$L or $LOCALSYMBOLS: Local symbol information
This switch (not to be confused with the{$L file} file linking directive) is recognised for Turbo
Pascal compatibility, but is ignored. Generation of symbol information is controlled by the$Dswitch.

$LIBRARYPATH: Specify library path.
This option serves to specify the library path, where the linker looks for static or dynamic libraries.
{$LIBRARYPATH XXX} will add XXX to the library path.XXXcan contain one or more paths,
separated by semi-colons or colons.

for example

25

1.2. GLOBAL DIRECTIVES

{$LIBRARYPATH /usr/X11/lib;/usr/local/lib}

{$LINKLIB X11}

Will add the directories/usr/X11/lib and /usr/local/lib to the linker library path. The linker will
look for the librarylibX11.so in both these directories, and use the first found file. This directive is
equivalent to the-Fl command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the libraries may
not be the same as on your machine; moreover, the directory structure may be different. In general it
would be fair to say that you should avoid using this directive. If you are not sure, it is better practice
to use makefiles and makefile variables.

$Mor $MEMORY: Memory sizes
This switch can be used to set the heap and stacksize. It’s format is as follows:

{$M StackSize,HeapSize}

whereStackSize and HeapSize should be two integer values, greater than 1024. The first
number sets the size of the stack, and the second the size of the heap. (Stack setting is ignored under
LINUX). The two numbers can be set on the command line using the-Ch and-Cs switches.

$MODE: Set compiler compatibility mode
The {$MODE} sets the compatibility mode of the compiler. This is equivalent to setting one of the
command-line options-So , -Sd , -Sp or -S2 . it has the following arguments:

Default Default mode. This reverts back to the mode that was set on the command-line.

Delphi Delphi compatibility mode. All object-pascal extensions are enabled. This is the same as the
command-line option-Sd .

TP Turbo pascal compatibility mode. Object pascal extensions are disabled, except ansistrings,
which remain valid. This is the same as the command-line option-So .

FPC FPC mode. This is the default, if no command-line switch is supplied.

OBJFPC Object pascal mode. This is the same as the-S2 command-line option.

GPC GNU pascal mode. This is the same as the-Sp command-line option.

For an exact description of each of these modes, see appendix D, on page 84.

$N : Numeric processing
This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored, since the compiler
always uses the coprocessor for floating point mathematics.

$O : Overlay code generation
This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored.

26

1.2. GLOBAL DIRECTIVES

$OBJECTPATH: Specify object path.
This option serves to specify the object path, where the compiler looks for object files.{$OBJECT-
PATH XXX} will add XXX to the object path.XXX can contain one or more paths, separated by
semi-colons or colons.

for example

{$OBJECTPATH ../inc;../i386}

{$L strings.o}

Will add the directories../inc and../i386 to the object path of the compiler. The compiler will look
for the filestrings.o in both these directories, and will link the first found file in the program. This
directive is equivalent to the-Fo command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usingabsolutepaths, instead userelativepaths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

$S : Stack checking
The {$S+} directive tells the compiler to generate stack checking code. This generates code to
check if a stack overflow occurred, i.e. to see whether the stack has grown beyond its maximally
allowed size. If the stack grows beyond the maximum size, then a run-time error is generated, and
the program will exit with exit code 202.

Specifying{$S-} will turn generation of stack-checking code off.

The command-line compiler switch-Ct has the same effect as the{$S+} directive.

By default, no stack checking is performed.

$UNITPATH : Specify unit path.
This option serves to specify the unit path, where the compiler looks for unit files.{$UNITPATH
XXX} will add XXXto the unit path.XXXcan contain one or more paths, separated by semi-colons
or colons.

for example

{$UNITPATH ../units;../i386/units}

Uses strings;

Will add the directories../units and../i386/units to the unit path of the compiler. The compiler will
look for the filestrings.ppu in both these directories, and will link the first found file in the program.
This directive is equivalent to the-Fu command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usingabsolutepaths, instead userelativepaths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

27

1.2. GLOBAL DIRECTIVES

$Wor $STACKFRAMES: Generate stackframes
The{$W} switch directove controls the generation of stackframes. In the on state ({$STACKFRAMES
ON}), the compiler will generate a stackframe for every procedure or function.

In the off state, the compiler will omit the generation of a stackframe if the following conditions are
satisfied:

• The procedure has no parameters.

• The procedure has no local variables.

• If the procedure is not anassembler procedure, it must not have aasm ... end; block.

• it is not a constuctor or desctructor.

If these conditions are satisfied, the stack frame will be omitted.

$Y or $REFERENCEINFO: Insert Browser information
This switch controls the generation of browser inforation. It is recognized for compatibility with
Turbo Pascal and Delphi only, as Browser information generation is not yet fully supported.

28

Chapter 2

Using conditionals, messages and
macros

The Free Pascal compiler supports conditionals as in normal Turbo Pascal. It does, however, more
than that. It allows you to make macros which can be used in your code, and it allows you to define
messages or errors which will be displayed when compiling.

2.1 Conditionals

The rules for using conditional symbols are the same as under Turbo Pascal. Defining a symbol goes
as follows:

{$Define Symbol }

From this point on in your code, the compiler knows the symbolSymbol . Symbols are, like the
Pascal language, case insensitive.

You can also define a symbol on the command line. the-dSymbol option defines the symbol
Symbol . You can specify as many symbols on the command line as you want.

Undefining an existing symbol is done in a similar way:

{$Undef Symbol }

If the symbol didn’t exist yet, this doesn’t do anything. If the symbol existed previously, the symbol
will be erased, and will not be recognized any more in the code following the{$Undef ...}
statement.

You can also undefine symbols from the command line with the-u command-line switch..

To compile code conditionally, depending on whether a symbol is defined or not, you can enclose
the code in a{$ifdef Symbol} .. {$endif} pair. For instance the following code will never
be compiled :

{$Undef MySymbol}
{$ifdef Mysymbol}

DoSomething;
...

{$endif}

29

2.1. CONDITIONALS

Table 2.1: Symbols defined by the compiler.

FPC
VERv

VERv_r
VERv_r _p

OS

Similarly, you can enclose your code in a{$Ifndef Symbol} .. {$endif} pair. Then the code
between the pair will only be compiled when the used symbol doesn’t exist. For example, in the
following example, the call to theDoSomething will always be compiled:

{$Undef MySymbol}
{$ifndef Mysymbol}

DoSomething;
...

{$endif}

You can combine the two alternatives in one structure, namely as follows

{$ifdef Mysymbol}
DoSomething;

{$else}
DoSomethingElse

{$endif}

In this example, ifMySymbol exists, then the call toDoSomething will be compiled. If it doesn’t
exist, the call toDoSomethingElse is compiled.

The Free Pascal compiler defines some symbols before starting to compile your program or unit.
You can use these symbols to differentiate between different versions of the compiler, and between
different compilers. In table (2.1), a list of pre-defined symbols is given1. In that table, you should
changev with the version number of the compiler you’re using,r with the release number andp
with the patch-number of the compiler. ’OS’ needs to be changed by the type of operating system.
Currently this can be one ofDOS, GO32V2, LINUX, OS2, WIN32, MACOS, AMIGAor ATARI.

TheOSsymbol is undefined if you specify a target that is different from the platform you’re com-
piling on. The-TSomeOSoption on the command line will define theSomeOSsymbol, and will
undefine the existing platform symbol2.

As an example : Version 0.9.1 of the compiler, running on a Linux system, defines the following sym-
bols before reading the command line arguments:FPC, VER0, VER0_9, VER0_9_1 andLINUX.
Specifying-TOS2 on the command-line will undefine theLINUX symbol, and will define theOS2
symbol.

Remark: Symbols, even when they’re defined in the interface part of a unit, are not available outside that unit.

Except for the Turbo Pascal constructs, from version 0.9.8 and higher, the Free Pascal compiler also
supports a stronger conditional compile mechanism: The{$If } construct.

The prototype of this construct is as follows :

{$If expr}
1Remark: TheFPKsymbol is still defined for compatibility with older versions.
2In versions prior to 0.9.4, this didn’t happen, thus making Cross-compiling impossible.

30

2.1. CONDITIONALS

CompileTheseLines;
{$else}

BetterCompileTheseLines;
{$endif}

In this directiveexpr is a Pascal expression which is evaluated using strings, unless both parts of
a comparision can be evaluated as numbers, in which case they are evaluated using numbers3. If
the complete expression evaluates to’0’ , then it is considered false and rejected. Otherwise it is
considered true and accepted. This may have unexpected consequences :

{$If 0}

Will evaluate toFalse and be rejected, while

{$If 00}

Will evaluate toTrue .

You can use any Pascal operator to construct your expression :=, <>, >, <, >=, <=, AND,
NOT, ORand you can use round brackets to change the precedence of the operators.

The following example shows you many of the possibilities:

{$ifdef fpc}

var
y : longint;

{$else fpc}

var
z : longint;

{$endif fpc}

var
x : longint;

begin

{$if (fpc_version=0) and (fpc_release>6) and (fpc_patch>4)}
{$info At least this is version 0.9.5}
{$else}
{$fatal Problem with version check}
{$endif}

{$define x:=1234}
{$if x=1234}
{$info x=1234}
{$else}
{$fatal x should be 1234}
{$endif}

{$if 12asdf and 12asdf}
{$info $if 12asdf and 12asdf is ok}
{$else}

3Otherwise{$If 8>54} would evaluate toTrue

31

2.1. CONDITIONALS

{$fatal $if 12asdf and 12asdf rejected}
{$endif}

{$if 0 or 1}
{$info $if 0 or 1 is ok}
{$else}
{$fatal $if 0 or 1 rejected}
{$endif}

{$if 0}
{$fatal $if 0 accepted}
{$else}
{$info $if 0 is ok}
{$endif}

{$if 12=12}
{$info $if 12=12 is ok}
{$else}
{$fatal $if 12=12 rejected}
{$endif}

{$if 12<>312}
{$info $if 12<>312 is ok}
{$else}
{$fatal $if 12<>312 rejected}
{$endif}

{$if 12<=312}
{$info $if 12<=312 is ok}
{$else}
{$fatal $if 12<=312 rejected}
{$endif}

{$if 12<312}
{$info $if 12<312 is ok}
{$else}
{$fatal $if 12<312 rejected}
{$endif}

{$if a12=a12}
{$info $if a12=a12 is ok}
{$else}
{$fatal $if a12=a12 rejected}
{$endif}

{$if a12<=z312}
{$info $if a12<=z312 is ok}
{$else}
{$fatal $if a12<=z312 rejected}
{$endif}

{$if a12<z312}

32

2.2. MESSAGES

{$info $if a12<z312 is ok}
{$else}
{$fatal $if a12<z312 rejected}
{$endif}

{$if not(0)}
{$info $if not(0) is OK}
{$else}
{$fatal $if not(0) rejected}
{$endif}

{$info ***}
{$info * Now have to follow at least 2 error messages: *}
{$info ***}

{$if not(0}
{$endif}

{$if not(<}
{$endif}

end.

As you can see from the example, this construct isn’t useful when used with normal symbols, only if
you use macros, which are explained in section 2.3, page 34, they can be very useful. When trying
this example, you must switch on macro support, with the-Sm command-line switch.

2.2 Messages

Free Pascal lets you define normal, warning and error messages in your code. Messages can be used
to display useful information, such as copyright notices, a list of symbols that your code reacts on
etc.

Warnings can be used if you think some part of your code is still buggy, or if you think that a
certain combination of symbols isn’t useful. In general anything which may cause problems when
compiling.

Error messages can be useful if you need a certain symbol to be defined to warn that a certain variable
isn’t defined or so, or when the compiler version isn’t suitable for your code.

The compiler treats these messages as if they were generated by the compiler. This means that if you
haven’t turned on warning messages, the warning will not be displayed. Errors are always displayed,
and the compiler stops if 50 errors have occurred. After a fatal error, the compiler stops at once.

For messages, the syntax is as follows :

{$Message Message text }

Or

{$Info Message text }

For notes:

{$Note Message text }

33

2.3. MACROS

For warnings:

{$Warning Warning Message text }

For errors :

{$Error Error Message text }

Lastly, for fatal errors :

{$Fatal Error Message text }

or

{$Stop Error Message text }

The difference between$Error and$FatalError or $Stop messages is that when the compiler
encounters an error, it still continues to compile. With a fatal error, the compiler stops.

Remark: You cannot use the ’} ’ character in your message, since this will be treated as the closing brace of
the message.

As an example, the following piece of code will generate an error when the symbolRequiredVar
isn’t defined:

{$ifndef RequiredVar}
{$Error Requiredvar isn’t defined !}
{$endif}

But the compiler will continue to compile. It will not, however, generate a unit file or a program
(since an error occurred).

2.3 Macros

Macros are very much like symbols in their syntax, the difference is that macros have a value whereas
a symbol simply is defined or is not defined. If you want macro support, you need to specify the-Sm
command-line switch, otherwise your macro will be regarded as a symbol.

Defining a macro in your program is done in the same way as defining a symbol; in a{$define }
preprocessor statement4:

{$define ident:=expr}

If the compiler encountersident in the rest of the source file, it will be replaced immediately by
expr . This replacement works recursive, meaning that when the compiler expanded one of your
macros, it will look at the resulting expression again to see if another replacement can be made. You
need to be careful with this, because an infinite loop can occur in this manner.

Here are two examples which illustrate the use of macros:

{$define sum:=a:=a+b;}
...
sum { will be expanded to ’a:=a+b;’

remark the absence of the semicolon}
4In compiler versions older than 0.9.8, the assignment operator for a macros wasn’t:= , but=

34

2.3. MACROS

Table 2.2: Predefined macros

Symbol Contains
FPC_VERSION The version number of the compiler.
FPC_RELEASE The release number of the compiler.
FPC_PATCH The patch number of the compiler.

...
{$define b:=100}
sum { Will be expanded recursively to a:=a+100; }
...

The previous example could go wrong :

{$define sum:=a:=a+b;}
...
sum { will be expanded to ’a:=a+b;’

remark the absence of the semicolon}
...
{$define b=sum} { DON’T do this !!!}
sum { Will be infinitely recursively expanded... }
...

On my system, the last example results in a heap error, causing the compiler to exit with a run-time
error 203.

Remark: Macros defined in the interface part of a unit are not available outside that unit ! They can just be
used as a notational convenience, or in conditional compiles.

By default, from version 0.9.8 of the compiler on, the compiler predefines three macros, containing
the version number, the release number and the patch number. They are listed in table (2.2).

Remark: Don’t forget that macros support isn’t on by default. You need to compile with the-Sm command-
line switch.

35

Chapter 3

Using Assembly language

Free Pascal supports inserting of assembler instructions in your code. The mechanism for this is the
same as under Turbo Pascal. There are, however some substantial differences, as will be explained
in the following.

3.1 Intel syntax

As of version 0.9.7, Free Pascal supports Intel syntax for the Intel family of Ix86 processors in it’s
asm blocks.

The Intel syntax in yourasm block is converted to AT&T syntax by the compiler, after which it
is inserted in the compiled source. The supported assembler constructs are a subset of the normal
assembly syntax. In what follows we specify what constructs are not supported in Free Pascal, but
which exist in Turbo Pascal:

• TheTBYTEqualifier is not supported.

