
Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 0.99.14
1.6

January 2000

Michaël Van Canneyt

Contents

I The Pascal language 12

1 Pascal Tokens 13

1.1 Symbols . 13

1.2 Comments . 13

1.3 Reserved words . 14

Turbo Pascal reserved words . 14

Delphi reserved words . 15

Free Pascal reserved words . 15

Modifiers . 15

1.4 Identifiers . 15

1.5 Numbers . 16

1.6 Labels . 16

1.7 Character strings . 17

2 Constants 18

2.1 Ordinary constants . 18

2.2 Typed constants . 18

2.3 Resource strings . 19

3 Types 21

3.1 Base types . 21

Ordinal types . 22

Real types . 25

3.2 Character types . 26

Char . 26

Strings . 26

Short strings . 26

Ansistrings . 27

Constant strings . 28

PChar . 29

3.3 Structured Types . 30

1

CONTENTS

Arrays . 30

Record types . 31

Set types . 34

File types . 35

3.4 Pointers . 35

3.5 Procedural types . 37

4 Objects 39

4.1 Declaration . 39

4.2 Fields . 40

4.3 Constructors and destructors . 41

4.4 Methods . 42

4.5 Method invocation . 42

4.6 Visibility . 45

5 Classes 46

5.1 Class definitions . 46

5.2 Class instantiation . 47

5.3 Methods . 48

invocation . 48

Virtual methods . 48

Message methods . 48

5.4 Properties . 50

6 Expressions 54

6.1 Expression syntax . 54

6.2 Function calls . 56

6.3 Set constructors . 57

6.4 Value typecasts . 58

6.5 The @ operator . 58

6.6 Operators . 59

Arithmetic operators . 59

Logical operators . 60

Boolean operators . 60

String operators . 61

Set operators . 61

Relational operators . 61

7 Statements 63

7.1 Simple statements . 63

Assignments . 63

2

CONTENTS

Procedure statements . 64

Goto statements . 65

7.2 Structured statements . 65

Compound statements . 66

TheCase statement . 66

TheIf..then..else statement . 67

TheFor..to/downto..do statement . 68

TheRepeat..until statement . 69

TheWhile..do statement . 70

TheWith statement . 70

Exception Statements . 72

7.3 Assembler statements . 72

8 Using functions and procedures 73

8.1 Procedure declaration . 73

8.2 Function declaration . 74

8.3 Parameter lists . 74

Value parameters . 74

Variable parameters . 75

Constant parameters . 75

Open array parameters . 76

8.4 Function overloading . 76

8.5 Forward defined functions . 77

8.6 External functions . 78

8.7 Assembler functions . 79

8.8 Modifiers . 79

Public . 79

cdecl . 80

popstack . 80

Export . 80

StdCall . 81

Alias . 81

8.9 Unsupported Turbo Pascal modifiers . 81

9 Operator overloading 82

9.1 Introduction . 82

9.2 Operator declarations . 82

9.3 Assignment operators . 83

9.4 Arithmetic operators . 85

9.5 Comparision operator . 86

3

CONTENTS

10 Programs, units, blocks 88

10.1 Programs . 88

10.2 Units . 89

10.3 Blocks . 90

10.4 Scope . 91

Block scope . 91

Record scope . 92

Class scope . 92

Unit scope . 92

10.5 Libraries . 93

11 Exceptions 94

11.1 The raise statement . 94

11.2 The try...except statement . 95

11.3 The try...finally statement . 96

11.4 Exception handling nesting . 97

11.5 Exception classes . 97

12 Using assembler 98

12.1 Assembler statements . 98

12.2 Assembler procedures and functions . 98

II Reference : The System unit 100

13 The system unit 101

13.1 Types, Constants and Variables . 101

Types . 101

Constants . 101

Variables . 102

13.2 Functions and Procedures . 103

Abs . 103

Addr . 103

Append . 103

Arctan . 104

Assign . 104

Assigned . 105

BinStr . 105

Blockread . 106

Blockwrite . 107

Break . 107

Chdir . 108

4

CONTENTS

Chr . 108

Close . 108

Concat . 109

Continue . 109

Copy . 110

Cos . 110

CSeg . 111

Dec . 111

Delete . 112

Dispose . 112

DSeg . 113

Eof . 113

Eoln . 114

Erase . 114

Exit . 115

Exp . 116

Filepos . 116

Filesize . 117

Fillchar . 117

Fillword . 118

Flush . 118

Frac . 119

Freemem . 119

Getdir . 120

Getmem . 120

Halt . 120

HexStr . 121

Hi . 121

High . 122

Inc . 123

Insert . 123

Int . 124

IOresult . 124

Length . 126

Ln . 126

Lo . 126

LongJmp . 127

Low . 127

Lowercase . 127

Mark . 128

5

CONTENTS

Maxavail . 128

Memavail . 129

Mkdir . 129

Move . 130

New . 130

Odd . 130

Ofs . 131

Ord . 131

Paramcount . 132

Paramstr . 132

Pi . 132

Pos . 133

Power . 133

Pred . 134

Ptr . 134

Random . 134

Randomize . 135

Read . 135

Readln . 136

Release . 136

Rename . 136

Reset . 137

Rewrite . 137

Rmdir . 138

Round . 139

Runerror . 139

Seek . 139

SeekEof . 140

SeekEoln . 140

Seg . 141

SetJmp . 141

SetLength . 142

SetTextBuf . 142

Sin . 143

SizeOf . 144

Sptr . 144

Sqr . 145

Sqrt . 145

SSeg . 145

Str . 146

6

CONTENTS

Succ . 146

Swap . 146

Trunc . 147

Truncate . 147

Upcase . 148

Val . 148

Write . 149

WriteLn . 149

14 The OBJPAS unit 151

14.1 Types . 151

14.2 Functions and Procedures . 151

AssignFile . 151

CloseFile . 152

Freemem . 152

Getmem . 153

GetResourceStringCurrentValue . 153

GetResourceStringDefaultValue . 154

GetResourceStringHash . 154

GetResourceStringName . 155

Hash . 155

Paramstr . 156

ResetResourceTables . 156

ResourceStringCount . 156

ResourceStringTableCount . 157

SetResourceStrings . 157

SetResourceStringValue . 158

7

List of Tables

3.1 Predefined ordinal types . 22

3.2 Predefined integer types . 23

3.3 Boolean types . 23

3.4 Supported Real types . 25

3.5 AnsiString memory structure . 27

3.6 PChar pointer arithmetic . 29

3.7 Set Manipulation operators . 35

6.1 Precedence of operators . 54

6.2 Binary arithmetic operators . 59

6.3 Unary arithmetic operators . 60

6.4 Logical operators . 60

6.5 Boolean operators . 61

6.6 Set operators . 61

6.7 Relational operators . 62

7.1 Allowed C constructs in Free Pascal . 64

8.1 Unsupported modifiers . 81

8

Header

Body

Footer

Margin
Notes

i8� -

i7

?

6

i1� -

�-i3 i10� -

�-i9

6

?

i11

i2
?

6

6
?

i4
6

?

i5
6

?

i6

1 one inch + \hoffset 2 one inch + \voffset
3 \oddsidemargin = 20pt 4 \topmargin = 0pt
5 \headheight = 12pt 6 \headsep = 25pt
7 \textheight = 646pt 8 \textwidth = 400pt
9 \marginparsep = 11pt 10 \marginparwidth = 72pt

11 \footskip = 30pt \marginparpush = 5pt (not shown)
\hoffset = 0pt \voffset = 0pt
\paperwidth = 614pt \paperheight = 794pt

LIST OF TABLES

About this guide

This document describes all constants, types, variables, functions and procedures as they are de-
clared in the system unit. Furthermore, it describes all pascal constructs supported by Free Pascal,
and lists all supported data types. It does not, however, give a detailed explanation of the pascal lan-
guage. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal implementation.