• The& identifier override is not supported.

• TheHIGH operator is not supported.

• TheLOWoperator is not supported.

• TheOFFSETandSEGoperators are not supported. useLEA and the variousLxx instructions
instead.

• Expressions with constant strings are not allowed.

• Access to record fields via parenthesis is not allowed

• Typecasts with normal pascal types are not allowed, only recognized assembler typecasts are
allowed.
Example:

mov al, byte ptr MyWord -- allowed,
mov al, byte(MyWord) -- allowed,
mov al, shortint(MyWord) -- not allowed.

• Pascal type typecasts on constants are not allowed.
Example:

36

3.1. INTEL SYNTAX

const s= 10; const t = 32767;

in Turbo Pascal:

mov al, byte(s) -- useless typecast.
mov al, byte(t) -- syntax error!

In this parser, either of those cases will give out a syntax error.

• Constant references expressions with constants only are not allowed (in all cases they do not
work in protected mode, under linux i386).
Examples:

mov al,byte ptr [’c’] -- not allowed.
mov al,byte ptr [100h] -- not allowed.

(This is due to the limitation of Turbo Assembler).

• Brackets within brackets are not allowed

• Expressions with segment overrides fully in brackets are presently not supported, but they can
easily be implemented in BuildReference if requested.
Example:

mov al,[ds:bx] -- not allowed

use instead:

mov al,ds:[bx]

• Possible allowed indexing are as follows:

– Sreg:[REG+REG*SCALING+/-disp]

– SReg:[REG+/-disp]

– SReg:[REG]

– SReg:[REG+REG+/-disp]

– SReg:[REG+REG*SCALING]

WhereSreg is optional and specifies the segment override.Notes:

1. The order of terms is important contrary to Turbo Pascal.

2. The Scaling value must be a value, and not an identifier to a symbol.
Examples:

const myscale = 1;
...
mov al,byte ptr [esi+ebx*myscale] -- not allowed.

use:

mov al, byte ptr [esi+ebx*1]

• Possible variable identifier syntax is as follows: (Id = Variable or typed constant identifier.)

1. ID

2. [ID]

37

3.1. INTEL SYNTAX

3. [ID+expr]

4. ID[expr]

Possible fields are as follow:

1. ID.subfield.subfield ...

2. [ref].ID.subfield.subfield ...

3. [ref].typename.subfield ...

• Local Labels: Contrary to Turbo Pascal, local labels, must at least contain one character after
the local symbol indicator.
Example:

@: -- not allowed

use instead, for example:

@1: -- allowed

• Contrary to Turbo Pascal local references cannot be used as references, only as displacements.
example:

lds si,@mylabel -- not allowed

• Contrary to Turbo Pascal,SEGCS, SEGDS, SEGESandSEGSSsegment overrides are presently
not supported. (This is a planned addition though).

• Contrary to Turbo Pascal where memory sizes specifiers can be practically anywhere, the Free
Pascal Intel inline assembler requires memory size specifiers to be outside the brackets.
example:

mov al,[byte ptr myvar] -- not allowed.

use:

mov al,byte ptr [myvar] -- allowed.

• Base and Index registers must be 32-bit registers. (limitation of the GNU Assembler).

• XLAT is equivalent toXLATB.

• Only Single and Double FPU opcodes are supported.

• Floating point opcodes are currently not supported (except those which involve only floating
point registers).

The Intel inline assembler supports the following macros :

@Result represents the function result return value.

Self represents the object method pointer in methods.

38

3.2. AT&T SYNTAX

3.2 AT&T Syntax

Free Pascal uses theGNU as assembler to generate its object files for the Intel Ix86 processors . Since
theGNU assembler uses AT&T assembly syntax, the code you write should use the same syntax. The
differences between AT&T and Intel syntax as used in Turbo Pascal are summarized in the following:

• The opcode names include the size of the operand. In general, one can say that the AT&T
opcode name is the Intel opcode name, suffixed with a ’l ’, ’ w’ or ’ b’ for, respectively, longint
(32 bit), word (16 bit) and byte (8 bit) memory or register references. As an example, the Intel
construct ’mov al bl is equivalent to the AT&T style ’movb %bl,%al ’ instruction.

• AT&T immediate operands are designated with ’$’, while Intel syntax doesn’t use a prefix for
immediate operands. Thus the Intel construct ’mov ax, 2 ’ becomes ’movb $2, %al ’ in
AT&T syntax.

• AT&T register names are preceded by a ’%’ sign. They are undelimited in Intel syntax.

• AT&T indicates absolute jump/call operands with ’* ’, Intel syntax doesn’t delimit these ad-
dresses.

• The order of the source and destination operands are switched. AT&T syntax uses ’Source,
Dest ’, while Intel syntax features ’Dest, Source ’. Thus the Intel construct ’add eax,
4’ transforms to ’addl $4, %eax ’ in the AT&T dialect.

• Immediate long jumps are prefixed with the ’l ’ prefix. Thus the Intel ’call/jmp sec-
tion:offset’ is transformed to ’lcall/ljmp $section,$offset ’. Similarly the
far return is ’lret ’, instead of the Intel ’ret far ’.

• Memory references are specified differently in AT&T and Intel assembly. The Intel indirect
memory reference

Section:[Base + Index*Scale + Offs]

is written in AT&T syntax as :

Section:Offs(Base,Index,Scale)

WhereBase andIndex are optional 32-bit base and index registers, andScale is used to
multiply Index . It can take the values 1,2,4 and 8. TheSection is used to specify an
optional section register for the memory operand.

More information about the AT&T syntax can be found in theas manual, although the following
differences with normal AT&T assembly must be taken into account :

• Only the following directives are presently supported:

.byte

.word

.long

.ascii

.asciz

.globl

• The following directives are recognized but are not supported:

.align

39

3.3. CALLING MECHANISM

.lcomm

Eventually they will be supported.

• Directives are case sensitive, other identifiers are not case sensitive.

• Contrary to GAS local labels/symbolsmuststart with.L

• The not operator’!’ is not supported.

• String expressions in operands are not supported.

• CBTW,CWTL,CWTD and CLTD are not supported, use the normal intel equivalents instead.

• Constant expressions which represent memory references are not allowed even though constant
immediate value expressions are supported.
examples:

const myid = 10;
...
movl $myid,%eax -- allowed
movl myid(%esi),%eax -- not allowed.

• When the.globl directive is found, the symbol following it is made public and is immedi-
ately emitted. Therefore label names with this name will be ignored.

• Only Single and Double FPU opcodes are supported.

The AT&T inline assembler supports the following macros :

__RESULT represents the function result return value.

__SELF represents the object method pointer in methods.

__OLDEBP represents the old base pointer in recusrive routines.

3.3 Calling mechanism

Procedures and Functions are called with their parameters on the stack. Contrary to Turbo Pascal,all
parameters are pushed on the stack, and they are pushedright to left, instead of left to right for Turbo
Pascal. This is especially important if you have some assembly subroutines in Turbo Pascal which
you would like to translate to Free Pascal.

Function results are returned in the accumulator, if they fit in the register.

The registers arenot saved when calling a function or procedure. If you want to call a procedure or
function from assembly language, you must save any registers you wish to preserve.

When you call an object method from assembler, you must load theESI register with the self pointer
of the object or class.

The first thing a procedure does is saving the base pointer, and setting the base pointer equal to the
stack pointer. References to the pushed parameters and local variables are constructed using the base
pointer.

When the procedure or function exits, it clears the stack.

When you want your code to be called by a C library or used in a C program, you will run into trouble
because of this calling mechanism. In C, the calling procedure is expected to clear the stack, not the
called procedure. In other words, the arguments still are on the stack when the procedure exits. To

40

3.3. CALLING MECHANISM

Table 3.1: Calling mechanisms in Free Pascal

Modifier Pushing order Stack cleaned by Parameters in registers
(none) Right-to-left Function No
cdecl Right-to-left Caller No
export Right-to-left Caller No
stdcall Right-to-left Function No
popstack Right-to-left Caller No

avoid this problem, Free Pascal supports theexport modifier. Procedures that are defined using the
export modifier, use a C-compatible calling mechanism. This means that they can be called from
a C program or library, or that you can use them as a callback function.

This also means that you cannot call this procedure or function from your own program, since your
program uses the Pascal calling convention. However, in the exported function, you can of course
call other Pascal routines.

As of version 0.9.8, the Free Pascal compiler supports also thecdecl andstdcall modifiers, as
found in Delphi. Thecdecl modifier does the same as theexport modifier, andstdcall does
nothing, since Free Pascal pushes the paramaters from right to left by default. In addition to the
Delphi cdecl construct, Free Pascal also supports thepopstack directive; it is nearly the same a
thecdecl directive, only it still mangles the name, i.e. makes it into a name such as the compiler
uses internally.

All this is summarized in table (3.1). The first column lists the modifier you specify for a procedure
declaration. The second one lists the order the paramaters are pushed on the stack. The third column
specifies who is responsible for cleaning the stack: the caller or the called function. Finally, the last
column specifies if registers are used to pass parameters to the function.

More about this can be found in chapter 4, page 43 on linking.

Ix86 calling conventions
Standard entry code for procedures and functions is as follows on the x86 architecture:

pushl %ebp
movl %esp,%ebp

The generated exit sequence for procedure and functions looks as follows:

leave
ret $xx

Wherexx is the total size of the pushed parameters.

To have more information on function return values take a look at section 3.5, page 42.

M680x0 calling conventions
Standard entry code for procedures and functions is as follows on the 680x0 architecture:

move.l a6,-(sp)
move.l sp,a6

The generated exit sequence for procedure and functions looks as follows:

41

3.4. SIGNALLING CHANGED REGISTERS

unlk a6
move.l (sp)+,a0 ; Get return address
add.l #xx,sp ; Remove allocated stack
move.l a0,-(sp) ; Put back return address on top of the stack

Wherexx is the total size of the pushed parameters.

To have more information on function return values take a look at section 3.5, page 42.

3.4 Signalling changed registers

When the compiler uses variables, it sometimes stores them, or the result of some calculations, in
the processor registers. If you insert assembler code in your program that modifies the processor
registers, then this may interfere with the compiler’s idea about the registers. To avoid this problem,
Free Pascal allows you to tell the compiler which registers have changed. The compiler will then
avoid using these registers. Telling the compiler which registers have changed, is done by specifying
a set of register names behind an assembly block, as follows:

asm
...

end [’R1’,...,’Rn’];

HereR1 to Rn are the names of the 32-bit registers you modify in your assembly code.

As an example :

asm
movl BP,%eax
movl 4(%eax),%eax
movl %eax,__RESULT
end [’EAX’];

This example tells the compiler that theEAXregister was modified.

3.5 Register Conventions

The compiler has different register conventions, depending on the target processor used.

Intel x86 version
When optimizations are on, no register can be freely modified, without first being saved and then
restored. Otherwise, EDI is usually used as a scratch register and can be freely used in assembler
blocks.

Motorola 680x0 version
Registers which can be freely modified without saving are registers D0, D1, D6, A0, A1, and floating
point registers FP2 to FP7. All other registers are to be considered reserved and should be saved and
then restored when used in assembler blocks.

42

Chapter 4

Linking issues

When you only use Pascal code, and Pascal units, then you will not see much of the part that the
linker plays in creating your executable. The linker is only called when you compile a program.
When compiling units, the linker isn’t invoked.

However, there are times that you want to link to C libraries, or to external object files that are gen-
erated using a C compiler (or even another pascal compiler). The Free Pascal compiler can generate
calls to a C function, and can generate functions that can be called from C (exported functions). More
on these calling conventions can be found in section 3.3, page 40.

In general, there are 2 things you must do to use a function that resides in an external library or object
file:

1. You must make a pascal declaration of the function or procedure you want to use.

2. You must tell the compiler where the function resides, i.e. in what object file or what library,
so the compiler can link the necessary code in.

The same holds for variables. To access a variable that resides in an external object file, you must
declare it, and tell the compiler where to find it. The following sections attempt to explain how to do
this.

4.1 Using external functions or procedures

The first step in using external code blocks is declaring the function you want to use. Free Pascal
supports Delphi syntax, i.e. you must use theexternal directive. Theexternal directive
replaces, in effect, the code block of the function.

The external directive doesn’t specify a calling convention; it just tells the compiler that the code for
a procedure or function resides in an external code block.

There exist four variants of the external directive :

1. A simple external declaration:

Procedure ProcName (Args : TPRocArgs); external;

The external directive tells the compiler that the function resides in an external block of
code. You can use this together with the{$L } or {$LinkLib } directives to link to a
function or procedure in a library or external object file. Object files are looked for in the
object search path (set by-Fo) and libraries are searched for in the linker path (set by-Fl).

43

4.1. USING EXTERNAL FUNCTIONS OR PROCEDURES

2. You can give theexternal directive a library name as an argument:

Procedure ProcName (Args : TPRocArgs); external ’Name’;

This tells the compiler that the procedure resides in a library with name’Name’ . This method
is equivalent to the following:

Procedure ProcName (Args : TPRocArgs);external;
{$LinkLib ’Name’}

3. Theexternal can also be used with two arguments:

Procedure ProcName (Args : TPRocArgs); external ’Name’
name ’OtherProcName’;

This has the same meaning as the previous declaration, only the compiler will use the name
’OtherProcName’ when linking to the library. This can be used to give different names to
procedures and functions in an external library.

This method is equivalent to the following code:

Procedure OtherProcName (Args : TProcArgs); external;
{$LinkLib ’Name’}

Procedure ProcName (Args : TPRocArgs);

begin
OtherProcName (Args);

end;

4. Lastly, onder WINDOWS andOS/2, there is a fourth possibility to specify an external function:
In .DLL files, functions also have a unique number (their index). It is possible to refer to these
fuctions using their index:

Procedure ProcName (Args : TPRocArgs); external ’Name’ Index SomeIndex;

This tells the compiler that the procedureProcName resides in a dynamic link library, with
index SomeIndex.

Remark: Note that this is ONLY available under WINDOWS andOS/2.

In earlier versions of the Free Pascal compiler, the following construct was also possible :

Procedure ProcName (Args : TPRocArgs); [C];

This method is equivalent to the following statement:

Procedure ProcName (Args : TPRocArgs); cdecl; external;

However, the[C] directive is no longer supported as of version 0.99.5 of Free Pascal, therefore
you should use theexternal directive, with thecdecl directive, if needed.

44

4.2. USING EXTERNAL VARIABLES

4.2 Using external variables

Some libaries or code blocks have variables which they export. You can access these variables much
in the same way as external functions. To access an external variable, you declare it as follows:

Var
MyVar : MyType; external name ’varname’;

The effect of this declaration is twofold:

1. No space is allocated for this variable.

2. The name of the variable used in the assembler code isvarname . This is a case sensitive
name, so you must be careful.

The variable will be accessible with it’s declared name, i.e.MyVar in this case.

A second possibility is the declaration:

Var
varname : MyType; cvar; external;

The effect of this declaration is twofold as in the previous case:

1. Theexternal modifier ensures that no space is allocated for this variable.

2. Thecvar modifier tells the compiler that the name of the variable used in the assembler code
is exactly as specified in the declaration. This is a case sensitive name, so you must be careful.

In this case, you access the variable with it’s C name, but case insensitive. The first possibility allows
you to change the name of the external variable for internal use.

In order to be able to compile such statements, the compiler switch-Sv must be used.

As an example, let’s look at the following C file (inextvar.c):

/*
Declare a variable, allocate storage
*/
int extvar = 12;

And the following program (inextdemo.pp):

Program ExtDemo;

{$L extvar.o}

Var { Case sensitive declaration !! }
extvar : longint; cvar;external;
I : longint; external name ’extvar’;

begin
{ Extvar can be used case insensitive !! }
Writeln (’Variable ’’extvar’’ has value : ’,ExtVar);
Writeln (’Variable ’’I’’ has value : ’,i);

end.

Compiling the C file, and the pascal program:

45

4.3. LINKING TO AN OBJECT FILE

gcc -c -o extvar.o extvar.c
ppc386 -Sv extdemo

Will produce a programextdemo which will print

Variable ’extvar’ has value : 12
Variable ’I’ has value : 12

on your screen.

4.3 Linking to an object file

Having declared the external function or variable that resides in an object file, you can use it as if it
was defined in your own program or unit. To produce an executable, you must still link the object
file in. This can be done with the{$L file.o} directive.

This will cause the linker to link in the object filefile.o. On LINUX systems, this filename is case
sensitive. UnderDOS, case isn’t important. Note thatfile.o must be in the current directory if you
don’t specify a path. The linker will not search forfile.o if it isn’t found.

You cannot specify libraries in this way, it is for object files only.

Here we present an example. Consider that you have some assembly routine that calculates the nth
Fibonacci number :

.text
.align 4

.globl Fibonacci
.type Fibonacci,@function

Fibonacci:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
xorl %ecx,%ecx
xorl %eax,%eax
movl $1,%ebx
incl %edx

loop:
decl %edx
je endloop
movl %ecx,%eax
addl %ebx,%eax
movl %ebx,%ecx
movl %eax,%ebx
jmp loop

endloop:
movl %ebp,%esp
popl %ebp
ret

Then you can call this function with the following Pascal Program:

Program FibonacciDemo;

var i : longint;

46

4.4. LINKING TO A LIBRARY

Function Fibonacci (L : longint):longint;cdecl;external;

{$L fib.o}

begin
For I:=1 to 40 do

writeln (’Fib(’,i,’) : ’,Fibonacci (i));
end.

With just two commands, this can be made into a program :

as -o fib.o fib.s
ppc386 fibo.pp

This example supposes that you have your assembler routine infib.s, and your Pascal program in
fibo.pp.

4.4 Linking to a library

To link your program to a library, the procedure depends on how you declared the external procedure.

In case you used the follwing syntax to declare your procedure:

Procedure ProcName (Args : TPRocArgs); external ’Name’;

You don’t need to take additional steps to link your file in, the compiler will do all that is needed for
you. On WINDOWS NT it will link to Name.dll, on LINUX your program will be linked to library
libname, which can be a static or dynamic library.

In case you used

Procedure ProcName (Args : TPRocArgs); external;

You still need to explicity link to the library. This can be done in 2 ways:

1. You can tell the compiler in the source file what library to link to using the{$LinkLib
’Name’} directive:

{$LinkLib ’gpm’}

This will link to the gpm library. On LINUX systems, you needn’t specify the extension or
’lib’ prefix of the library. The compiler takes care of that. OnDOS or WINDOWS systems, you
need to specify the full name.

2. You can also tell the compiler on the command-line to link in a library: The-k option can be
used for that. For example

ppc386 -k’-lgpm’ myprog.pp

Is equivalent to the above method, and tells the linker to link to thegpm library.

As an example; consider the following program :

47

4.5. MAKING LIBRARIES

program printlength;

{$linklib c} { Case sensitive }

{ Declaration for the standard C function strlen }
Function strlen (P : pchar) : longint; cdecl;external;

begin
Writeln (strlen(’Programming is easy !’));

end.

This program can be compiled with :

ppc386 prlen.pp

Supposing, of course, that the program source resides inprlen.pp.

You cannot use procedures or functions that have a variable number of arguments in C. Pascal doesn’t
support this feature of C.

4.5 Making libraries

Free Pascal supports making shared or static libraries in a straightforward and easy manner. If you
want to make libraries for other Free Pascal programmers, you just need to provide a command line
switch. If you want C programmers to be able to use your code as well, you will need to adapt your
code a little. This process is described first.

Exporting functions
When exporting functions from a library, there are 2 things you must take in account:

1. Calling conventions.

2. Naming scheme.

The calling conventions are controlled by the modifierscdecl , popstack , pascal , stdcall .
See section 3.3, page 40 for more information on the different kinds of calling scheme.

The naming conventions can be controlled by 3 modifiers:

cdecl: A function that has acdecl modifier, will be used with C calling conventions, that is, the
caller clears the stack. Also the mangled name will be the nameexactlyas in the declaration.
cdecl is part of the function declaration, and hence must be present both in the interface and
implementation section of a unit.

export: A function that has an export modifier, uses also the exact declaration name as its mangled
name. Under WINDOWS NT andOS/2, this modifier signals a function that is exported from a
DLL. The calling conventions used by aexport procedure depend on the OS. This keyword
can be used only in the implementation section.

Alias: The alias modifier can be used to give a second assembler name to your function. This
doesn’t modify the calling conventions of the function.

48

4.5. MAKING LIBRARIES

If you want to make your procedures and functions available to C programmers, you can do this very
easily. All you need to do is declare the functions and procedures that you want to make available as
export , as follows:

Procedure ExportedProcedure; export;

Remark: You can only declare a function as exported in theImplementation section of a unit. This
function maynot appear in the interface part of a unit. This is logical, since a Pascal routine cannot
call an exported function, anyway.

However, the generated object file will not contain the name of the function as you declared it. The
Free Pascal compiler ”mangles” the name you give your function. It makes the name all-uppercase,
and adds the types of all parameters to it. There are cases when you want to provide a mangled name
without changing the calling convention. In such cases, you can use theAlias modifier.

TheAlias modifier allows you to specify another name (a nickname) for your function or proce-
dure.

The prototype for an aliased function or procedure is as follows :

Procedure AliasedProc; [Alias : ’AliasName’];

The procedureAliasedProc will also be known asAliasName . Take care, the name you specify
is case sensitive (as C is).

Remark: If you use in your unit functions that are in other units, or system functions, then the C program will
need to link in the object files from the units too.

Exporting variables
Similarly as when you export functions, you can export variables. When exportig variables, one
should only consider the names of the variables. To declare a variable that should be used by a C
program, one declares it with thecvar modifier:

Var MyVar : MyTpe; cvar;

This will tell the compiler that the assembler name of the variable (the one which is used by C
programs) should be exactly as specified in the declaration, i.e., case sensitive.

It is not allowed to declare multiple variables ascvar in one statement, i.e. the following code will
produce an error:

var Z1,Z2 : longint;cvar;

Compiling libraries
Once you have your (adapted) code, with exported and other functions, you can compile your unit,
and tell the compiler to make it into a library. The compiler will simply compile your unit, and
perform the necessary steps to transform it into astatic or shared (dynamical) library.

You can do this as follows, for a dynamical library:

ppc386 -CD myunit

On LINUX this will leave you with a filelibmyunit.so. On WINDOWS andOS/2, this will leave you
with myunit.dll.

If you want a static library, you can do

49

4.5. MAKING LIBRARIES

ppc386 -CS myunit

This will leave you withlibmyunit.a and a filemyunit.ppu. Themyunit.ppu is the unit file needed
by the Free Pascal compiler.

The resulting files are then libraries. To make static libraries, you need theranlib or ar program
on your system. It is standard on anyLINUX system, and is provided with theGCC compiler under
DOS. For the dos distribution, a copy of ar is included in the filegnuutils.zip.

BEWARE:This command doesn’t include anything but the current unit in the library. Other units are
left out, so if you use code from other units, you must deploy them together with your library.

Moving units into a library
You can put multiple units into a library with theppumove command, as follows:

ppumove -e ppl -o name unit1 unit2 unit3

This will move 3 units in 1 library (calledlibname.so on linux,name.dll on WINDOWS) and it will
create 3 filesunit1.ppl, unit2.ppl andunit3.ppl, which are unit files, but which tell the compiler to
look in libraryname when linking your executable.

Theppumove program has options to create statical or dynamical libraries. It is provided with the
compiler.

Unit searching strategy
When you compile a program or unit, the compiler will by default always look for.ppl files. If it
doesn’t find one, it will look for a.ppu file.

To be able to differentiate between units that have been compiled as static or dynamic libraries, there
are 2 switches:

-XD: This will define the symbolFPC_LINK_DYNAMIC

-XS: This will define the symbolFPC_LINK_STATIC

Definition of one symbol will automatically undefine the other.

These two switches can be used in conjunction with the configuration fileppc386.cfg. The existence
of one of these symbols can be used to decide which unit search path to set. For example:

Set unit paths

#IFDEF FPC_LINK_STATIC
-Up/usr/lib/fpc/linuxunits/staticunits
#ENDIF
#IFDEF FPC_LINK_DYNAMIC
-Up/usr/lib/fpc/linuxunits/sharedunits
#ENDIF

With such a configuration file, the compiler will look for it’s units in different directories, depending
on whether-XD or -XS is used.

50

4.6. USING SMART LINKING

4.6 Using smart linking

You can compile your units using smart linking. When you use smartlinking, the compiler creates a
series of code blocks that are as small as possible, i.e. a code block will contain only the code for
one procedure or function.

When you compile a program that uses a smart-linked unit, the compiler will only link in the code
that you actually need, and will leave out all other code. This will result in a smaller binary, which is
loaded in memory faster, thus speeding up execution.

To enable smartlinking, one can give the smartlink option on the command line :-Cx , or one can
put the{$SMARTLINK ON} directive in the unit file:

Unit Testunit

{SMARTLINK ON}
Interface
...

Smartlinking will slow down the compilation process, especially for large units.

When a unitfoo.pp is smartlinked, the name of the codefile is changed tolibfoo.a.

Technically speaking, the compiler makes small assembler files for each procedure and function in
the unit, as well as for all global defined variables (whether they’re in the interface section or not). It
then assembles all these small files, and usesar to collect the resulting object files in one archive.

Smartlinking and the creation of shared (or dynamic) libraries are mutually exclusive, that is, if you
turn on smartlinking, then the creation of shared libraries is turned of. The creation of static libraries
is still possible. The reason for this is that it has little sense in making a smarlinked dynamical library.
The whole shared library is loaded into memory anyway by the dynamic linker (or WINDOWS NT),
so there would be no gain in size by making it smartlinked.

51

Chapter 5

Objects

In this short chapter we give some technical things about objects. For instructions on how to use and
declare objects, see the Reference guide.

5.1 Constructor and Destructor calls

When using objects that need virtual methods, the compiler uses two help procedures that are in the
run-time library. They are calledHelp_Destructor andHelp_Constructor , and they are
written in assembly language. They are used to allocate the necessary memory if needed, and to
insert the Virtual Method Table (VMT) pointer in the newly allocated object.

When the compiler encounters a call to an object’s constructor, it sets up the stack frame for the
call, and inserts a call to theHelp_Constructor procedure before issuing the call to the real
constructor. The helper procedure allocates the needed memory (if needed) and inserts the VMT
pointer in the object. After that, the real constructor is called.

A call to Help_Destructor is inserted in every destructor declaration, just before the destructor’s
exit sequence.

5.2 Memory storage of objects

Objects are stored in memory just as ordinary records with an extra field : a pointer to the Virtual
Method Table (VMT). This field is stored first, and all fields in the object are stored in the order they
are declared. This field is initialized by the call to the object’sConstructor method.

Remark: In earlier versions of Free Pascal, if the object you defined has no virtual methods, then anil is
stored in the VMT pointer. This ensured that the size of objects was equal, whether they have virtual
methods or not. However, in the0.99 versions of free pascal, this was changed for compatibility
reasons. If an object doesn’t have virtual methods, no pointer to a VMT is inserted.

The memory allocated looks as in table (5.1).

5.3 The Virtual Method Table

The Virtual Method Table (VMT) for each object type consists of 2 check fields (containing the size
of the data), a pointer to the object’s ancestor’s VMT (Nil if there is no ancestor), and then the
pointers to all virtual methods. The VMT layout is illustrated in table (5.2).

52

file:../ref/ref.html

5.3. THE VIRTUAL METHOD TABLE

Table 5.1: Object memory layout

Offset What
+0 Pointer to VMT.
+4 Data. All fields in the order the’ve been declared.
...

Table 5.2: Virtual Method Table memory layout

Offset What
+0 Size of object type data
+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT,Nil if no ancestor available.
+12 Pointers to the virtual methods.
...

The VMT is constructed by the compiler. Every instance of an object receives a pointer to its VMT.

53

Chapter 6

Generated code

The Free Pascal compiler relies on the assembler to make object files. It generates just the assembly
language file. In the following two sections, we discuss what is generated when you compile a unit
or a program.

6.1 Units

When you compile a unit, the Free Pascal compiler generates 2 files :

1. A unit description file (with extension.ppu, or .ppw on WINDOWS NT).

2. An assembly language file (with extension.s).

The assembly language file contains the actual source code for the statements in your unit, and the
necessary memory allocations for any variables you use in your unit. This file is converted by the
assembler to an object file (with extension.o) which can then be linked to other units and your
program, to form an executable.

By default (compiler version 0.9.4 and up), the assembly file is removed after it has been compiled.
Only in the case of the-s command-line option, the assembly file must be left on disk, so the
assembler can be called later. You can disable the erasing of the assembler file with the-a switch.

The unit file contains all the information the compiler needs to use the unit:

1. Other used units, both in interface and implementation.

2. Types and variables from the interface section of the unit.

3. Function declarations from the interface section of the unit.

4. Some debugging information, when compiled with debugging.

5. A date and time stamp.

Macros, symbols and compiler directives arenot saved to the unit description file. Aliases for func-
tions are also not written to this file, which is logical, since they cannot appear in the interface section
of a unit.

The detailed contents and structure of this file are described in the first appendix. You can examine a
unit description file using thedumpppu program, which shows the contents of the file.

If you want to distribute a unit without source code, you must provide both the unit description file
and the object file.

54

6.2. PROGRAMS

You can also provide a C header file to go with the object file. In that case, your unit can be used by
someone who wishes to write his programs in C. However, you must make this header file yourself
since the Free Pascal compiler doesn’t make one for you.

6.2 Programs

When you compile a program, the compiler produces again 2 files :

1. An assembly language file containing the statements of your program, and memory allocations
for all used variables.

2. A linker response file. This file contains a list of object files the linker must link together.

The link response file is, by default, removed from the disk. Only when you specify the-s command-
line option or when linking fails, then the file is left on the disk. It is namedlink.res.

The assembly language file is converted to an object file by the assembler, and then linked together
with the rest of the units and a program header, to form your final program.

The program header file is a small assembly program which provides the entry point for the program.
This is where the execution of your program starts, so it depends on the operating system, because
operating systems pass parameters to executables in wildly different ways.

It’s name isprt0.o, and the source file resides inprt0.s or some variant of this name. It usually
resided where the system unit source for your system resides. It’s main function is to save the
environment and command-line arguments and set up the stack. Then it calls the main program.