Notations
Throughout this document, we will refer to functions, types and variables withtypewriter font.
Functions and procedures have their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.

Description What does the procedure exactly do ?

Errors What errors can occur.

See AlsoCross references to other related functions/commands.

The cross-references come in two flavours:

• References to other functions in this manual. In the printed copy, a number will appear after
this reference. It refers to the page where this function is explained. In the on-line help pages,
this is a hyperlink, on which you can click to jump to the declaration.

• References to Unix manual pages. (For linux related things only) they are printed intype-
writer font, and the number after it is the Unix manual section.

Syntax diagrams
All elements of the pascal language are explained in syntax diagrams. Syntax diagrams are like
flow charts. Reading a syntax diagram means that you must get from the left side to the right side,
following the arrows. When you are at the right of a syntax diagram, and it ends with a single arrow,
this means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to
each other, then the diagram is ended.

Syntactical elements are written like this

-- syntactical elements are like this -�

Keywords you must type exactly as in the diagram:

-- keywords are like this -�

When you can repeat something there is an arrow around it:

--
6
this can be repeated -�

When there are different possibilities, they are listed in columns:

-- First possibility
Second possibility

-�

Note, that one of the possibilities can be empty:

10

LIST OF TABLES

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

11

Part I

The Pascal language

12

Chapter 1

Pascal Tokens

In this chapter we describe all the pascal reserved words, as well as the various ways to denote strings,
numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special ASCII symbols in a Pascal source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

+ - * / = < > [] . , () : ^ @ { } $ #

and the following character pairs too:

<= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair(. is equivalent to the left square bracket[.
Likewise, the character pair.) is equivalent to the right square bracket] . When used for comment
delimiters, the character pair(* is equivalent to the left brace{ and the character pair*) is equiva-
lent to the right brace} . These character pairs retain their normal meaning in string expressions.

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid comments:

13

1.3. RESERVED WORDS

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two commentsmustbe on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!
*)

The compiler will react with a ’invalid character’ error when it encounters such constructs, regardless
of the-So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be redefined. They will be denoted as
this throughout the syntax diagrams. Reserved words can be typed regardless of case, i.e. Pascal is
case insensitive. We make a distinction between Turbo Pascal and Delphi reserved words, since with
the -So switch, only the Turbo Pascal reserved words are recognised, and the Delphi ones can be
redefined. By default, Free Pascal recognises the Delphi reserved words.

Turbo Pascal reserved words
The following keywords exist in Turbo Pascal mode

absolute
and
array
asm
begin
break
case
const
constructor
continue
destructor
div
do
downto

else
end
file
for
function
goto
if
implementation
in
inherited
inline
interface
label
mod

nil
not
object
of
on
operator
or
packed
procedure
program
record
repeat
self
set

shl
shr
string
then
to
type
unit
until
uses
var
while
with
xor

14

1.4. IDENTIFIERS

Delphi reserved words
The Delphi (II) reserved words are the same as the pascal ones, plus the following ones:

as
class
except
exports

finalization
finally
initialization
is

library
on
property
raise

try

Free Pascal reserved words
On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers the following as
reserved words:

dispose
exit

false
new

true

Modifiers
The following is a list of all modifiers. Contrary to Delphi, Free Pascal doesn’t allow you to redefine
these modifiers.

absolute
abstract
alias
assembler
cdecl
default
export

external
far
forward
index
name
near
override

pascal
popstack
private
protected
public
published
read

register
stdcall
virtual
write

Remark: Predefined types such asByte , Boolean and constants such asmaxint arenot reserved words.
They are identifiers, declared in the system unit. This means that you can redefine these types. You
are, however, not encouraged to do this, as it will cause a lot of confusion.

1.4 Identifiers

Identifiers denote constants, types, variables, procedures and functions, units, and programs. All
names of things that you define are identifiers. An identifier consists of 255 significant characters
(letters, digits and the underscore character), from which the first must be an alphanumeric character,
or an underscore (_) The following diagram gives the basic syntax for identifiers.

Identifiers

-- identifier letter
_ 6 letter

digit
_

-�

15

1.5. NUMBERS

1.5 Numbers

Numbers are denoted in decimal notation. Real (or decimal) numbers are written using engeneering
notation (e.g.0.314E1). Free Pascal supports hexadecimal format the same way as Turbo Pascal
does. To specify a constant value in hexadecimal format, prepend it with a dollar sign ($). Thus,
the hexadecimal$FF equals 255 decimal. In addition to the support for hexadecimal notation, Free
Pascal also supports binary notation. You can specify a binary number by preceding it with a percent
sign (%). Thus,255 can be specified in binary notation as%11111111. The following diagrams
show the syntax for numbers.

Numbers

-- hex digit sequence
6
hex digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6
digit -�

-- unsigned integer digit sequence
$ hex digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

1.6 Labels

Labels can be digit sequences or identifiers.

Label

-- label digit sequence
identifier

-�

Remark: Note that you must specify the-Sg switch before you can use labels. By default, Free Pascal doesn’t
supportlabel andgoto statements.

16

1.7. CHARACTER STRINGS

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from the ASCII
character set, enclosed by single quotes, and on 1 line of the program source. A character set with
nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6
string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6
unsigned integer -�

17

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi implementation.

Constant declaration

-- constant declaration
6
identifier = expression ; -�

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators such as+, -, *, /, not, and, or, div(), mod(), ord(), chr(), sizeof
can be used, however. For more information on expressions, see chapter 6, page 54. You can only
declare constants of the following types:Ordinal types , Real types , Char , andString .
The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = ’4’; { Character type constant. }
s = ’This is a constant string’; {String type constant.}
s = chr(32)
ls = SizeOf(Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’some other string’;

2.2 Typed constants

Typed constants serve to provide a program with initialised variables. Contrary to ordinary constants,
they may be assigned to at run-time. The difference with normal variables is that their value is

18

2.3. RESOURCE STRINGS

initialised when the program starts, whereas normal variables must be initialised explicitly.

Typed constant declaration

-- typed constant declaration
6
identifier : type = typed constant ; -�

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Given the declaration:

Const
S : String = ’This is a typed constant string’;

The following is a valid assignment:

S := ’Result : ’+Func;

WhereFunc is a function that returns aString . Typed constants also allow you to initialize arrays
and records. For arrays, the initial elements must be specified, surrounded by round brackets, and
separated by commas. The number of elements must be exactly the same as the number of elements
in the declaration of the type. As an example:

Const
tt : array [1..3] of string[20] = (’ikke’, ’gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, you should specify each element of the record, in the formField : Value ,
separated by commas, and surrounded by round brackets. As an example:

Type
Point = record

X,Y : Real
end;

Const
Origin : Point = (X:0.0 , Y:0.0);

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
you’ll get a compile-time error.

2.3 Resource strings

A special kind of constant declaration part is theResourestring part. This part is like aConst
section, but it only allows to declare constant of type string. This part is only available in theDelphi
or objfpc mode.

The following is an example of a resourcestring definition:

19

2.3. RESOURCE STRINGS

Resourcestring

FileMenu = ’&File...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables, allowing to
manipulate the values of the strings at runtime with some special mechanisms.