55

Chapter 7

Intel MMX support

7.1 What is it about ?

Free Pascal supports the new MMX (Multi-Media extensions) instructions of Intel processors. The
idea of MMX is to process multiple data with one instruction, for example the processor can add
simultaneously 4 words. To implement this efficiently, the Pascal language needs to be extended. So
Free Pascal allows to add for example twoarray[0..3] of word , if MMX support is switched
on. The operation is done by theMMXunit and allows people without assembler knowledge to take
advantage of the MMX extensions.

Here is an example:

uses
MMX; { include some predefined data types }

const
{ tmmxword = array[0..3] of word;, declared by unit MMX }
w1 : tmmxword = (111,123,432,4356);
w2 : tmmxword = (4213,63456,756,4);

var
w3 : tmmxword;
l : longint;

begin
if is_mmx_cpu then { is_mmx_cpu is exported from unit mmx }

begin
{$mmx+} { turn mmx on }

w3:=w1+w2;
{$mmx-}

end
else

begin
for i:=0 to 3 do

w3[i]:=w1[i]+w2[i];
end;

end.

56

7.2. SATURATION SUPPORT

7.2 Saturation support

One important point of MMX is the support of saturated operations. If a operation would cause
an overflow, the value stays at the highest or lowest possible value for the data type: If you use
byte values you get normally 250+12=6. This is very annoying when doing color manipulations or
changing audio samples, when you have to do a word add and check if the value is greater than 255.
The solution is saturation: 250+12 gives 255. Saturated operations are supported by theMMXunit. If
you want to use them, you have simple turn the switch saturation on:$saturation+

Here is an example:

Program SaturationDemo;
{

example for saturation, scales data (for example audio)
with 1.5 with rounding to negative infinity

}

var
audio1 : tmmxword;

const
helpdata1 : tmmxword = ($c000,$c000,$c000,$c000);
helpdata2 : tmmxword = ($8000,$8000,$8000,$8000);

begin
{ audio1 contains four 16 bit audio samples }

{$mmx+}
{ convert it to $8000 is defined as zero, multiply data with 0.75 }
audio1:=tmmxfixed16(audio1+helpdata2)*tmmxfixed(helpdata1);

{$saturation+}
{ avoid overflows (all values>$7fff becomes $ffff) }
audio1:=(audio1+helpdata2)-helpdata2;

{$saturation-}
{ now mupltily with 2 and change to integer }
audio1:=(audio1 shl 1)-helpdata2;

{$mmx-}
end.

7.3 Restrictions of MMX support

In the beginning of 1997 the MMX instructions were introduced in the Pentium processors, so mul-
titasking systems wouldn’t save the newly introduced MMX registers. To work around that problem,
Intel mapped the MMX registers to the FPU register.

The consequence is that you can’t mix MMX and floating point operations. After using MMX
operations and before using floating point operations, you have to call the routineEMMSof theMMX
unit. This routine restores the FPU registers.

Careful: The compiler doesn’t warn if you mix floating point and MMX operations, so be careful.

The MMX instructions are optimized for multi media (what else?). So it isn’t possible to perform
each operation, some opertions give a type mismatch, see section 7.4 for the supported MMX opera-
tions

An important restriction is that MMX operations aren’t range or overflow checked, even when you
turn range and overflow checking on. This is due to the nature of MMX operations.

57

7.4. SUPPORTED MMX OPERATIONS

TheMMXunit must always be used when doing MMX operations because the exit code of this unit
clears the MMX unit. If it wouldn’t do that, other program will crash. A consequence of this is that
you can’t use MMX operations in the exit code of your units or programs, since they would interfere
with the exit code of theMMXunit. The compiler can’t check this, so you are responsible for this !

7.4 Supported MMX operations

Still to be written...

7.5 Optimizing MMX support

Here are some helpful hints to get optimal performance:

• TheEMMScall takes a lot of time, so try to seperate floating point and MMX operations.

• Use MMX only in low level routines because the compiler saves all used MMX registers when
calling a subroutine.

• The NOT-operator isn’t supported natively by MMX, so the compiler has to generate a workaround
and this operation is inefficient.

• Simple assignements of floating point numbers don’t access floating point registers, so you
need no call to theEMMSprocedure. Only when doing arithmetic, you need to call theEMMS
procedure.

58

Chapter 8

Memory issues

8.1 The 32-bit model.

The Free Pascal compiler issues 32-bit code. This has several consequences:

• You need a 386 processor to run the generated code. The compiler functions on a 286 when you
compile it using Turbo Pascal, but the generated programs cannot be assembled or executed.

• You don’t need to bother with segment selectors. Memory can be addressed using a single
32-bit pointer. The amount of memory is limited only by the available amount of (virtual)
memory on your machine.

• The structures you define are unlimited in size. Arrays can be as long as you want. You can
request memory blocks from any size.

The fact that 32-bit code is used, means that some of the older Turbo Pascal constructs and functions
are obsolete. The following is a list of functions which shouldn’t be used anymore:

Seg() : Returned the segment of a memory address. Since segments have no more meaning, zero is
returned in the Free Pascal run-time library implementation ofSeg.

Ofs() : Returned the offset of a memory address. Since segments have no more meaning, the com-
plete address is returned in the Free Pascal implementation of this function. This has as a
consequence that the return type isLongint instead ofWord.

Cseg(), Dseg(): Returned, respectively, the code and data segments of your program. This returns
zero in the Free Pascal implementation of the system unit, since both code and data are in the
same memory space.

Ptr: Accepted a segment and offset from an address, and would return a pointer to this address. This
has been changed in the run-time library. Standard it returns now simply the offset. If you want
to retain the old functionality, you can recompile the run-time library with theDoMapping
symbol defined. This will restore the Turbo Pascal behaviour.

memw and mem These arrays gave access to theDOS memory. Free Pascal supports them on the
go32v2 platform, they are mapped intoDOS memory space. You need theGO32unit for this.
On other platforms, they arenotsupported

You shouldn’t use these functions, since they are very non-portable, they’re specific toDOS and the
ix86 processor. The Free Pascal compiler is designed to be portable to other platforms, so you should
keep your code as portable as possible, and not system specific. That is, unless you’re writing some
driver units, of course.

59

8.2. THE STACK

Table 8.1: Stack frame when calling a procedure

Offset What is stored Optional ?
+x parameters Yes
+12 function result Yes
+8 self Yes
+4 Frame pointer of parent procedure Yes
+0 Return address No

8.2 The stack

The stack is used to pass parameters to procedures or functions, to store local variables, and, in some
cases, to return function results.

When a function or procedure is called, then the following is done by the compiler :

1. If there are any parameters to be passed to the procedure, they are pushed from right to left on
the stack.

2. If a function is called that returns a variable of typeString , Set , Record , Object or
Array , then an address to store the function result in, is pushed on the stack.

3. If the called procedure or function is an object method, then the pointer toself is pushed on
the stack.

4. If the procedure or function is nested in another function or procedure, then the frame pointer
of the parent procedure is pushed on the stack.

5. The return address is pushed on the stack (This is done automatically by the instruction which
calls the subroutine).

The resulting stack frame upon entering looks as in table (8.1).

Intel x86 version
The stack is cleared with theret I386 instruction, meaning that the size of all pushed parameters is
limited to 64K.

DOS

Under the DOS targets, the default stack is set to 256Kb. This value cannot be modified for the
GO32V1 target. But this can be modified with the GO32V2 target using a special DJGPP utility
stubedit . It is to note that the stack size may be changed with some compiler switches, this stack
size, if greater then the default stack size will be used instead, otherwise the default stack size is
used.

Linux

Under Linux, stack size is only limited by the available memory of the system.

60

8.3. THE HEAP

OS/2

Under OS/2, stack size is determined by one of the runtime environment variables set for EMX.
Therefore, the stack size is user defined.

Motorola 680x0 version
All depending on the processor target, the stack can be cleared in two manners, if the target processor
is a MC68020 or higher, the stack will be cleared with a simplertd instruction, meaning that the
size of all pushed parameters is limited to 32K.

Otherwise on MC68000/68010 processors, the stack clearing mechanism is sligthly more compli-
cated, the exit code will look like this:

{
move.l (sp)+,a0
add.l paramsize,a0
move.l a0,-(sp)
rts

}

Amiga

Under AmigaOS, stack size is determined by the user, which sets this value using the stack program.
Typical sizes range from 4K to 40K.

Atari

Under Atari TOS, stack size is currently limited to 8K, and it cannot be modified. This may change
in a future release of the compiler.

8.3 The heap

The heap is used to store all dynamic variables, and to store class instances. The interface to the
heap is the same as in Turbo Pascal, although the effects are maybe not the same. On top of that, the
Free Pascal run-time library has some extra possibilities, not available in Turbo Pascal. These extra
possibilities are explained in the next subsections.

The heap grows
Free Pascal supports theHeapError procedural variable. If this variable is non-nil, then it is called
in case you try to allocate memory, and the heap is full. By default,HeapError points to the
GrowHeap function, which tries to increase the heap.

The growheap function issues a system call to try to increase the size of the memory available to your
program. It first tries to increase memory in a 1 Mb. chunk. If this fails, it tries to increase the heap
by the amount you requested from the heap.

If the call toGrowHeap has failed, then a run-time error is generated, or nil is returned, depending
on theGrowHeap result.

If the call toGrowHeap was successful, then the needed memory will be allocated.

61

8.3. THE HEAP

Using Blocks
If you need to allocate a lot of small blocks for a small period, then you may want to recompile the
run-time library with theUSEBLOCKSsymbol defined. If it is recompiled, then the heap management
is done in a different way.

The run-time library keeps a linked list of allocated blocks with size up to 256 bytes1. By default, it
keeps 32 of these lists2.

When a piece of memory in a block is deallocated, the heap manager doesn’t really deallocate the
occupied memory. The block is simply put in the linked list corresponding to its size.

When you then again request a block of memory, the manager checks in the list if there is a non-
allocated block which fits the size you need (rounded to 8 bytes). If so, the block is used to allocate
the memory you requested.

This method of allocating works faster if the heap is very fragmented, and you allocate a lot of small
memory chunks.

Since it is invisible to the program, this provides an easy way of improving the performance of the
heap manager.

Using the split heap
Remark: The split heap is still somewhat buggy. Use at your own risk for the moment.

The split heap can be used to quickly release a lot of blocks you allocated previously.

Suppose that in a part of your program, you allocate a lot of memory chunks on the heap. Suppose
that you know that you’ll release all this memory when this particular part of your program is finished.

In Turbo Pascal, you could foresee this, and mark the position of the heap (using theMark function)
when entering this particular part of your program, and release the occupied memory in one call with
theRelease call.

For most purposes, this works very good. But sometimes, you may need to allocate something on
the heap that youdon’t want deallocated when you release the allocated memory. That is where the
split heap comes in.

When you split the heap, the heap manager keeps 2 heaps: the base heap (the normal heap), and the
temporary heap. After the call to split the heap, memory is allocated from the temporary heap. When
you’re finished using all this memory, you unsplit the heap. This clears all the memory on the split
heap with one call. After that, memory will be allocated from the base heap again.

So far, nothing special, nothing that can’t be done with calls tomark andrelease . Suppose now
that you have split the heap, and that you’ve come to a point where you need to allocate memory that
is to stay allocated after you unsplit the heap again. At this point, mark and release are of no use. But
when using the split heap, you can tell the heap manager to –temporarily– use the base heap again
to allocate memory. When you’ve allocated the needed memory, you can tell the heap manager that
it should start using the temporary heap again. When you’re finished using the temporary heap, you
release it, and the memory you allocated on the base heap will still be allocated.

To use the split-heap, you must recompile the run-time library with theTempHeapsymbol defined.
This means that the following functions are available :

procedure Split_Heap;
procedure Switch_To_Base_Heap;
procedure Switch_To_Temp_Heap;
procedure Switch_Heap;
1The size can be set using themax_size constant in theheap.inc source file.
2The actual size ismax_size div 8 .

62

8.4. USING DOSMEMORY UNDER THE GO32 EXTENDER

procedure ReleaseTempHeap;
procedure GetTempMem(var p : pointer;size : longint);

Split_Heap is used to split the heap. It cannot be called two times in a row, without a call tore-
leasetempheap . Releasetempheap completely releases the memory used by the temporary
heap. Switching temporarily back to the base heap can be done using theSwitch_To_Base_Heap
call, and returning to the temporary heap is done using theSwitch_To_Temp_Heap call. Switch-
ing from one to the other without knowing on which one your are right now, can be done using the
Switch_Heap call, which will split the heap first if needed.

A call to GetTempMemwill allocate a memory block on the temporary heap, whatever the current
heap is. The current heap after this call will be the temporary heap.

Typically, what will appear in your code is the following sequence :

Split_Heap
...
{ Memory allocation }
...
{ !! non-volatile memory needed !!}
Switch_To_Base_Heap;
getmem (P,size);
Switch_To_Temp_Heap;
...
{Memory allocation}
...
ReleaseTempHeap;
{All allocated memory is now freed, except for the memory pointed to by ’P’ }
...

8.4 UsingDOS memory under the Go32 extender

Because Free Pascal is a 32 bit compiler, and uses aDOS extender, accessing DOS memory isn’t
trivial. What follows is an attempt to an explanation of how to access and useDOS or real mode
memory3.

In Proteced Mode, memory is accessed throughSelectorsandOffsets. You can think of Selectors as
the protected mode equivalents of segments.

In Free Pascal, a pointer is an offset into theDSselector, which points to the Data of your program.

To access the (real mode)DOS memory, somehow you need a selector that points to theDOS mem-
ory. TheGO32 unit provides you with such a selector: TheDosMemSelector variable, as it is
conveniently called.

You can also allocate memory inDOS’s memory space, using theglobal_dos_alloc function
of theGO32 unit. This function will allocate memory in a place whereDOS sees it.

As an example, here is a function that returns memory in real modeDOS and returns a selector:offset
pair for it.

procedure dosalloc(var selector : word;
var segment : word;
size : longint);

var result : longint;
3Thanks to an explanation of Thomas schatzl (E-mail:tom_at_work@geocities.com).

63

8.4. USING DOSMEMORY UNDER THE GO32 EXTENDER

begin
result := global_dos_alloc(size);
selector := word(result);
segment := word(result shr 16);

end;

(You need to free this memory using theglobal_dos_free function.)

You can access any place in memory using a selector. You can get a selector using theallo-
cate_ldt_descriptor function, and then let this selector point to the physical memory you
want using theset_segment_base_address function, and set its length usingset_segment_limit
function. You can manipulate the memory pointed to by the selector using the functions of the GO32
unit. For instance with theseg_fillchar function. After using the selector, you must free it
again using thefree_ldt_selector function.

More information on all this can be found in the Unit reference, the chapter on theGO32 unit.

64

file:../units/units.html

Chapter 9

Resource strings

9.1 Introduction

Resource strings primarily exist to make internationalization of applications easier, by introducing a
language construct that provides a uniform way of handling constant strings.

Most applications communicate with the user through some messages on the graphical screen or
console. Storing these messages in special constants allows to store them in a uniform way in separate
files, which can be used for translation. A programmers interface exists to manipulate the actual
values of the constant strings at runtime, and a utility tool comes with the Free Pascal compiler to
convert the resource string files to whatever format is wanted by the programmer. Both these things
are discussed in the following sections.

9.2 The resource string file

When a unit is compiled that contains aresourcestring section, the compiler does 2 things:

1. It generates a table that contains the value of the strings as it is declared in the sources.

2. It generates aresource string filethat contains the names of all strings, together with their
declared values.

This approach has 2 advantages: first of all, the value of the string is always present in the pro-
gram. If the programmer doesn’t care to translate the strings, the default values are always present
in the binary. This also avoids having to provide a file containing the strings. Secondly, having all
strings together in a compiler generated file ensures that all strings are together (you can have mul-
tiple resourcestring sections in 1 unit or program) and having this file in a fixed format, allows the
programmer to choose his way of internationalization.

For each unit that is compiled and that contains a resourcestring section, the compiler generates a file
that has the name of the unit, and an extension.rst. The format of this file is as follows:

1. An empty line.

2. A line starting with a hash sign (#) and the hash value of the string, preceded by the texthash
value = .

3. A third line, containing the name of the resource string in the formatunitname.constantname ,
all lowercase, followed by an equal sign, and the string value, in a format equal to the pascal

65

9.2. THE RESOURCE STRING FILE

representation of this string. The line may be continued on the next line, in that case it reads
as a pascal string expression with a plus sign in it.

4. Another empty line.

If the unit contains noresourcestring section, no file is generated.

For example, the following unit:

unit rsdemo;

{$mode delphi}
{$H+}

interface

resourcestring

First = ’First’;
Second = ’A Second very long string that should cover more than 1 line’;

implementation

end.

Will result in the following resource string file:

hash value = 5048740
rsdemo.first=’First’

hash value = 171989989
rsdemo.second=’A Second very long string that should cover more than 1 li’+
’ne’

The hash value is calculated with the functionHash. It is present in theobjpas unit. The value is
the same value that the GNU gettext mechanism uses. It is in no way unique, and can only be used
to speed up searches.

The rstconv utility that comes with the Free Pascal compiler allows to manipulate these resource
string files. At the moment, it can only be used to make a.po file that can be fed to the GNUmsgfmt
program. If someone wishes to have another format (Win32 resource files spring to mind) he/she can
enhance therstconv program so it can generate other types of files as well. GNU gettext was chosen
because it is available on all platforms, and is already widely used in theUnix and free software
community. Since the Free Pascal team doesn’t want to restrict the use of resource strings, the.rst
format was chosen to provide a neutral method, not restricted to any tool.

If you use resource strings in your units, and you want people to be able to translate the strings, you
must provide the resource string file. Currently, there is no way to extract them from the unit file,
though this is in principle possible. It is not required to do this, the program can be compiled without
it, but then the translation of the strings isn’t possible.

66

9.3. UPDATING THE STRING TABLES

9.3 Updating the string tables

Having compiled a program with resourcestrings is not enough to internationalize your program. At
run-time, the program must initialize the string tables with the correct values for the anguage that
the user selected. By default no such initialization is performed. All strings are initialized with their
declared values.

The objpas unit provides the mechanism to correctly initialize the string tables. There is no need
to include this unit in auses clause, since it is automatically loaded when a program or unit is
compiled inDelphi or objfpc mode. Since this is required to use resource strings, the unit is
always loaded when needed.

The resource strings are stored in tables, one per unit, and one for the program, if it contains a
resourcestring section as well. Each resourcestring is stored with it’s name, hash value, default
value, and the current value, all asAnsiStrings .

The objpas unit offers methods to retrieve the number of resourcestring tables, the number of strings
per table, and the above information for each string. It also offers a method to set the current value
of the strings.

Here are the declarations of all the functions:

Function ResourceStringTableCount : Longint;
Function ResourceStringCount(TableIndex : longint) : longint;
Function GetResourceStringName(TableIndex,

StringIndex : Longint) : Ansistring;
Function GetResourceStringHash(TableIndex,

StringIndex : Longint) : Longint;
Function GetResourceStringDefaultValue(TableIndex,

StringIndex : Longint) : AnsiString;
Function GetResourceStringCurrentValue(TableIndex,

StringIndex : Longint) : AnsiString;
Function SetResourceStringValue(TableIndex,

StringIndex : longint;
Value : Ansistring) : Boolean;

Procedure SetResourceStrings (SetFunction : TResourceIterator);

Two other function exist, for convenience only:

Function Hash(S : AnsiString) : longint;
Procedure ResetResourceTables;

Here is a short explanation of what each function does. A more detailed explanation of the functions
can be found in the Reference guide.

ResourceStringTableCount returns the number of resource string tables in the program.

ResourceStringCount returns the number of resource string entries in a given table (tables are de-
noted by a zero-based index).

GetResourceStringNamereturns the name of a resource string in a resource table. This is the
name of the unit, a dot (.) and the name of the string constant, all in lowercase. The strings are
denoted by index, also zero-based.

GetResourceStringHashreturns the hash value of a resource string, as calculated by the compiler
with theHash function.

GetResourceStringDefaultValue returns the default value of a resource string, i.e. the value that
appears in the resource string declaration, and that is stored in the binary.

67

file:../ref/ref.html

9.4. GNU GETTEXT

GetResourceStringCurrentValue returns the current value of a resource string, i.e. the value set
by the initialization (the default value), or the value set by some previous internationalization
routine.

SetResourceStringValuesets the current value of a resource string. This function must be called to
initialize all strings.

SetResourceStringsgiving this function a callback will cause the calback to be called for all re-
source strings, one by one, and set the value of the string to the return value of the callback.

Two other functions exist, for convenience only:

Hash can be used to calculate the hash value of a string. The hash value stored in the tables is the
result of this function, applied on the default value. That value is calculated at compile time
by the compiler.

ResetResourceTableswill reset all the resource strings to their default values. It is called by the
initialization code of the objpas unit.

Given someTranslate function, the following code would initialize all resource strings:

Var I,J : Longint;
S : AnsiString;

begin
For I:=0 to ResourceStringTableCount-1 do

For J:=0 to ResourceStringCount(i)-1 do
begin
S:=Translate(GetResourceStringDefaultValue(I,J));
SetResourceStringValue(I,J,S);
end;

end;

Other methods are of course possible, and theTranslate function can be implemented in a variety
of ways.

9.4 GNU gettext

The unitgettext provides a way to internationalize an application with the GNUgettext utilities.
This unit is supplied with the Free Component Library (FCL). it can be used as follows:

for a given application, the following steps must be followed:

1. Collect all resource string files and concatenate them together.

2. Invoke therstconv program with the file resulting out of step 1, resulting in a single.po file
containing all resource strings of the program.

3. Translate the.po file of step 2 in all required languages.

4. Run themsgfmt formatting program on all the.po files, resulting in a set of.mo files, which
can be distributed with your application.

5. Call thegettext unit’s TranslateReosurceStrings method, giving it a template for the
location of the.mo files, e.g. as in

68

9.5. CAVEAT

TranslateResourcestrings(’intl/restest.%s.mo’);

the%sspecifier will be replaced by the contents of theLANGenvironment variable. This call
should happen at program startup.

An example program exists in the FCL sources, in thefcl/tests directory.

9.5 Caveat

In principle it is possible to translate all resource strings at any time in a running program. However,
this change is not communicated to other strings; its change is noticed only when a constant string is
being used.

Consider the following example:

Const
help = ’With a little help of a programmer.’;

Var
A : AnsiString;

begin

{ lots of code }

A:=Help;

{ Again some code}

TranslateStrings;

{ More code }

After the call toTranslateStrings , the value ofA will remain unchanged. This means that the
assignmentA:=Help must be executed again in order for the change to become visible. This is
important, especially for GUI programs which have e.g. a menu. In order for the change in resource
strings to become visible, the new values must be reloaded by program code into the menus...

69

Chapter 10

Optimizations

10.1 Non processor specific

The following sections describe the general optimizations done by the compiler, they are not proces-
sor specific. Some of these require some compiler switch override while others are done automati-
cally (those which require a switch will be noted as such).

Constant folding
In Free Pascal, if the operand(s) of an operator are constants, they will be evaluated at compile time.

Example

x:=1+2+3+6+5;
will generate the same code as

x:=17;

Furthermore, if an array index is a constant, the offset will be evaluated at compile time. This means
that accessing MyData[5] is as efficient as accessing a normal variable.

Finally, callingChr , Hi , Lo , Ord , Pred , or Succ functions with constant parameters generates no
run-time library calls, instead, the values are evaluated at compile time.

Constant merging
Using the same constant string two or more times generates only one copy of the string constant.

Short cut evaluation
Evaluation of boolean expression stops as soon as the result is known, which makes code execute
faster then if all boolean operands were evaluated.

Constant set inlining
Using thein operator is always more efficient then using the equivalent<>, =, <=, >=, < and>
operators. This is because range comparisons can be done more easily within then with normal
comparison operators.

70

10.1. NON PROCESSOR SPECIFIC

Small sets
Sets which contain less then 33 elements can be directly encoded using a 32-bit value, therefore no
run-time library calls to evaluate operands on these sets are required; they are directly encoded by
the code generator.

Range checking
Assignments of constants to variables are range checked at compile time, which removes the need of
the generation of runtime range checking code.

Remark: This feature was not implemented before version 0.99.5 of Free Pascal.

Shifts instead of multiply or divide
When one of the operands in a multiplication is a power of two, they are encoded using arithmetic
shift instructions, which generates more efficient code.

Similarly, if the divisor in adiv operation is a power of two, it is encoded using arithmetic shift
instructions.

The same is true when accessing array indexes which are powers of two, the address is calculated
using arithmetic shifts instead of the multiply instruction.

Automatic alignment
By default all variables larger then a byte are guaranteed to be aligned at least on a word boundary.

Furthermore all pointers allocated using the standard runtime library (New and GetMem among
others) are guaranteed to return pointers aligned on a quadword boundary (64-bit alignment).

Alignment of variables on the stack depends on the target processor.

Remark: Two facts about alignment:

1. Quadword alignment of pointers is not guaranteed on systems which don’t use an internal
heap, such as for the Win32 target.

2. Alignment is also donebetweenfields in records, objects and classes, this isnot the same as
in Turbo Pascal and may cause problems when using disk I/O with these types. To get no
alignment between fields use thepacked directive or the{$PackRecords n} switch. For
further information, take a look at the reference manual under therecord heading.

Smart linking
This feature removes all unreferenced code in the final executable file, making the executable file
much smaller.

Smart linking is switched on with the-Cx command-line switch, or using the{$SMARTLINK ON}
global directive.

Remark: Smart linking was implemented starting with version 0.99.6 of Free Pascal.

Inline routines
The following runtime library routines are coded directly into the final executable :Lo , Hi , High ,
Sizeof , TypeOf , Length , Pred , Succ , Inc , Dec andAssigned .

71

10.1. NON PROCESSOR SPECIFIC

Remark: Inline Inc andDec were not completely implemented until version 0.99.6 of Free Pascal.

Case optimization
When using the-O1 (or higher) switch, case statements will be generated using a jump table if
appropriate, to make them execute faster.

Stack frame omission
Under specific conditions, the stack frame (entry and exit code for the routine, see section 3.3) will
be omitted, and the variable will directly be accessed via the stack pointer.

Conditions for omission of the stack frame :

• The function has no parameters nor local variables.

• Routine does not call other routines.

• Routine does not contain assembler statements. However, aassembler routine may omit
it’s stack frame.

• Routine is not declared using theInterrupt directive.

• Routine is not a constructor or destructor.

Register variables
When using the-Or switch, local variables or parameters which are used very often will be moved
to registers for faster access.

Remark: Register variable allocation is currently an experimental feature, and should be used with caution.

Intel x86 specific
Here follows a listing of the optimizing techniques used in the compiler:

1. When optimizing for a specific Processor (-Op1, -Op2, -Op3 , the following is done:

• In case statements, a check is done whether a jump table or a sequence of conditional
jumps should be used for optimal performance.

• Determines a number of strategies when doing peephole optimization, e.g.:movzbl
(%ebp), %eax will be changed intoxorl %eax,%eax; movb (%ebp),%al
for Pentium and PentiumMMX.

2. When optimizing for speed (-OG, the default) or size (-Og), a choice is made between using
shorter instructions (for size) such asenter $4 , or longer instructionssubl $4,%esp
for speed. When smaller size is requested, things aren’t aligned on 4-byte boundaries. When
speed is requested, things are aligned on 4-byte boundaries as much as possible.

3. Fast optimizations (-O1): activate the peephole optimizer

4. Slower optimizations (-O2): also activate the common subexpression elimination (formerly
called the "reloading optimizer")

72

10.1. NON PROCESSOR SPECIFIC

5. Uncertain optimizations (-Ou): With this switch, the common subexpression elimination al-
gorithm can be forced into making uncertain optimizations.

Although you can enable uncertain optimizations in most cases, for people who do not under-
stand the following technical explanation, it might be the safest to leave them off.

If uncertain optimizations are enabled, the CSE algortihm assumes that

• If something is written to a local/global register or a procedure/function pa-
rameter, this value doesn’t overwrite the value to which a pointer points.

• If something is written to memory pointed to by a pointer variable, this value
doesn’t overwrite the value of a local/global variable or a procedure/function
parameter.

The practical upshot of this is that you cannot use the uncertain optimizations if you both write
and read local or global variables directly and through pointers (this includesVar parameters,
as those are pointers too).

The following example will produce bad code when you switch on uncertain optimizations:

Var temp: Longint;

Procedure Foo(Var Bar: Longint);
Begin

If (Bar = temp)
Then

Begin
Inc(Bar);
If (Bar <> temp) then Writeln(’bug!’)

End
End;

Begin
Foo(Temp);

End.

The reason it produces bad code is because you access the global variableTempboth through
its nameTempand through a pointer, in this case using theBar variable parameter, which is
nothing but a pointer toTemp in the above code.

On the other hand, you can use the uncertain optimizations if you access global/local variables
or parameters through pointers, andonlyaccess them through this pointer1.

For example:

Type TMyRec = Record
a, b: Longint;

End;
PMyRec = ^TMyRec;

TMyRecArray = Array [1..100000] of TMyRec;
PMyRecArray = ^TMyRecArray;

Var MyRecArrayPtr: PMyRecArray;
MyRecPtr: PMyRec;

1 You can use multiple pointers to point to the same variable as well, that doesn’t matter.

73

10.2. OPTIMIZATION SWITCHES

Counter: Longint;

Begin
New(MyRecArrayPtr);
For Counter := 1 to 100000 Do

Begin
MyRecPtr := @MyRecArrayPtr^[Counter];
MyRecPtr^.a := Counter;
MyRecPtr^.b := Counter div 2;

End;
End.

Will produce correct code, because the global variableMyRecArrayPtr is not accessed
directly, but only through a pointer (MyRecPtr in this case).

In conclusion, one could say that you can use uncertain optimizationsonly when you know
what you’re doing.

Motorola 680x0 specific
Using the-O2 switch does several optimizations in the code produced, the most notable being:

• Sign extension from byte to long will useEXTB

• Returning of functions will useRTD

• Range checking will generate no run-time calls

• Multiplication will use the longMULSinstruction, no runtime library call will be generated

• Division will use the longDIVS instruction, no runtime library call will be generated

10.2 Optimization switches

This is where the various optimizing switches and their actions are described, grouped per switch.