Semantically, the strings are like constants; you cannot assign values to them, except through the
special mechanisms in the objpas unit. However, you can use them in assignments or expressions
as normal constants. The main use of the resourcestring section is to provide an easy means of
internationalization.

More on the subject of resourcestrings can be found in the Programmers’ guide, and in the chapter
on theobjpas later in this manual.

20

file:../prog/prog.html

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some extra
types from Delphi. You can declare your own types, which is in essence defining an identifier that
can be used to denote your custom type when declaring variables further in the source code.

Type declaration

-- type declaration identifier = type ; -�

There are 7 major type classes :

Types

-- type simple type
string type

structured type
pointer type

procedural type
type identifier

-�

The last class,type identifier, is just a means to give another name to a type. This gives you a way
to make types platform independent, by only using your own types, and then defining these types for
each platform individually. The programmer that uses your units doesn’t have to worry about type
size and so on. It also allows you to use shortcut names for fully qualified type names. You can e.g.
definesystem.longint asOlongint and then redefinelongint .

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each separate.

Simple types

21

3.1. BASE TYPES

Table 3.1: Predefined ordinal types

Name
Integer
Shortint
SmallInt
Longint
Byte
Word
Cardinal
Boolean
ByteBool
LongBool
Char

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

Ordinal types
With the exception of Real types, all base types are ordinal types. Ordinal types have the following
characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one bye one, in a specified order. This property allows the operation of functions asInc (123),
Ord (131),Dec (111) on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply thePred (134) function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply theSucc (146) function on the
largest possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined ordinal types is presented in table (3.1) The integer types, and their ranges and
sizes, that are predefined in Free Pascal are listed in table (3.2). Free Pascal does automatic type
conversion in expressions where different kinds of integer types are used.

Boolean types

Free Pascal supports theBoolean type, with its two pre-defined possible valuesTrue andFalse .
It also supports theByteBool , WordBool andLongBool types. These are the only two values
that can be assigned to aBoolean type. Of course, any expression that resolves to aboolean
value, can also be assigned to a boolean type. AssumingB to be of typeBoolean , the following
are valid assignments:

22

3.1. BASE TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -127 .. 127 1
Integer -32768 .. 32767 21

Word 0 .. 65535 2
Longint -2147483648 .. 2147483648 4
Cardinal 0..4294967296 4

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark: In Free Pascal, boolean expressions are always evaluated in such a way that when the result is known,
the rest of the expression will no longer be evaluated (Called short-cut evaluation). In the following
example, the functionFunc will never be called, which may have strange side-effects.

...
B := False;
A := B and Func;

HereFunc is a function which returns aBoolean type.

Remark: TheWordBool , LongBool andByteBool types were not supported by Free Pascal until version
0.99.6.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6
identifier

,
-�

23

3.1. BASE TYPES

-- assigned enum list
6
identifier := expression

,
-�

(see chapter 6, page 54 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number offorty is 40 , and not3, as it would be when the’:= 40’
wasn’t present. The ordinal value offortyone is then 41, and not4, as it would be when the
assignment wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to
the assigned value to assign to the next enumerated value. When specifying such an enumeration
type, it is important to keep in mind that you should keep the enumerated elements in ascending
order. The following will produce a compiler error:

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keepforty andthirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. You cannot use thePred andSucc functions on this kind of enumeration types. If you try to
do that, you’ll get a compiler error.

2. Enumeration types are by default stored in 4 bytes. You can change this behaviour with the
{$PACKENUM n}compiler directive, which tells the compiler the minimal number of bytes
to be used for enumeration types. For instance

Type
LargeEnum = (BigOne, BigTwo, BigThree);

{$PACKENUM 1}
SmallEnum = (one, two, three);

Var S : SmallEnum;
L : LargeEnum;

begin
WriteLn (’Small enum : ’,SizeOf(S));
WriteLn (’Large enum : ’,SizeOf(L));

end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmers’ guide, in the compiler directives section.

24

file:../prog/prog.html

3.1. BASE TYPES

Table 3.4: Supported Real types

Type Range Significant digits Size2

Single 1.5E-45 .. 3.4E38 7-8 4
Real 5.0E-324 .. 1.7E308 15-16 8
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

Subrange types

A subrange type is a range of values from an ordinal type (thehosttype). To define a subrange type,
one must specify it’s limiting values: the highest and lowest value of the type.

Subrange types

-- subrange type constant .. constant -�

Some of the predefinedinteger types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

But you can also define subrange types of enumeration types:

Type
Days = (monday,tuesday,wednesday,thursday,friday,

saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

Real types
Free Pascal uses the math coprocessor (or an emulation) for all its floating-point calculations. The
Real native type is processor dependant, but it is either Single or Double. Only the IEEE floating
point types are supported, and these depend on the target processor and emulation options. The true
Turbo Pascal compatible types are listed in table (3.4). Until version 0.9.1 of the compiler, all the
Real types were mapped to typeDouble , meaning that they all have size 8. TheSizeOf (144)
function is your friend here. TheReal type of turbo pascal is automatically mapped to Double. The
Comptype is, in effect, a 64-bit integer.

25

3.2. CHARACTER TYPES

3.2 Character types

Char
Free Pascal supports the typeChar . A Char is exactly 1 byte in size, and contains one character.
You can specify a character constant by enclosing the character in single quotes, as follows : ’a’ or
’A’ are both character constants. You can also specify a character by their ASCII value, by preceding
the ASCII value with the number symbol (#). For example specifying#65 would be the same as
’A’ . Also, the caret character (^) can be used in combination with a letter to specify a character with
ASCII value less than 27. ThuŝG equals#7 (G is the seventh letter in the alphabet.) If you want
to represent the single quote character, type it two times successively, thus”” represents the single
quote character.

Strings
Free Pascal supports theString type as it is defined in Turbo Pascal and it supports ansistrings as
in Delphi. To declare a variable as a string, use the following type specification:

ShortString

-- string type string
[unsigned integer]

-�

The meaning of a string declaration statement is interpreted differently depending on the{$H}
switch. The above declaration can declare an ansistrng or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type coversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

Short strings
A string declaration declares a short string in the following cases:

1. If the switch is off:{$H-} , the string declaration will always be a short string declaration.

2. If the switch is on{$H+} , and there is a length specifier, the declaration is a short string
declaration.

The predefined typeShortString is defined as a string of length 255:

ShortString = String[255];

For short strings Free Pascal reservesSize+1 bytes for the stringS, and in the zeroeth element of
the string (S[0]) it will store the length of the variable. If you don’t specify the size of the string,
255 is taken as a default. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

26

3.2. CHARACTER TYPES

Table 3.5: AnsiString memory structure

Offset Contains
-12 Longint with maximum string size.
-8 Longint with actual string size.
-4 Longint with reference count.
0 Actual string, null-terminated.

NameString can contain maximum 10 characters. WhileStreetString can contain 255 char-
acters. The sizes of these variables are, respectively, 11 and 256 bytes.

Ansistrings
If the {$H} switch is on, then a string definition that doesn’t contain a length specifier, will be
regarded as an ansistring.

Ansistrings are strings that have no length limit. They are reference counted. Internally, an ansistring
is treated as a pointer.

If the string is empty (”), then the pointer is nil. If the string is not empty, then the pointer points to
a structure in heap memory that looks as in table (3.5).

Because of this structure, it is possible to typecast an ansistring to a pchar. If the string is empty (so
the pointer is nil) then the compiler makes sure that the typecasted pchar will point to a null byte.