-On: with n = 1..3: these switches activate the optimizer. A higher level automatically includes all
lower levels.

• Level 1 (-O1) activates the peephole optimizer (common instruction sequences are re-
placed by faster equivalents).

• Level 2 (-O2) enables the assembler data flow analyzer, which allows the common subex-
pression elimination procedure to remove unnecessary reloads of registers with values
they already contain.

• Level 3 (-O3) enables uncertain optimizations. For more info, see -Ou.

-OG: This causes the code generator (and optimizer, IF activated), to favor faster, but code-wise
larger, instruction sequences (such as "subl $4,%esp ") instead of slower, smaller instruc-
tions ("enter $4 "). This is the default setting.

-Og: This one is exactly the reverse of -OG, and as such these switches are mutually exclusive:
enabling one will disable the other.

-Or: This setting (once it’s fixed) causes the code generator to check which variables are used most,
so it can keep those in a register.

74

10.3. TIPS TO GET FASTER CODE

-Opn: with n = 1..3: Setting the target processor does NOT activate the optimizer. It merely influ-
ences the code generator and, if activated, the optimizer:

• During the code generation process, this setting is used to decide whether a jump table
or a sequence of successive jumps provides the best performance in a case statement.

• The peephole optimizer takes a number of decisions based on this setting, for example it
translates certain complex instructions, such as

movzbl (mem), %eax|

to a combination of simpler instructions

xorl %eax, %eax
movb (mem), %al

for the Pentium.

-Ou: This enables uncertain optimizations. You cannot use these always, however. The previous
section explains when they can be used, and when they cannot be used.

10.3 Tips to get faster code

Here, some general tips for getting better code are presented. They mainly concern coding style.

• Find a better algorithm. No matter how much you and the compiler tweak the code, a quicksort
will (almost) always outperform a bubble sort, for example.

• Use variables of the native size of the processor you’re writing for. For the 80x86 and compat-
ibles, this is 32 bit, so you’re best of using longint and cardinal variables.

• Turn on the optimizer.

• Write your if/then/else statements so that the code in the "then"-part gets executed most of the
time (improves the rate of successful jump prediction).

• If you are allocating and disposing a lot of small memory blocks, check out the heapblocks
variable (heapblocks are on by default from release 0.99.8 and later)

• Profile your code (see the -pg switch) to find out where the bottlenecks are. If you want,
you can rewrite those parts in assembler. You can take the code generated by the compiler
as a starting point. When given the-a command-line switch, the compiler will not erase the
assembler file at the end of the assembly process, so you can study the assembler file.

Note:Code blocks which contain an assembler block, are not processed at all by the optimizer
at this time. Update: as of version 0.99.11, the Pascal code surrounding the assembler blocks
is optimized.

10.4 Floating point

This is where can be found processor specific information on floating point code generated by the
compiler.

Intel x86 specific
All normal floating point types map to their real type, includingcomp andextended .

75

10.4. FLOATING POINT

Motorola 680x0 specific
Early generations of the Motorola 680x0 processors did not have integrated floating point units, so
to circumvent this fact, all floating point operations are emulated (with the$E+ switch, which is the
default) using the IEEESingle floating point type. In other words when emulation is on, Real,
Single, Double and Extended all map to thesingle floating point type.

When the$E switch is turned off, normal 68882/68881/68040 floating point opcodes are emitted.
The Real type still maps toSingle but the other types map to their true floating point types. Only
basic FPU opcodes are used, which means that it can work on 68040 processors correctly.

Remark: Double andExtended types in true floating point mode have not been extensively tested as of
version 0.99.5.

Remark: Thecomp data type is currently not supported.

76

Appendix A

Anatomy of a unit file

A.1 Basics

The best and most updated documentation about the ppu files can be found inppu.pas andppudump.pp
which can be found inrtl/utils/.

To read or write the ppufile, you can use the ppu unitppu.pas which has an object called tppufile
which holds all routines that deal with ppufile handling. While describing the layout of a ppufile, the
methods which can be used for it are presented as well.

A unit file consists of basically five or six parts:

1. A unit header.

2. A file interface part.

3. A definition part. Contains all type and procedure definitions.

4. A symbol part. Contains all symbol names and references to their definitions.

5. A browser part. Contains all references from this unit to other units and inside this unit. Only
available when theuf_has_browser flag is set in the unit flags

6. A file implementation part (currently unused).

A.2 reading ppufiles

We will first create an object ppufile which will be used below. We are opening unittest.ppu as an
example.

var
ppufile : pppufile;

begin
{ Initialize object }

ppufile:=new(pppufile,init(’test.ppu’);
{ open the unit and read the header, returns false when it fails }

if not ppufile.open then
error(’error opening unit test.ppu’);

{ here we can read the unit }

77

A.3. THE HEADER

{ close unit }
ppufile.close;

{ release object }
dispose(ppufile,done);

end;

Note: When a function fails (for example not enough bytes left in an entry) it sets theppu-
file.error variable.

A.3 The Header

The header consists of a record containing 24 bytes:

tppuheader=packed record
id : array[1..3] of char; { = ’PPU’ }
ver : array[1..3] of char;
compiler : word;
cpu : word;
target : word;
flags : longint;
size : longint; { size of the ppufile without header }
checksum : longint; { checksum for this ppufile }

end;

The header is already read by theppufile.open command. You can access all fields usingppu-
file.header which holds the current header record.

field description
id this is allways ’PPU’, can be checked with

function ppufile.CheckPPUId:boolean;
ver ppu version, currently ’015’, can be checked with

function ppufile.GetPPUVersion:longint; (returns
15)

compiler compiler version used to create the unit. Doesn’t contain the patchlevel.
Currently 0.99 where 0 is the high byte and 99 the low byte

cpu cpu for which this unit is created. 0 = i386 1 = m68k
target target for which this unit is created, this depends also on the cpu!

For i386: 0 Go32v1
1 Go32V2
2 Linux-i386
3 OS/2
4 Win32

For m68k: 0 Amiga
1 Mac68k
2 Atari
3 Linux-m68k

flag the unit flags, contains a combination of the uf_ constants which are
definied inppu.pas

size size of this unit without this header
checksum checksum of the interface parts of this unit, which determine if a unit is

changed or not, so other units can see if they need to be recompiled

78

A.4. THE SECTIONS

A.4 The sections

After this header follow the sections. All sections work the same! A section consists of entries
and ends also with an entry, but containing the specificibend constant (seeppu.pas for a list of
constants).

Each entry starts with an entryheader.

tppuentry=packed record
id : byte;
nr : byte;
size : longint;

end;

field Description
id this is 1 or 2 and can be checked to see whether the entry is correctly

found. 1 means its a main entry, which says that it is part of the basic
layout as explained before. 2 means that it it a sub entry of a record or
object.

nr contains the ib constant number which determines what kind of entry it
is.

size size of this entry without the header, can be used to skip entries very
easily.

To read an entry you can simply callppufile.readentry:byte , it returns thetppuen-
try.nr field, which holds the type of the entry. A common way how this works is (example is
for the symbols):

repeat
b:=ppufile.readentry;
case b of

ib<etc> : begin
end;

ibendsyms : break;
end;

until false;

Then you can parse each entry type yourself.ppufile.readentry will take care of skipping
unread bytes in the entry and reads the next entry correctly! A special function isskipuntilen-
try(untilb:byte):boolean; which will read the ppufile until it finds entryuntilb in the
main entries.

Parsing an entry can be done withppufile.getxxx functions. The available functions are:

procedure ppufile.getdata(var b;len:longint);
function getbyte:byte;
function getword:word;
function getlongint:longint;
function getreal:ppureal;
function getstring:string;

To check if you’re at the end of an entry you can use the following function:

function EndOfEntry:boolean;

notes:

79

A.5. CREATING PPUFILES

1. ppureal is the best real that exists for the cpu where the unit is created for. Currently it is
extended for i386 andsingle for m68k.

2. theibobjectdef andibrecorddef have stored a definition and symbol section for them-
selves. So you’ll need a recursive call. Seeppudump.pp for a correct implementation.

A complete list of entries and what their fields contain can be found inppudump.pp.

A.5 Creating ppufiles

Creating a new ppufile works almost the same as reading one. First you need to init the object and
call create:

ppufile:=new(pppufile,init(’output.ppu’));
ppufile.create;

After that you can simply write all needed entries. You’ll have to take care that you write at least the
basic entries for the sections:

ibendinterface
ibenddefs
ibendsyms
ibendbrowser (only when you’ve set uf_has_browser!)
ibendimplementation
ibend

Writing an entry is a little different than reading it. You need to first put everything in the entry with
ppufile.putxxx:

procedure putdata(var b;len:longint);
procedure putbyte(b:byte);
procedure putword(w:word);
procedure putlongint(l:longint);
procedure putreal(d:ppureal);
procedure putstring(s:string);

After putting all the things in the entry you need to callppufile.writeentry(ibnr:byte)
whereibnr is the entry number you’re writing.

At the end of the file you need to callppufile.writeheader to write the new header to the
file. This takes automatically care of the new size of the ppufile. When that is also done you can call
ppufile.close and dispose the object.

Extra functions/variables available for writing are:

ppufile.NewHeader;
ppufile.NewEntry;

This will give you a clean header or entry. Normally this is called automatically inppufile.writeentry ,
so there should be no need to call these methods.

ppufile.flush;

to flush the current buffers to the disk

80

A.5. CREATING PPUFILES

ppufile.do_crc:boolean;

set to false if you don’t want that the crc is updated, this is necessary if you write for example the
browser data.

81

Appendix B

Compiler and RTL source tree
structure

B.1 The compiler source tree

All compiler source files are in one directory, normally insource/compiler. For more informations
about the structure of the compiler have a look at the Compiler Manual which contains also some
informations about compiler internals.

Thecompiler directory contains a subdirectoryutils , which contains mainly the utilities for cre-
ation and maintainance of the message files.

B.2 The RTL source tree

The RTL source tree is divided in many subdirectories, but is very structured and easy to understand.
It mainly consists of three parts:

1. A OS-dependent directory. This contains the files that are different for each operating system.
When compiling the RTL, you should do it here. The following directories exist:

• atari for the atari. Not maintained any more.

• amiga for the amiga. Not maintained any more.

• go32v1 For DOS, using the GO32v1 extender. Not maintained any more.

• go32v2 For DOS, using the GO32v2 extender.

• linux for LINUX platforms. It has two subdirect

• os2 for OS/2.

• win32 for Win32 platforms.

2. A processor dependent directory. This contains files that are system independent, but proces-
sor dependent. It contains mostly optimized routines for a specific processor. The following
directories exist:

• i386 for the Intel series of processors.

• m68k for the motorola m68000 series of processors.

3. An OS-independent and Processor independent directory:inc. This contains complete units,
and include files containing interface parts of units.

82

Appendix C

Compiler limits

Although many of the restrictions imposed by the MS-DOS system are removed by use of an exten-
der, or use of another operating system, there still are some limitations to the compiler:

1. Procedure or Function definitions can be nested to a level of 32.

2. Maximally 255 units can be used in a program when using the real-mode compiler (i.e. a
binary that was compiled by Borland Pascal). When using the 32-bit compiler, the limit is set
to 1024. You can change this by redefining themaxunits constant in thefiles.pas compiler
source file.

83

Appendix D

Compiler modes

Here we list the exact effect of the different compiler modes. They can be set with the$Mode switch,
or by command line switches.

D.1 FPC mode

This mode is selected by the$MODE FPCswitch. On the command-line, this means that you use
none of the other compatibility mode switches. It is the default mode of the compiler. This means
essentially:

1. You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

3. Overloading of functions is allowed.

4. Nested comments are allowed.

5. The Objpas unit is NOT loaded.

6. You can use the cvar type.

7. PChars are converted to strings automatically.

D.2 TP mode

This mode is selected by the$MODE TPswitch. On the command-line, this mode is selected by the
-So switch.

1. You cannot use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

3. Overloading of functions is not allowed.

84

D.3. DELPHI MODE

4. The Objpas unit is NOT loaded.

5. Nested comments are not allowed.

6. You can not use the cvar type.

D.3 Delphi mode

This mode is selected by the$MODE DELPHIswitch. On the command-line, this mode is selected
by the-Sd switch.

1. You can not use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you not omit the parameters when implementing the function or
procedure.

3. Overloading of functions is not allowed.

4. Nested comments are not allowed.

5. The Objpas unit is loaded right after the system unit. One of the consequences of this is that
the typeInteger is redefined asLongint .

D.4 GPC mode

This mode is selected by the$MODE GPCswitch. On the command-line, this mode is selected by
the-Sp switch.

1. You must use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

3. Overloading of functions is not allowed.

4. The Objpas unit is NOT loaded.

5. Nested comments are not allowed.

6. You can not use the cvar type.

D.5 OBJFPC mode

This mode is selected by the$MODE OBJFPCswitch. On the command-line, this mode is selected
by the-S2 switch.

1. You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

85

D.5. OBJFPC MODE

3. Overloading of functions is allowed.

4. Nested comments are allowed.

5. The Objpas unit is loaded right after the system unit. One of the consequences of this is that
the typeInteger is redefined asLongint .

6. You can use the cvar type.

7. PChars are converted to strings automatically.

86

Appendix E

Using fpcmake

E.1 Introduction

Free Pascal comes with a special makefile tool,fpcmake, which can be used to construct aMakefile
for use withGNU make. All sources from the Free Pascal team are compiled with this system.

fpcmake uses a fileMakefile.fpc and constructs a fileMakefile from it, based on the settings in
Makefile.fpc.

The following sections explain what settings can be set inMakefile.fpc, what variables are set by
fpcmake , what variables it expects to be set, and what targets it defines. After that, some settings
in the resultingMakefile are explained.

E.2 Usage

fpcmake reads aMakefile.fpc and converts it to aMakefile suitable for reading byGNU make
to compile your projects. It is similar in functionality to GNUconfigure or Imake for making X
projects.

fpcmake accepts filenames of makefile description files as it’s command-line arguments. For each
of these files it will create aMakefile in the same directory where the file is located, overwriting any
existing file with that name.

If no options are given, it just attempts to read the fileMakefile.fpc in the current directory and tries
to construct aMakefile from it. any previously existingMakefile will be erased.

E.3 Format of the configuration file

This section describes the rules that can be present in the file that is fed tofpcmake.

The file Makefile.fpc is a plain ASCII file that contains a number of pre-defined sections as in a
WINDOWS .ini-file, or a Samba configuration file.

They look more or less as follows:

[targets]
units=mysql_com mysql_version mysql
examples=testdb

87

E.3. FORMAT OF THE CONFIGURATION FILE

[dirs]
fpcdir=../..

[rules]
mysql$(PPUEXT): mysql$(PASEXT) mysql_com$(PPUEXT)
testdb$(EXEEXT): testdb$(PASEXT) mysql$(PPUEXT)

The following sections are recognized (in alphabetical order):

Clean
Specifies rules for cleaning the directory of units and programs. The following entries are recognized:

units names of all units that should be removed when cleaning. Don’t specify extensions, the make-
file will append these by itself.

files names of files that should be removed. Specify full filenames.

Defaults
Thedefaults section contains some default settings. The following keywords are recognized:

defaultdir

defaultbuilddir

defaultinstalldir

defaultzipinstalldir

defaultcleandir

defaultrule Specifies the default rule to execute.fpcmake will make sure that this rule is executed
if make is executed without arguments, i.e., without an explicit target.

defaulttarget Specifies the default operating system target for which theMakefile should compile
the units and programs. By default this is determined from the default compiler target.

defaultcpu Specifies the default target processor for which theMakefile should compile the units
and programs. By default this is determined from the default compiler processor.

Dirs
In this section you can specify the location of several directories which theMakefile could need for
compiling other packages or for finding the units.

The following keywords are recognised:

fpcdir Specifies the directory where all the Free Pascal source trees reside. Below this directory the
Makefile expects to find thertl, fcl andpackages directory trees.

packagedir Specifies the directory where all the package source directories are. By default this
equals$(FPCDIR)/packages .

toolkitdir Specifies the directory where toolkit source directories are.

componentdir Specifies the directory where component source directories are.

88

E.3. FORMAT OF THE CONFIGURATION FILE

unitdir A colon-separated list of directories that must be added to the unit search path of the com-
piler.

libdir A colon-separated list of directories that must be added to the library search path of the com-
piler.

objdir A colon-separated list of directories that must be added to the object file search path of the
compiler.

targetdir Specifies the directory where the compiled programs should go.

sourcesdir A space separated list of directories where sources can reside. This will be used for the
vpath setting ofGNU make.

unittargetdir Specifies the directory where the compiled units should go.

incdir A colon-separated list of directories that must be added to the include file search path of the
compiler.

Info
This section can be used to customize the information generating targets thatfpcmake generates. It
is simply a series of boolean values that specify whether a certain part of theinfo target will be
generated. The following keywords are recognised:

infoconfig Specifies whether configuration info should be shown. By default this isTrue .

infodirs Specifies whether a list of subdirectories to be treated will be shown. By degault this is
False .

infotools Specifies whether a list of tools that are used by the makefile will be shown. By default
this isFalse .

infoinstall Specifies whether the installation rules will be shown. By default this isTrue .

infoobjects Specifies whether theMakefile objects will be shown, i.e. a list of all units and programs
that will be built bymake.

Install
Contains instructions for installation of your units and programs. The following keywords are recog-
nized:

dirprefix is the directory below wchich all installs are done. This corresponds to the-prefix
argument toGNU configure. It is used for the installation of programs and units. By default,
this is /usr on LINUX , and/pp on all other platforms.

dirbase The directory that is used as the base directory for the installation of units. Default this is
dirprefix appended with/lib/fpc/FPC_VERSION for LINUX or simply thedirpre-
fix on other platforms.

Units will be installed in the subdirectoryunits/$(OS_TARGET) of thedirbase entry.

89

E.3. FORMAT OF THE CONFIGURATION FILE

Libs
This section specifies what units should be merged into a library, and what external libraries are
needed. It can contain the following keywords:

libname the name of the library that should be created.

libunits a comma-separated list of units that should be moved into one library.

needgcclib a boolean value that specifies whether thegcc library is needed. This will make sure
that the path to the GCC library is inserted in the library search path.

needotherlib (LINUX only) a boolean value that tells the makefile that it should add all library
directories from theld.so.conf file to the compiler command-line.

Packages
Which packages must be used. This section can contain the following keywords:

packagesA comma-separated list of packages that are needed to compile the targets. Valid for all
platforms. In order to differentiate between platforms, you can prepend the keywordpack-
ages with the OS you are compiling for, e.g.linuxpackages if you want the makefile to
use the listed packages on linux only.

fcl This is a boolean value (0 or 1) that indicates whether the FCL is used.

rtl This is a boolean value (0 or 1) that indicates whether the RTL should be recompiled.

Postsettings
Anything that is in this section will be inserted as-is in the makefileafter the makefile rules that are
generated by fpcmake, butbeforethe general configuration rules. In this section, you cannot use
variables that are defined by fpcmake rules, but you can define additional rules and configuration
variables.

Presettings
Anything that is in this section will be inserted as-is in the makefilebeforethe makefile target rules
that are generated by fpcmake. This means that you cannot use any variables that are normally
defined by fpcmake rules.

Rules
In this section you can insert dependency rules and any other targets you wish to have. Do not insert
’default rules’ here.

Sections
Here you can specify which ’rule sections’ should be included in theMakefile. The sections consist
of a series of boolean keywords; each keyword decies whether a particular section will be written to
the makefile. By default, all sections are written.

You can have the following boolean keywords in this section.

90

E.3. FORMAT OF THE CONFIGURATION FILE

none If this is set to true, then no sections are written.

units If set toFalse , fpcmake omits the rules for compiling units.

exes If set toFalse , fpcmake omits the rules for compiling executables.

loaders If set toFalse , fpcmake omits the rules for assembling assembler files.

examples If set toFalse , fpcmake omits the rules for compiling examples.

package If set toFalse , fpcmake omits the rules for making packages.

compile If set toFalse , fpcmake omits the generic rules for compiling pascal files.

depend If set toFalse , fpcmake omits the dependency rules.

install If set toFalse , fpcmake omits the rules for installing everything.

sourceinstall If set toFalse , fpcmake omits the rules for installing the sources.

zipinstall If set toFalse , fpcmake omits the rules for installing archives.

clean If set toFalse , fpcmake omits the rules for cleaning the directories.

libs If set toFalse , fpcmake omits the rules for making libraries.

command If set toFalse , fpcmake omits the rules for composing the command-line based on the
various variables.

exts If set toFalse , fpcmake omits the rules for making libraries.

dirs If set toFalse , fpcmake omits the rules for running make in subdirectories..

tools If set toFalse , fpcmake omits the rules for running some tools as the erchiver, UPX and zip.

info If set toFalse , fpcmake omits the rules for generating information.

Targets
In this section you can define the various targets. The following keywords can be used there:

dirs A space separated list of directories where make should also be run.

examples A space separated list of example programs that need to be compiled when the user asks
to compile the examples. Do not specify an extension, the extension will be appended.

loaders A space separated list of names of assembler files that must be assembled. Don’t specify
the extension, the extension will be appended.

programs A space separated list of program names that need to be compiled. Do not specify an
extension, the extension will be appended.

rst a list of rst files that needs to be converted to.po files for use withGNU gettext and internation-
alization routines.

units A space separated list of unit names that need to be compiled. Do not specify an extension,
just the name of the unit as it would appear un auses clause is sufficient.

91

E.4. PROGRAMS NEEDED TO USE THE GENERATED MAKEFILE

Tools
In this section you can specify which tools are needed. Definitions to use each of the listed tools will
be inserted in the makefile, depending on the setting in this section.

Each keyword is a boolean keyword; you can switch the use of a tool on or off with it.

The following keywords are recognised:

toolppdep Useppdep, the dependency tool.True by default.

toolppumove Useppumove, the Free Pascal unit mover.True by default.

toolppufiles Use theppufile tool to determine dependencies of unit files.True by default.

toolsed Usesed the stream line editor.False by default.

tooldata2inc Use thedata2inc tool to create include files from data files.False by default.

tooldiff Use theGNU diff tool. False by default.

toolcmp Use thecmp file comparer tool.False by default.

toolupx Use theupx executable packer.True by default.

tooldate use thedate date displaying tool.True by default.

toolzip Use thezip file archiver. This is used by the zip targets.True by default.

Zip
This section can be used to make zip files from the compiled units and programs. By default all
compiled units are zipped. The zip behaviour can be influenced with the presettings and postsettings
sections.

The following keywords can be used in this unit:

zipname this file is the name of the zip file that will be produced.

ziptarget is the name of a makefile target that will be executed before the zip is made. By default
this is theinstall target.

E.4 Programs needed to use the generated makefile

The following programs are needed by the generatedMakefile to function correctly:

cp a copy program.

date a program that prints the date.

install a program to install files.

make themake program, obviously.

pwd a program that prints the current working directory.

rm a program to delete files.

92

E.5. VARIABLES THAT AFFECT THE GENERATED MAKEFILE

These are standard programs on linux systems, with the possible exception ofmake. For DOS or
WINDOWS NT, they can be found in the filegnuutils.zip on the Free Pascal FTP site.

The following programs are optionally needed if you use some special targets. Which ones you need
are controlled by the settings in thetools section.

cmp a DOS and WINDOWS NT file comparer. Used iftoolcmp is True .

diff a file comparer. Used iftooldiff is True .

ppdep the ppdep depency lister. Used iftoolppdep is True . Distributed with Free Pascal.

ppufiles the ppufiles unit file dependency lister. Used iftoolppufiles is True . Distributed
with Free Pascal.

ppumove the Free Pascal unit mover. Used iftoolppumove is True . Distributed with Free
Pascal.

sed thesed program. Used iftoolsed is True .

upx the UPX executable packer. Used iftoolupx is True .

zip the zip archiver program. Used iftoolzip is True .

All of these can also be found on the Free Pascal FTP site forDOSand WINDOWS NT. ppdep,ppufiles
andppumove are distributed with the Free Pascal compiler.

E.5 Variables that affect the generated makefile

The makefile generated byfpcmake contains a lot of variables. Some of them are set in the makefile
itself, others can be set and are taken into account when set.

These variables can be split in several groups:

• Environment variables.

• Directory variables.

• Compiler command-line variables.

Each group will be discussed separately.

Environment variables
In principle,fpcmake doesn’t expect any environment variable to be set. Optionally, you can set the
variableFPCMAKEINI which should contain the name of a file with the basic rules thatfpcmake
will generate.

By default,fpcmake has a compiled-in copy offpcmake.ini, which contains the basic rules, so there
should be no need to set this variable. You can set it however, if you wish to change the way in which
fpcmake works and creates rules.

The initial fpcmake.ini file can be found in theutils source package on the Free Pascal ftp site.

93

E.6. VARIABLES SET BY FPCMAKE

Directory variables
The first set of variables controls the directories that are recognised in the makefile. They should not
be set in theMakefile.fpc file, but can be specified on the commandline.

INCDIR this is a list of directories, separated by spaces, that will be added as include directories to
the compiler command-line. Each directory in the list is prepended with-I and added to the
compiler options.

LIBDIR is a list of library paths, separated by spaces. Each directory in the list is prepended with
-Fl and added to the compiler options.

OBJDIR is a list of object file directories, separated by spaces, that is added to the object files path,
i.e. Each directory in the list is prepended with-Fo .

Compiler command-line variables
The following variable can be set on themake command-line, they will be recognised and integrated
in the compiler command-line:

OPT Any options that you want to pass to the compiler. The contents ofOPTis simply added to the
compiler command-line.

OPTDEF Are optional defines, added to the command-line of the compiler. They do not get-d
prepended.

E.6 Variables set byfpcmake

All of the following variables are only set byfpcmake, if they aren’t already defined. This means
that you can override them by setting them on the make commandline, or setting them in thepre-
settings section. But most of them are correctly determined by the generatedMakefile or set by
your settings in the configuration file.

The following sets of variables are defined:

• Directory variables.

• Program names.

• File extensions.

• Target files.

Each of these sets is discussed in the subsequent:

Directory variables
The following directories are defined by the makefile:

BASEDIR is set to the current directory if thepwd command is available. If not, it is set to ’.’.

BASEINSTALLDIR is the base for all directories where units are installed. By default, OnLINUX ,
this is set to$(PREFIXINSTALLDIR)/lib/fpc/$(RELEASEVER) .
On other systems, it is set to$(PREFIXINSTALLDIR) . You can also set it with thebasedir
variable in theInstall section.

94

E.6. VARIABLES SET BY FPCMAKE

BININSTALLDIR is set to$(BASEINSTALLDIR) /bin on LINUX , and
$(BASEINSTALLDIR) /bin /$(OS_TARGET) on other systems. This is the place where
binaries are installed.

GCCLIBDIR (LINUX only) is set to the directory wherelibgcc.a is. If needgcclib is set to
True in the Libs section, then this directory is added to the compiler commandline with
-Fl .

LIBINSTALLDIR is set to$(BASEINSTALLDIR) on LINUX ,
and$(BASEINSTALLDIR) /lib on other systems.

NEEDINCDIR is a space-separated list of library paths. Each directory in the list is prepended with
-Fl and added to the compiler options. Set by theincdir keyword in theDirs section.

NEEDLIBDIR is a space-separated list of library paths. Each directory in the list is prepended with
-Fl and added to the compiler options. Set by thelibdir keyword in theDirs section.

NEEDOBJDIR is a list of object file directories, separated by spaces. Each directory in the list is
prepended with-Fo and added to the compiler options. Set by theobjdir keyword in the
Dirs section.

NEEDUNITDIR is a list of unit directories, separated by spaces. Each directory in the list is
prepended with-Fu and is added to the compiler options. Set by theunitdir keyword
in theDirs section.

TARGETDIR This directory is added as the output directory of the compiler, where all units and
executables are written, i.e. it gets-FE prepended. It is set by thetargtdir keyword in the
Dirs section.

TARGETUNITDIR If set, this directory is added as the output directory of the compiler, where
all units and executables are written, i.e. it gets-FU prepended.It is set by thetargtdir
keyword in theDirs section.

PREFIXINSTALLDIR is set to/usr onLINUX , /pp onDOSor WINDOWS NT. Set by thedirpre-
fix keyword in theInstall section.

UNITINSTALLDIR is where units will be installed. This is set to
$(BASEINSTALLDIR) /$(UNITPREFIX)
on LINUX . On other systems, it is set to
$(BASEINSTALLDIR) /$(UNITPREFIX) /$(OS_TARGET).

Target variables
The second set of variables controls the targets that are constructed by the makefile. They are created
by fpcmake, so you can use them in your rules, but you shouldn’t assign values to them yourself.

EXEOBJECTS This is a list of executable names that will be compiled. the makefile appends
$(EXEEXT) to these names. It is set by theprograms keyword in theTargets section.

LOADEROBJECTS is a list of space-separated names that identify loaders to be compiled. This
is mainly used in the compiler’s RTL sources. It is set by theloaders keyword in the
Targets section.

UNITOBJECTS This is a list of unit names that will be compiled. The makefile appends$(PPUEXT)
to each of these names to form the unit file name. The sourcename is formed by adding$(PA-
SEXT). It is set by theunits keyword in theTargets section.

95

E.6. VARIABLES SET BY FPCMAKE

ZIPNAME is the name of the archive that will be created by the makefile. It is set by thezipname
keyword in theZip section.

ZIPTARGET is the target that is built before the archive is made. this target is built first. If suc-
cessful, the zip archive will be made. It is set by theziptarget keyword in theZip section.

Compiler command-line variables
The following variables control the compiler command-line:

CPU_SOURCE the target CPU type is added as a define to the compiler command line. This is
determined by the Makefile itself.

CPU_TARGET the target CPU type is added as a define to the compiler command line. This is
determined by the Makefile itself.

LIBNAME if a shared library is requested this is the name of the shared library to produce. Don’t
add lib to this, the compiler will do that. It is set by thelibname keyword in theLibs
section.

NEEDGCCLIB if this variable is defined, then the path tolibgcc is added to the library path. It is
set by theneedgcclib keyword in theLibs section.