AnsiStrings can be unlimited in length. Since the length is stored, the length of an ansistring is
available immediatly, providing for fast access.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement

S2:=S1;

results in the reference count ofS2 being decreased by one, The referece count ofS1 is increased by
one, and finallyS1 (as a pointer) is copied toS2. This is a significant speed-up in your code.

If a reference count reaches zero, then the memory occupied by the string is deallocated automati-
cally, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be nil, meaning that the string is initially empty. This is true
for local, global or part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy 100,000 timesnil into A. WhenA goes out of scope, then the 100,000 strings will be
dereferenced one by one. All this happens invisibly for the programmer, but when considering per-
formance issues, this is important.

Memory will be allocated only when the string is assigned a value. If the string goes out of scope,
then it is automatically dereferenced.

If you assign a value to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }
S[I]:=’@’;

27

3.2. CHARACTER TYPES

then a copy of the string is created before the assignment. This is known ascopy-on-writesemantics.

It is impossible to access the length of an ansistring by referring to the zeroeth character. The follow-
ing statement will generate a compiler error if S is an ansistring:

Len:=S[0];

Instead, you must use theLength (126) function to get the length of a string.

To set the length of an ansistring, you can use theSetLength (142) function. Constant ansistrings
have a reference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that you can mix the
use of ansistrings and short strings without problems.

You can typecast ansistrings toPChar or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :=’This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. If you typecast an empty ansistring to a pointer, the
pointer wil beNil . If you typecast an empty ansistring to aPChar , then the result will be a pointer
to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result
of such a typecast as read-only, i.e. suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring if you want to ensure a string
has reference count 1)

Constant strings
To specify a constant string, you enclose the string in single-quotes, just as aChar type, only now
you can have more than one character. Given thatS is of typeString , the following are valid
assignments:

S := ’This is a string.’;
S := ’One’+’, Two’+’, Three’;
S := ’This isn’’t difficult !’;
S := ’This is a weird character : ’#145’ !’;

As you can see, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their ASCII value. The example shows also that you
can add two strings. The resulting string is just the concatenation of the first with the second string,
without spaces in between them. Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

28

3.2. CHARACTER TYPES

Table 3.6:PChar pointer arithmetic

Operation Result
P + I AddsI to the address pointed to byP.
I + P AddsI to the address pointed to byP.
P - I SubstractsI from the address pointed to byP.
P - Q Returns, as an integer, the distance between 2 addresses

(or the number of characters betweenP andQ)

PChar
Free Pascal supports the Delphi implementation of thePChar type.PChar is defined as a pointer to
aChar type, but allows additional operations. ThePChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of typePChar is a pointer that points
to an array of typeChar , which is ended by a null-character (#0). Free Pascal supports initializing
of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var p : PChar;
begin

P := ’This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = ’This is a null-terminated string.’
begin

WriteLn (P);
end.

These examples also show that it is possible to writethe contentsof the string to a file of typeText .
The strings unit contains procedures and functions that manipulate thePChar type as you can do it
in C. Since it is equivalent to a pointer to a typeChar variable, it is also possible to do the following:

Program three;
Var S : String[30];

P : PChar;
begin

S := ’This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. You cannot add null-terminated strings
as you can do with normal Pascal strings. If you want to concatenate twoPChar strings, you will
need to use the unit strings. However, it is possible to do some pointer arithmetic. You can use the
operators+ and- to do operations onPChar pointers. In table (3.6),P andQare of typePChar ,
andI is of typeLongint .

29

file:../strings/strings.html
file:../strings/strings.html

3.3. STRUCTURED TYPES

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

Structured Types

-- structured type array type
record type
class type

class reference type
set type
file type

-�

Unlike Delphi, Free Pascal does not support the keywordPacked for all structured types, as can be
seen in the syntax diagram. It will be mentioned when a type supports thepacked keyword. In the
following, each of the possible structured types is discussed.

Arrays
Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed arrays are also
supported:

Array types

-- array type
packed

array [
6
ordinal type

,
] of type -�

The following is a valid array declaration:

Type
RealArray = Array [1..100] of Real;

As in Turbo Pascal, if the array component type is in itself an array, it is possible to combine the two
arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functionsHigh (122) andLow (127) return the high and low bounds of the leftmost index type
of the array. In the above case, this would be 100 and 1.

30

3.3. STRUCTURED TYPES

Record types
Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

Record types

-- record type
packed

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6
identifier list : type

;
-�

-- variant part case
identifier :

ordinal type identifier of
6
variant

;
-�

-- variant
6
constant , : (

field list
) -�

So the following are valid record types declarations:

Type
Point = Record

X,Y,Z : Real;
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time. In effect, it introduces a new field in the record.

Remark: It is possible to nest variant parts, as in:

Type
MyRec = Record

X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z : Longint);
);

end;

31

3.3. STRUCTURED TYPES

The size of a record is the sum of the sizes of its fields, each size of a field is rounded up to a power
of two. If the record contains a variant part, the size of the variant part is the size of the biggest
variant, plus the size of the tag field typeif an identifier was declared for it. Here also, the size of
each part is first rounded up to two. So in the above example,SizeOf (144) would return 24 for
Point , 24 for RPoint and 26 forBetterRPoint . For MyRec, the value would be 12. If you
want to read a typed file with records, produced by a Turbo Pascal program, then chances are that
you will not succeed in reading that file correctly. The reason for this is that by default, elements of
a record are aligned at 2-byte boundaries, for performance reasons. This default behaviour can be
changed with the{$PackRecords n} switch. Possible values forn are 1, 2, 4, 16 orDefault .
This switch tells the compiler to align elements of a record or object or class that have size larger
thann on n byte boundaries. Elements that have size smaller or equal thann are aligned on natural
boundaries, i.e. to the first power of two that is larger than or equal to the size of the record element.
The keywordDefault selects the default value for the platform you’re working on (currently, this
is 2 on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type

{$PackRecords 2}
Trec1 = Record

A : byte;
B : Word;

end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}
Trec3 = Record

A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record

A,B : Byte;
end;

{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

{$PackRecords 8}
Trec6 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;
end;

{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[1..7] of byte;

32

3.3. STRUCTURED TYPES

C : byte;
end;

{$PackRecords 8}
Trec8 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;
end;

Var rec1 : Trec1;
rec2 : Trec2;
rec3 : TRec3;
rec4 : TRec4;
rec5 : Trec5;
rec6 : TRec6;
rec7 : TRec7;
rec8 : TRec8;

begin
Write (’Size Trec1 : ’,SizeOf(Trec1));
Writeln (’ Offset B : ’,Longint(@rec1.B)-Longint(@rec1));
Write (’Size Trec2 : ’,SizeOf(Trec2));
Writeln (’ Offset B : ’,Longint(@rec2.B)-Longint(@rec2));
Write (’Size Trec3 : ’,SizeOf(Trec3));
Writeln (’ Offset B : ’,Longint(@rec3.B)-Longint(@rec3));
Write (’Size Trec4 : ’,SizeOf(Trec4));
Writeln (’ Offset B : ’,Longint(@rec4.B)-Longint(@rec4));
Write (’Size Trec5 : ’,SizeOf(Trec5));
Writeln (’ Offset B : ’,Longint(@rec5.B)-Longint(@rec5),

’ Offset C : ’,Longint(@rec5.C)-Longint(@rec5));
Write (’Size Trec6 : ’,SizeOf(Trec6));
Writeln (’ Offset B : ’,Longint(@rec6.B)-Longint(@rec6),

’ Offset C : ’,Longint(@rec6.C)-Longint(@rec6));
Write (’Size Trec7 : ’,SizeOf(Trec7));
Writeln (’ Offset B : ’,Longint(@rec7.B)-Longint(@rec7),

’ Offset C : ’,Longint(@rec7.C)-Longint(@rec7));
Write (’Size Trec8 : ’,SizeOf(Trec8));
Writeln (’ Offset B : ’,Longint(@rec8.B)-Longint(@rec8),

’ Offset C : ’,Longint(@rec8.C)-Longint(@rec8));
end.

The output of this program will be :

Size Trec1 : 4 Offset B : 2
Size Trec2 : 3 Offset B : 1
Size Trec3 : 2 Offset B : 1
Size Trec4 : 2 Offset B : 1
Size Trec5 : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7
Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected. InTrec1 , sinceB has size 2, it is aligned on a 2 byte boundary, thus leaving
an empty byte betweenA andB, and making the total size 4. InTrec2 , B is aligned on a 1-byte

33

3.3. STRUCTURED TYPES

boundary, right afterA, hence, the total size of the record is 3. ForTrec3 , the sizes ofA,B are 1,
and hence they are aligned on 1 byte boundaries. The same is true forTrec4 . ForTrec5 , since the
size of B – 3 – is smaller than 4,B will be on a 4-byte boundary, as this is the first power of two that
is larger than it’s size. The same holds forTrec6 . For Trec7 , B is aligned on a 4 byte boundary,
since it’s size – 7 – is larger than 4. However, inTrec8 , it is aligned on a 8-byte boundary, since 8
is the first power of two that is greater than 7, thus making the total size of the record 16. As from
version 0.9.3, Free Pascal supports also the ’packed record’, this is a record where all the elements
are byte-aligned. Thus the two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}

and

Trec2 = Packed Record
A : Byte;
B : Word;
end;

Note the{$PackRecords 2} after the first declaration !

Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements ofSetType must be of typeTargetType . TargetType can be any ordinal
type with a range between0 and255 . A set can contain maximally255 elements. The following
are valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given this set declarations, the following assignment is legal:

WorkDays := [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in table (3.7). You can compare two
sets with the<> and= operators, but not (yet) with the< and> operators. As of compiler version
0.9.5, the compiler stores small sets (less than 32 elements) in a Longint, if the type range allows it.
This allows for faster processing and decreases program size. Otherwise, sets are stored in 32 bytes.

34

3.4. POINTERS

Table 3.7: Set Manipulation operators

Operation Operator
Union +
Difference -
Intersection *
Add element include
Delete element exclude

File types
File types are types that store a sequence of some base type, which can be any type except another
file type. It can contain (in principle) an infinite number of elements. File types are used commonly
to store data on disk. Nothing stops you, however, from writing a file driver that stores it’s data in
memory. Here is the type declaration for a file type:

File types

-- file type file
of type

-�

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on them (seeBlockread (106),Blockwrite
(107)). The following declaration declares a file of records:

Type
Point = Record

X,Y,Z : real;
end;

PointFile = File of Point;

Internally, files are represented by theFileRec record, which is declared in the DOS unit.

A special file type is theText file type, represented by theTextRec record. A file of typeText
uses special input-output routines.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored.

Pointer types

-- pointer type ˆ type identifier -�

As can be seen from this diagram, pointers are typed, which means that they point to a particular kind
of data. The type of this data must be known at compile time. Dereferencing the pointer (denoted by

35

3.4. POINTERS

addingˆ after the variable name) behaves then like a variable. This variable has the type declared
in the pointer declaration, and the variable is stored in the address that is pointed to by the pointer
variable. Consider the following example:

Program pointers;
type

Buffer = String[255];
BufPtr = ^Buffer;

Var B : Buffer;
BP : BufPtr;
PP : Pointer;

etc..

In this example,BP is a pointer toa Buffer type; whileB is a variable of typeBuffer . B takes
256 bytes memory, andBPonly takes 4 bytes of memory (enough to keep an adress in memory).

Remark: Free Pascal treats pointers much the same way as C does. This means that you can treat a pointer to
some type as being an array of this type. The pointer then points to the zeroeth element of this array.
Thus the following pointer declaration

Var p : ^Longint;

Can be considered equivalent to the following array declaration:

Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If you use the former, you must
allocate memory yourself, using theGetmem (120) function. The referencePˆ is then the same as
p[0] . The following program illustrates this maybe more clear:

program PointerArray;
var i : Longint;

p : ^Longint;
pp : array[0..100] of Longint;

begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p := @pp[0]; { Let p point to pp }
for i := 0 to 100 do

if p[i]<>pp[i] then
WriteLn (’Ohoh, problem !’)

end.

Free Pascal supports pointer arithmetic as C does. This means that, ifP is a typed pointer, the
instructions

Inc(P);
Dec(P);

Will increase, respectively descrease the address the pointer points to with the size of the typeP is a
pointer to. For example

Var P : ^Longint;
...

Inc (p);

36

3.5. PROCEDURAL TYPES

will increasePwith 4. You can also use normal arithmetic operators on pointers, that is, the following
are valid pointer arithmetic operations:

var p1,p2 : ^Longint;
L : Longint;

begin
P1 := @P2;
P2 := @L;
L := P1-P2;
P1 := P1-4;
P2 := P2+4;

end.

Here, the value that is added or substracted isnotmultiplied by the size of the type the pointer points
to.

3.5 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal imple-
mentation of them. The type declaration remains the same, as can be seen in the following syntax
diagram:

Procedural types

-- procedural type function header
procedure header of object ; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

-- call modifiers register
cdecl

pascal
stdcall

popstack

-�

For a description of formal parameter lists, see chapter 8, page 73. The two following examples are
valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil , for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

37

3.5. PROCEDURAL TYPES

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
...
P := @printit;
Func := @Pi;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t necessary to
use the address operator (@) when assigning a procedural type variable, whereas in Free Pascal it is
required (unless you use the-So switch, in which case you can drop the address operator.)

Remark: The modifiers concerning the calling conventions (cdecl , pascal , stdcall andpopstack
stick to the declaration; i.e. the following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
begin
P := @printit;
end.

Because theTOneArgCcall type is a procedure that uses the cdecl calling convention.

38

Chapter 4

Objects

4.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal. Objects should be treated as a special kind of record. The record contains all the fields that
are declared in the objects definition, and pointers to the methods that are associated to the objects’
type.

An object is declared just as you would declare a record; except that you can now declare procedures
and functions as if they were part of the record. Objects can ”inherit” fields and methods from
”parent” objects. This means that you can use these fields and methods as if they were included in
the objects you declared as a ”child” object.

Furthermore, you can declare fields, procedures and functions aspublic or private . By default,
fields and methods arepublic , and are exported outside the current unit. Fields or methods that are
declaredprivate are only accessible in the current unit. The prototype declaration of an object is
as follows:

object types

--

packed
object

heritage
6

component list
object visibility specifier

end
-�

-- heritage (object type identifier) -�

-- component list

6
field definition

6
method definition

-�

-- field definition identifier list : type ; -�

-- method definition function header
procedure header
constructor header
desctuctor header

; method directives -�

-- method directives
virtual ;

abstract ;
call modifiers ;

-�

39

4.2. FIELDS

-- object visibility specifier private
public

-�

As you can see, you can repeat as manyprivate and public blocks as you want.Method
definitions are normal function or procedure declarations. You cannot put fields after methods
in the same block, i.e. the following will generate an error when compiling:

Type MyObj = Object
Procedure Doit;
Field : Longint;

end;

But the following will be accepted:

Type MyObj = Object
Public

Procedure Doit;
Private

Field : Longint;
end;

because the field is in a different section.