NEEDOTHERLIB (LINUX only) If this is defined, then the makefile will append all directories that
appear in/etc/ld.so.conf to the library path. It is set by theneedotherlib keyword
in theLibs section.

OS_TARGET What platform you want to compile for. Added to the compiler command-line with
a -T prepended.

Program names
The following variables are program names, used in makefile targets.

AS The assembler. Default set toas.

COPY a file copy program. Default set tocp -fp.

CMP a program to compare files. Default set tocmp.

DEL a file removal program. Default set torm -f.

DELTREE a directory removal program. Default set torm -rf.

DATE a program to display the date.

DIFF a program to produce diff files.

ECHO an echo program.

FPC the Free Pascal compiler executable. Default set toppc386.exe

INSTALL a program to install files. Default set toinstall -m 644 on linux.

INSTALLEXE a program to install executable files. Default set toinstall -m 755 on linux.

LD The linker. Default set told.

LDCONFIG (LINUX only) the program used to update the loader cache.

96

E.6. VARIABLES SET BY FPCMAKE

MKDIR a program to create directories if they don’t exist yet. Default set toinstall -m 755 -d

MOVE a file move program. Default set tomv -f

PP the Free Pascal compiler executable. Default set toppc386.exe

PPAS the name of the shell script created by the compiler if the-s option is specified. This com-
mand will be executed after compilation, if the-s option was detected among the options.

PPUMOVE the program to move units into one big unit library.

SED a stream-line editor program. Default set tosed.

UPX an executable packer to compress your executables into self-extracting compressed executa-
bles.

ZIPPROG a zip program to compress files. zip targets are made with this program

File extensions
The following variables denote extensions of files. These variables include the. (dot) of the exten-
sion. They are appended to object names.

ASMEXT is the extension of assembler files produced by the compiler.

LOADEREXT is the extension of the assembler files that make up the executable startup code.

OEXT is the extension of the object files that the compiler creates.

PACKAGESUFFIX is a suffix that is appended to package names in zip targets. This serves so
packages can be made for different OSes.

PASEXT is the extension of pascal files used in the compile rules. It is determined by looking at the
first EXEOBJECTSsource file or the firstUNITOBJECTSfiles.

PPLEXT is the extension of shared library unit files.

PPUEXT is the extension of default units.

SHAREDLIBEXT is the extension of shared libraries.

SMARTEXT is the extension of smartlinked unit assembler files.

STATICLIBEXT is the extension of static libraries.

Target files
The following variables are defined to make targets and rules easier:

COMPILER is the complete compiler commandline, with all options added, after allMakefile
variables have been examined.

DATESTR contains the date.

EXEFILES is a list of executables that will be created by the makefile.

EXEOFILES is a list of executable object files that will be created by the makefile.

LOADEROFILES is a list of object files that will be made from the loader assembler files. This is
mainly for use in the compiler’s RTL sources.

97

E.7. RULES AND TARGETS CREATED BY FPCMAKE

UNITPPUFILES a list of unit files that will be made. This is just the list of unit objects, with the
correct unit extension appended.

UNITOFILES a list of unit object files that will be made. This is just the list of unit objects, with
the correct object file extension appended.

E.7 Rules and targets created byfpcmake

Themakefile.fpc defines a series of targets, which can be called by your own targets. They have
names that resemble default names (such as ’all’, ’clean’), only they havefpc_ prepended.

Pattern rules
The makefile makes the following pattern rules:

units how to make a pascal unit form a pascal source file.

executableshow to make an executable from a pascal source file.

object file how to make an object file from an assembler file.

Build rules
The following build targets are defined:

fpc_all target that builds all units and executables as well as loaders. IfDEFAULTUNITSis defined,
executables are excluded from the targets.

fpc_exes target to make all executables inEXEOBJECTS.

fpc_loaders target to make all files inLOADEROBJECTS.

fpc_shared target that makes all units as dynamic libraries.

fpc_smart target that makes all units as smartlinked units.

fpc_units target to make all units inUNITOBJECTS.

Cleaning rules
The following cleaning targets are defined:

fpc_clean cleans all files that result whenfpc_all was made.

fpc_cleanall is the same as both previous target commands, but also deletes all object, unit and
assembler files that are present.

archiving rules
The following archiving targets are defined:

fpc_zipinstall will create an archive file (it’s name is taken from$(ZIPNAME)) from the compiled
units.

98

E.7. RULES AND TARGETS CREATED BY FPCMAKE

fpc_zipsourceinstall will create an archive file (it’s name is taken from$(ZIPNAME)), from the
sources.

The zip is made uzing theZIPEXE program. UnderLINUX , a .tar.gz file is created.

Informative rules
The following targets produce information about the makefile:

fpc_cfginfo gives general configuration information: the location of the makefile, the compiler ver-
sion, target OS, CPU.

fpc_dirinfo gives the directories, used by the compiler.

fpc_info executes all other info targets.

fpc_installinfo gives all directories where files will be installed.

fpc_objectinfo lists all objects that will be made.

fpc_toolsinfo lists all defined tools.

99

Appendix F

Compiling the compiler yourself

F.1 Introduction

The Free Pascal team releases at intervals a completely prepared package, with compiler and units
all ready to use, the so-called releases. After a release, work on the compiler continues, bugs are
fixed and features are added. The Free Pascal team doesn’t make a new release whenever they
change something in the compiler, instead the sources are available for anyone to use and compile.
Compiled versions of RTL and compiler are also made daily, and put on the web.

There are, nevertheless, circumstances when you’ll want to compile the compiler yourself. For in-
stance if you made changes to compiler code, or when you download the compiler via CVS.

There are essentially 2 ways of recompiling the compiler: by hand, or using the makefiles. Each of
these methods will be discussed.

F.2 Before you begin

To compile the compiler easily, it is best to keep the following directory structure (a base directory
of /pp/src is supposed, but that may be different):

/pp/src/Makefile
/makefile.fpc
/rtl/linux

/inc
/i386
/...

/compiler

If you want to use the makefiles, youmustuse the above directory tree.

The compiler and rtl source are zipped in such a way that if you unzip both files in the same directory
(/pp/src in the above) the above directory tree results.

Themakefile.fpc andMakefile come from thebase.zip file on the ftp site. If you compile manually,
you don’t need them.

There are 2 ways to start compiling the compiler and RTL. Both ways must be used, depending on
the situation. Usually, the RTL must be compiled first, before compiling the compiler, after which
the compiler is compiled using the current compiler. In some special cases the compiler must be
compiled first, with a previously compiled RTL.

100

F.3. COMPILING USING MAKE

How to decide which should be compiled first? In general, the answer is that you should compile the
RTL first. There are 2 exceptions to this rule:

1. The first case is when some of the internal routines in the RTL have changed, or if new in-
ternal routines appeared. Since the OLD compiler doesn’t know about these changed internal
routines, it will emit function calls that are based on the old compiled RTL, and hence are not
correct. Either the result will not link, or the binary will give errors.

2. The second case is when something is added to the RTL that the compiler needs to know about
(a new default assembler mechanism, for example).

How to know if one of these things has occurred ? There is no way to know, except by mailing the
Free Pascal team. If you cannot recompile the compiler when you first compile the RTL, then try the
other way.

F.3 Compiling usingmake

When compiling withmake it is necessary to have the above directory structure. Compiling the
compiler is achieved with the targetcycle .

Under normal circumstances, recompiling the compiler is limited to the following instructions (as-
suming you start in directory/pp/src):

cd compiler
make cycle

This will work only if the makefile.fpc is installed correctly and if the needed tools are present in
thePATH. Which tools must be installed can be found in appendix E.

The above instructions will do the following:

1. Using the current compiler, the RTL is compiled in the correct directory, which is determined
by the OS you are under. e.g. underLINUX , the RTL is compiled in directoryrtl/linux.

2. The compiler is compiled using the newly compiled RTL. If successful, the newly compiled
compiler executable is copied to a temporary executable.

3. Using the temporary executable from the previous step, the RTL is re-compiled.

4. Using the temporary executable and the newly compiled RTL from the last step, the compiler
is compiled again.

The last two steps are repeated 3 times, until three passes have been made or until the generated
compiler binary is equal to the binary it was compiled with. This process ensures that the compiler
binary is correct.

Compiling for another target: When you want to compile the compiler for another target, you must
specify theOS_TARGETmakefile variable. It can be set to the following values:win32 , go32v2 ,
os2 andlinux . As an example, cross-compilation for the go32v2 target from the win32 target is
chosen:

cd compiler
make cycle OS_TARGET=go32v2

This will compile the go32v2 RTL, and compile ago32v2 compiler.

101

F.4. COMPILING BY HAND

If you want to compile a new compiler, but you want the compiler to be compiled first using an
existing compiled RTL, you should specify theall target, and specify another RTL directory than
the default (which is the../rtl/$(OS_TARGET) directory). For instance, assuming that the compiled
RTL units are in/pp/rtl , you could type

cd compiler
make clean
make all UNITDIR=/pp/rtl

This will then compile the compiler using the RTL units in/pp/rtl. After this has been done, you can
do the ’make cycle’, starting with this compiler:

make cycle PP=./ppc386

This will do themake cycle from above, but will start with the compiler that was generated by
themake all instruction.

In all cases, many options can be passed tomake to influence the compile process. In general, the
makefiles add any needed compiler options to the command-line, so that the RTL and compiler can
be compiled. You can specify additional options (e.g. optimization options) by passing them inOPT.

F.4 Compiling by hand

Compiling by hand is difficult and tedious, but can be done. We’ll treat the compilation of RTL and
compiler separately.

Compiling the RTL
To recompile the RTL, so a new compiler can be built, at least the following units must be built, in
the order specified:

loaders the program stubs, that are the startup code for each pascal program. These files have the.as
extension, because they are written in assembler. They must be assembled with theGNU as
assembler. These stubs are in the OS-dependent directory, except forLINUX , where they are
in a processor dependent subdirectory of the linux directory (i386 or m68k).

system thesystem unit. This unit is named differently on different systems:

• Only on GO32v2, it’s calledsystem.

• For LINUX it’s calledsyslinux.

• For WINDOWS NT it’s calledsyswin32.

• For OS/2 it’s calledsysos2

This unit resides in the OS-dependent subdirectories of the RTL.

strings The strings unit. This unit resides in theinc subdirectory of the RTL.

dos Thedos unit. It resides in the OS-dependent subdirectory of the RTL. Possibly other units will
be compiled as a consequence of trying to compile this unit (e.g. onLINUX , thelinux unit will
be compiled, on go32, thego32 unit will be compiled).

objects the objects unit. It resides in theinc subdirectory of the RTL.

To compile these units on a i386, the following statements will do:

102

F.4. COMPILING BY HAND

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 -Us -Sg syslinux.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/strings.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 dos.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/objects.pp

These are the minimum command-line options, needed to compile the RTL.

For another processor, you should change thei386 into the appropriate processor. For another
operating system (target) you should change thesyslinux in the appropriate system unit file, and you
should change the target OS setting (-T).

Depending on the target OS there are other units that you may wish to compile, but which are not
strictly needed to recompile the compiler. The following units are available for all plaforms:

objpas Needed for Delphi mode. Needs-S2 as an option. Resides in theobjpas subdirectory.

sysutils many utility functions, like in Delphi. Resides in theobjpas directory, and needs-S2 to
compile.

typinfo functions to access RTTI information, like Delphi. Resides in theobjpas directory.

math math functions like in Delphi. Resides in theobjpas directory.

mmx extensions for MMX class Intel processors. Resides in in thei386 directory.

getopts a GNU compatible getopts unit. resides in theinc directory.

heaptrc to debug the heap. resides in theinc directory.

Compiling the compiler
Compiling the compiler can be done with one statement. It’s always best to remove all units from
the compiler directory first, so something like

rm *.ppu *.o

on LINUX , and onDOS

del *.ppu
del *.o

After this, the compiler can be compiled with the following command-line:

ppc386 -Tlinux -Fu../rtl/linux -di386 -dGDB pp.pas

So, the minimum options are:

1. The target OS. Can be skipped if you’re compiling for the same target as the compiler you’re
using.

2. A path to an RTL. Can be skipped if a correct ppc386.cfg configuration is on your system. If
you want to compile with the RTL you compiled first, this should be../rtl/OS (replace the OS
with the appropriate operating system subdirectory of the RTL).

3. A define with the processor you’re compiling for. Required.

4. -dGDB is not strictly needed, but is better to add since otherwise you won’t be able to compile
with debug information.

103

F.4. COMPILING BY HAND

Table F.1: Possible defines when compiling FPC

Define does what
USE_RHIDE Generates errors and warnings in a format recognized

by RHIDE.
TP Needed to compile the compiler with Turbo or Borland Pascal.
Delphi Needed to compile the compiler with Delphi from Borland.
GDB Support of the GNU Debugger.
I386 Generate a compiler for the Intel i386+ processor family.
M68K Generate a compiler for the M68000 processor family.
USEOVERLAY Compiles a TP version which uses overlays.
EXTDEBUG Some extra debug code is executed.
SUPPORT_MMX only i386: enables the compiler switchMMXwhich

allows the compiler to generate MMX instructions.
EXTERN_MSG Don’t compile the msgfiles in the compiler, always use

external messagefiles (default for TP).
NOAG386INT no Intel Assembler output.
NOAG386NSM no NASM output.
NOAG386BIN leaves out the binary writer.

5. -Sg is needed, some parts of the compiler usegoto statements (to be specific: the scanner).

So the absolute minimal command line is

ppc386 -di386 -Sg pp.pas

You can define some other command-line options, but the above are the minimum. A list of recog-
nised options can be found in table (F.1).

This list may be subject to change, the source filepp.pas always contains an up-to-date list.

104

	List of Manuals
	Compiler directives
	Local directives
	Global directives

	Using conditionals, messages and macros
	Conditionals
	Messages
	Macros

	Using Assembly language
	Intel syntax
	AT&T Syntax
	Calling mechanism
	Signalling changed registers
	Register Conventions

	Linking issues
	Using external functions or procedures
	Using external variables
	Linking to an object file
	Linking to a library
	Making libraries
	Using smart linking

	Objects
	Constructor and Destructor calls
	Memory storage of objects
	The Virtual Method Table

	Generated code
	Units
	Programs

	Intel MMX support
	What is it about ?
	Saturation support
	Restrictions of MMX support
	Supported MMX operations
	Optimizing MMX support

	Memory issues
	The 32-bit model.
	The stack
	The heap
	Using dos memory under the Go32 extender

	Resource strings
	Introduction
	The resource string file
	Updating the string tables
	GNU gettext
	Caveat

	Optimizations
	 Non processor specific
	Optimization switches
	Tips to get faster code
	 Floating point

	Anatomy of a unit file
	Basics
	reading ppufiles
	The Header
	The sections
	Creating ppufiles

	Compiler and RTL source tree structure
	The compiler source tree
	The RTL source tree

	Compiler limits
	Compiler modes
	FPC mode
	TP mode
	Delphi mode
	GPC mode
	OBJFPC mode

	Using fpcmake
	Introduction
	Usage
	Format of the configuration file
	Programs needed to use the generated makefile
	Variables that affect the generated makefile
	Variables set by fpcmake
	Rules and targets created by fpcmake

	Compiling the compiler yourself
	Introduction
	Before you begin
	Compiling using make
	Compiling by hand