Remark: Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TObj = packed object;

Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Similarly, the{$PackRecords } directive acts on objects as well.

4.2 Fields

Object Fields are like record fields. They are accessed in the same way as you would access a record
field : by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;
end;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

40

4.3. CONSTRUCTORS AND DESTRUCTORS

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

...
AField := 0;
...

end;

Or, one can use theself identifier. Theself identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

...
Self.AField := 0;
...

end;

You cannot access fields that are in a private section of an object from outside the objects’ methods.
If you do, the compiler will complain about an unknown identifier. It is also possible to use thewith
statement with an object instance:

With AnObject do
begin
Afield := 12;
AMethod;
end;

In this example, between thebegin andend , it is as ifAnObject was prepended to theAfield
andAmethod identifiers. More about this in section 7.2, page 70

4.3 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. You are responsible for calling the constructor and the destructor explicitly when using
objects. The declaration of a constructor or destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- desctructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

41

4.4. METHODS

A constructor/destructor pair isrequiredif you use virtual methods. In the declaration of the object
type, you should use a simple identifier for the name of the constuctor or destructor. When you
implement the constructor or destructor, you should use a qulified method identifier, i.e. an identifier
of the formobjectidentifier.methodidentifier . Free Pascal supports also the extended
syntax of theNewandDispose procedures. In case you want to allocate a dynamic variable of an
object type, you can specify the constructor’s name in the call toNew. TheNewis implemented as a
function which returns a pointer to the instantiated object. Consider the following declarations:

Type
TObj = object;

Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Then the following 3 calls are equivalent:

pp := new (Pobj,Init);

and

new(pp,init);

and also

new (pp);
pp^.init;

In the last case, the compiler will issue a warning that you should use the extended syntax ofnew and
dispose to generate instances of an object. You can ignore this warning, but it’s better program-
ming practice to use the extended syntax to create instances of an object. Similarly, theDispose
procedure accepts the name of a destructor. The destructor will then be called, before removing the
object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

4.4 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter :self . Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

4.5 Method invocation

Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapter 7, page 63). To determine which method is called, it is necessary
to know the type of the method. We treat the different types in what follows.

42

4.5. METHOD INVOCATION

Static methods

Static methods are methods that have been declared without aabstract or virtual keyword.
When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Object

...
procedure Doit;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls:

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Of the three invocations ofDoit , only the last one will callTChild.Doit , the other two calls will
call TParent.Doit . This is because for static methods, the compiler determines at compile time
which method should be called. SinceParentB is of typeTParent , the compiler decides that it
must be called withTParent.Doit , even though it will be created as aTChild . There may be
times when you want the method that is actually called to depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods

To remedy the situation in the previous section,virtual methods are created. This is simply
done by appending the method declaration with thevirtual modifier. Going back to the previous
example, consider the following alternative declaration:

Type
TParent = Object

...
procedure Doit;virtual;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...

43

4.5. METHOD INVOCATION

procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA , nothing changes, since it is created as aTParent instance. ForChild , the situation
also doesn’t change: it is again created as an instance ofTChild . For ParentB however, the
situation does change: Even though it was declared as aTParent , it is created as an instance of
TChild . Now, when the program runs, before callingDoit , the program checks what the actual
type ofParentB is, and only then decides which method must be called. Seeing thatParentB is
of typeTChild , TChild.Doit will be called. The code for this run-time checking of the actual
type of an object is inserted by the compiler at compile time. TheTChild.Doit is said tooverride
theTParent.Doit . It is possible to acces theTParent.Doit from within the varTChild.Doit,
with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;
...

end;

In the above example, whenTChild.Doit is called, the first thing it does is callTParent.Doit .
You cannot use the inherited keyword on static methods, only on virtual methods.

Abstract methods

An abstract method is a special kind of virtual method. A method can not be abstract if it is not
virtual (this is not obvious from the syntax diagram). You cannot create an instance of an object that
has an abstract method. The reason is obvious: there is no method where the compiler could jump
to ! A method that is declaredabstract does not have an implementation for this method. It is up
to inherited objects to override and implement this method. Continuing our example, take a look at
this:

Type
TParent = Object

...
procedure Doit;virtual;abstract;
...
end;

PParent=^TParent;
TChild = Object(TParent)

44

4.6. VISIBILITY

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method calledDoit . Consider now the
following declarations and calls :

Var ParentA,ParentB : PParent;
Child : PChild;

ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

First of all, Line 3 will generate a compiler error, stating that you cannot generate instances of objects
with abstract methods: The compiler has detected thatPParent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark: If you override an abstract method, you cannot call the parent method withinherited , since there
is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

4.6 Visibility

For objects, only 2 visibility specifiers exist :private andpublic . If you don’t specify a visi-
bility specifier,public is assumed. Both methods and fields can be hidden from a programmer by
putting them in aprivate section. The exact visibility rule is as follows:

Private All fields and methods that are in aprivate block, can only be accessed in the module
(i.e. unit or program) that contains the object definition. They can be accessed from inside the
object’s methods or from outside them e.g. from other objects’ methods, or global functions.

Public sections are always accessible, from everywhere. Fields and metods in apublic section
behave as though they were part of an ordinaryrecord type.

45

Chapter 5

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept of
’Classes’. A class can be seen as a pointer to an object, or a pointer to a record.

Remark: In earlier versions of Free Pascal it was necessary, in order to use classes, to put theobjpas unit in
the uses clause of your unit or program.This is no longer neededas of version 0.99.12. As of version
0.99.12 thesystem unit contains the basic definitions ofTObject andTClass , as well as some
auxiliary methods for using classes. Theobjpas unit still exists, and contains some redefinitions of
basic types, so they coincide with Delphi types. The unit will be loaded automatically if you specify
the-S2 or -Sd options.

5.1 Class definitions

The prototype declaration of a class is as follows :

Class types

--

packed
class

heritage
6

component list
class visibility specifier

end
-�

-- heritage (class type identifier) -�

-- component list

6
field definition

6
method definition
property definition

-�

-- field definition identifier list : type ; -�

-- method definition
class

function header
procedure header

constructor header
desctuctor header

; -

-

virtual
; abstract

override
message integer constant

string constant

; call modifiers ;
-�

46

5.2. CLASS INSTANTIATION

-- class visibility specifier private
protected

public
published

-�

Again, You can repeat as manyprivate , protected , published andpublic blocks as you
want. Methods are normal function or procedure declarations. As you can see, the declaration of
a class is almost identical to the declaration of an object. The real difference between objects and
classes is in the way they are created (see further in this chapter). The visibility of the different
sections is as follows:

Private All fields and methods that are in aprivate block, can only be accessed in the module
(i.e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

Protected Is the same asPrivate , except that the members of aProtected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Is the same as aPublic section, but the compiler generates also type information that
is needed for automatic streaming of these classes. Fields defined in apublished section
must be of class type. Array peroperties cannot be in apublished section.

5.2 Class instantiation

Classes must be created using their constructor. Remember that a class is a pointer to an object, so
when you declare a variable of some class, the compiler just allocates a pointer, not the entire object.
The constructor of a class returns a pointer to an initialized instance of the object. So, to initialize an
instance of some class, you would do the following :

ClassVar := ClassType.ConstructorName;

You cannot use the extended syntax ofnew anddispose to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
getmem, to allocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to it’s data, inself .

Remark:

• The {$PackRecords } directive also affects classes. i.e. the alignment in memory of the
different fields depends on the value of the{$PackRecords } directive.

• Just as for objects and records, you can declare a packed class. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries. i.e. as close
as possible.

• SizeOf(class) will return 4, since a class is but a pointer to an object. To get the size of
the class instance data, use theTObject.InstanceSize method.

47

5.3. METHODS

5.3 Methods

invocation
Method invocaticn for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObject;
begin

AnObject := TAnObject.Create;
ANobject.AMethod;

Virtual methods
Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: youmustoverride virtual methods
with theoverride keyword. Failing to do so, will start anewbatch of virtual methods, hiding the
previous one. TheInherited keyword will not jump to the inherited method, if virtual was used.

The following code iswrong:
Type ObjParent = Class

Procedure MyProc ; v i r t ua l ;
end ;
ObjChi ld = Class (ObjPArent)

Procedure MyProc ; v i r t ua l ;
end ;

The compiler will produce a warning:

Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but usingInherited can produce strange effects.

The correct declaration is as follows:
Type ObjParent = Class

Procedure MyProc ; v i r t ua l ;
end ;
ObjChi ld = Class (ObjPArent)

Procedure MyProc ; override ;
end ;

This will compile and run without warnings or errors.

Message methods
New in classes aremessage methods. Pointers to message methods are stored in a special table,
together with the integer or string cnstant that they were declared with. They are primarily intended to
ease programming of callback functions in severalGUI toolkits, such asWin32 or GTK. In difference
with Delphi, Free Pascal also accepts strings as message identifiers.

Message methods that are declared with an integer constant can take only one var argument (typed
or not):

Procedure TMyObject . MyHandler (Var Msg) ; Message 1 ;

The method implementation of a message function is no different from an ordinary method. It is
also possible to call a message method directly, but you should not do this. Instead use theTOb-
ject.Dispatch method.

48

5.3. METHODS

The TOBject.Dispatch method can be used to call amessage handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record

MSGID : Cardinal
Data : Poin ter ;

Var
Msg : TMSg;

MyObject . Dispatch (Msg) ;

In this example, theDispatch method will look at the object and all it’s ancestors (starting at the
object, and searching up the class tree), to see if a message method with messageMSGIDhas been
declared. If such a method is found, it is called, and passed theMsg parameter.

If no such method is found,DefaultHandler is called.DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing you
might need.DefaultHandler is declared as follows:

procedure de fau l thand le r (var message) ; v i r t ua l ;

In addition to the message method with aInteger identifier, Free Pascal also supports a messae
method with a string identifier:

Procedure TMyObject . MyStrHandler (Var Msg) ; Message ’ OnClick ’ ;

The working of the string message handler is the same as the ordinary integer message handler:

TheTOBject.DispatchStr method can be used to call amessage handler. It is declared in
the system unit and will accept one parameter which must have at the first position a string with the
message ID that should be called. For example:

Type
TMsg = Record

MsgStr : String [1 0] ; / / A r b i t r a r y length up to 255 characters .
Data : Poin ter ;

Var
Msg : TMSg;

MyObject . DispatchStr (Msg) ;

In this example, theDispatchStr method will look at the object and all it’s ancestors (starting at
the object, and searching up the class tree), to see if a message method with messageMsgStr has
been declared. If such a method is found, it is called, and passed theMsg parameter.

If no such method is found,DefaultHandlerStr is called.DefaultHandlerStr is a virtual
method ofTObject that doesn’t do anything, but which can be overridden to provide any processing
you might need.DefaultHandlerStr is declared as follows:

procedure Defau l tHand lerSt r (var message) ; v i r t ua l ;

In addition to this mechanism, a string message method accepts aself parameter:

TMyObject . StrMsgHandler (Data : Poin ter ; Se l f : TMyObject) ; Message ’ OnClick ’ ;

When encountering such a method, the compiler will generate code that loads theSelf parameter
into the object instance pointer. The result of this is that it is possible to passSelf as a parameter to
such a method.

Remark: The type of theSelf parameter must be of the same class as the class you define the method for.

49

5.4. PROPERTIES

5.4 Properties

Classes can contain properties as part of their fields list. A property acts like a normal field, i.e. you
can get or set it’s value, but allows to redirect the access of the field through functions and procedures.
They provide a means to associate an action with an assignment of or a reading from a class ’field’.
This allows for e.g. checking that a value is valid when assigning, or, when reading, it allows to
construct the value on the fly. Moreover, properties can be read-only or write only. The prototype
declaration of a property is as follows:

Properties

-- property definition property identifier
property interface

-

- property specifiers -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant

-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier default specifier

-�

-- read specifier read field or method -�

-- write specifier write field or method -�

-- default specifier default
constant

nodefault

-�

-- field or method field identifier
method identifier

-�

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type,
this function must not accept an argument. Aread specifier is optional, making the property
write-only. A write specifier is optional: If there is nowrite specifier , the property
is read-only. A write specifier is either the name of a field, or the name of a method procedure that
accepts as a sole argument a variable of the same type as the property. The section (private ,
published) in which the specified function or procedure resides is irrelevant. Usually, however,
this will be a protected or private method. Example: Given the following declaration:

Type
MyClass = Class

Private
Field1 : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;

50

5.4. PROPERTIES

Function Getz : Longint;
Public
Property X : Longint Read Field1 write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;

Var MyClass : TMyClass;

The following are valid statements:

WriteLn (’X : ’,MyClass.X);
WriteLn (’Y : ’,MyClass.Y);
WriteLn (’Z : ’,MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:

MyClass.Z := 0;

because Z is a read-only property. What happens in the above statements is that when a value needs
to be read, the compiler inserts a call to the variousgetNNN methods of the object, and the result of
this call is used. When an assignment is made, the compiler passes the value that must be assigned
as a paramater to the varioussetNNN methods. Because of this mechanism, properties cannot be
passed as var arguments to a function or procedure, since there is no known address of the property
(at least, not always). If the property definition contains an index, then the read and write specifiers
must be a function and a procedure. Moreover, these functions require an additional parameter : An
integer parameter. This allows to read or write several properties with the same function. For this,
the properties must have the same type. The following is an example of a property with an index:

{$mode objfpc}
Type TPoint = Class(TObject)

Private
FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);
Public
Property X : Longint index 1 read GetCoord Write SetCoord;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer] Read GetCoord;
end;

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of
1 : FX := Value;
2 : FY := Value;

end;
end;
Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of
1 : Result := FX;
2 : Result := FY;

end;

51

5.4. PROPERTIES

end;
Var P : TPoint;
begin

P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do

WriteLn (’X=’,X,’ Y=’,Y);
end.

When the compiler encounters an assignment toX, thenSetCoord is called with as first parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value ofX, the compiler callsGetCoord and passes it index 1. Indexes can only be
integer values. You can also have array properties. These are properties that accept an index, just as
an array does. Only now the index doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, you cannot specify fields asread specifiers .

A write specifier for an array property is the name of a method procedure that accepts two
arguments: The first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type TIntList = Class
Private
Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure SetInt (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);
Public
Property Items [i : Longint] : Longint Read GetInt

Write SetInt;
Property StrItems [S : String] : String Read GetAsString

Write SetAsstring;
end;

Var AIntList : TIntList;

Then the following statements would be valid:

AIntList.Items[26] := 1;
AIntList.StrItems[’twenty-five’] := ’zero’;
WriteLn (’Item 26 : ’,AIntList.Items[26]);
WriteLn (’Item 25 : ’,AIntList.StrItems[’twenty-five’]);

While the following statements would generate errors:

AIntList.Items[’twenty-five’] := 1;
AIntList.StrItems[26] := ’zero’;

Because the index types are wrong. Array properties can be declared asdefault properties. This
means that it is not necessary to specify the property name when assigning or reading it. If, in the
previous example, the definition of the items property would have been

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

52

5.4. PROPERTIES

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.

AIntList[26] := 1;

You can have only one default property per class, and descendent classes cannot redeclare the default
property.

53

Chapter 6

Expressions

Expressions occur in assignments or in tests. Expressions produce a value, of a certain type. Expres-
sions are built with two components: Operators and their operands. Usually an operator is binary, i.e.
it requires 2 operands. Binary operators occur always between the operands (as inX/Y). Sometimes
an operator is unary, i.e. it requires only one argument. A unary operator occurs always before the
operand, as in-X .

When using multiple operands in an expression, the precedence rules of table (6.1) are used. When
determining the precedence, the compiler uses the following rules:

1. Operators with equal precedence are executed from left to right.

2. In operations with unequal precedences the operands belong to the operater with the high-
est precedence. For example, in5*3+7 , the multiplication is higher in precedence than the
addition, so it is executed first. The result would be 22.

3. If parentheses are used in an epression, their contents is evaluated first. Thus,5*(3+7) would
result in 50.

6.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what a term is, is explained below), joined by adding operators.

Expressions

Table 6.1: Precedence of operators

Operator Precedence Category
Not, @ Highest (first) Unary operators
* / div mod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators
< <> < > <= >= in is Lowest (Last) relational operators

54

6.1. EXPRESSION SYNTAX

-- expression simple expression
*

<=
>

>=
=

<>
in
is

simple expression

-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:

GraphResult<>grError
(DoItToday=Yes) and (DoItTomorrow=No);
Day in Weekend

And here are some simple expressions:

A + B
-Pi
ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

Terms

-- term
6

factor
*
/

div
mod
and
shl
shr
as

-�

Here are some valid terms:

2 * Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No);

Factors are all other constructions:

Factors

55

6.2. FUNCTION CALLS

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

6.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too).
They are constructed as follows:

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list

-�

-- actual parameter list (

6
expression

,

) -�

The variable reference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A qualified method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters.

2. The types of the parameters must be compatible. For variable reference parameters, the pa-
rameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Depending on the fact of
the function is overloaded (i.e. multiple functions with the same name, but different parameter lists)
the error will be different. There are cases when the compiler will not execute the function call in an
expression. This is the case when you are assigning a value to a procedural type variable, as in the
following example:

Type
FuncType = Function: Integer;

Var A : Integer;

56

6.3. SET CONSTRUCTORS

Function AddOne : Integer;
begin

A := A+1;
AddOne := A;

end;
Var F : FuncType;

N : Integer;
begin

A := 0;
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N := AddOne; { N := 1 !!}

end.

In the above listing, the assigment to F will not cause the function AddOne to be called. The assign-
ment to N, however, will call AddOne. A problem with this syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addresses ofF andAddOne, or should it call both functions, and
compare the result ? Free Pascal solves this by deciding that a procedural variable is equivalent to a
pointer. Thus the compiler will give a type mismatch error, since AddOne is considered a call to a
function with integer result, and F is a pointer, Hence a type mismatch occurs. How then, should one
compare whetherF points to the functionAddOne ? To do this, one should use the address operator
@:

If F = @AddOne Then
WriteLn (’Functions are equal’);

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares 2 addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

If F()=Addone then
WriteLn (’Functions return same values ’);

Remark that this behaviour is not compatible with Delphi syntax.

6.3 Set constructors

When you want to enter a set-type constant in an expression, you must give a set constructor. In
essence this is the same thing as when you define a set type, only you have no identifier to identify
the set with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

Set constructors

-- set constructor [

6
set group

,

] -�

-- set group expression
.. expression

-�

57

6.4. VALUE TYPECASTS

All set groups and set elements must be of the same ordinal type. The empty set is denoted by[] ,
and it can be assigned to any type of set. A set group with a range[A..Z] makes all values in the
range a set element. If the first range specifier has a bigger ordinal value than the second the set is
empty, e.g.,[Z..A] denotes an empty set. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
[’A’..’Z’,’a’..’z’,’0’..’9’]

6.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. This is done through a value typecast. The syntax diagram for a value
typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte(’A’)
Char(48)
boolean(1)
longint(@Buffer)

The type size of the expression and the size of the type cast must be the same. That is, the following
doesn’t work:

Integer(’A’)
Char(4875)
boolean(100)
Word(@Buffer)

This is different from Delphi or Turbo Pascal behaviour.

6.5 The @ operator

The address operator@returns the address of a variable, procedure or function. It is used as follows:

Address factor

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

58

6.6. OPERATORS

Table 6.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Div Integer division
Mod Remainder

The@operator returns a typed pointer if the$T switch is on. If the$T switch is off then the address
operator returns an untyped pointer, which is assigment compatible with all pointer types. The type
of the pointer iŝ T , whereT is the type of the variable reference. For example, the following will
compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;

PLargeBuffer : ^art;

begin
PLargeBuffer := @Buffer;

end.

Changing the{$T-} to {$T+} will prevent the compiler from compiling this. It will give a type
mismatch error. By default, the address operator returns an untyped pointer. Applying the address
operator to a function, method, or procedure identifier will give a pointer to the entry point of that
function. The result is an untyped pointer. By default, you must use the address operator if you want
to assign a value to a procedural type variable. This behaviour can be avoided by using the-So or
-S2 switches, which result in a more compatible Delphi or Turbo Pascal syntax.

6.6 Operators

Operators can be classified according to the type of expression they operate on. We will discuss them
type by type.

Arithmetic operators
Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain integers or reals.
There are 2 kinds of operators : Binary and unary arithmetic operators. Binary operators are listed
in table (6.2), unary operators are listed in table (6.3). With the exception ofDiv andMod, which
accept only integer expressions as operands, all operators accept real and integer expressions as
operands. For binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operands is a real type expression, then the result is real. As an exception :
division (/) results always in real values. For unary operators, the result type is always equal to the
expression type. The division (/) andModoperator will cause run-time errors if the second argument

59

6.6. OPERATORS

Table 6.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

Table 6.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right

is zero. The sign of the result of aModoperator is the same as the sign of the left side operand of the
Modoperator. In fact, theModoperator is equivalent to the following operation :

I mod J = I - (I div J) * J

but it executes faster than the right hand side expression.

Logical operators
Logical operators act on the individual bits of ordinal expressions. Logical operators require operands
that are of an integer type, and produce an integer type result. The possible logical operators are listed
in table (6.4). The following are valid logical expressions:

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1 }
Not -1 { equals 0 }
B shl 2 { same as B * 2 for integers }
1 or 2 { equals 3 }
3 xor 1 { equals 2 }

Boolean operators
Boolean operators can be considered logical operations on a type with 1 bit size. Therefore theshl
andshr operations have little sense. Boolean operators can only have boolean type operands, and
the resulting type is always boolean. The possible operators are listed in table (6.5)

Remark: Boolean expressions are ALWAYS evaluated with short-circuit evaluation. This means that from
the moment the result of the complete expression is known, evaluation is stopped and the result is
returned. For instance, in the following expression:

B := True or MaybeTrue;

The compiler will never look at the value ofMaybeTrue , since it is obvious that the expression will

60

6.6. OPERATORS

Table 6.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

Table 6.6: Set operators

Operator Action
+ Union
- Difference
* Intersection

always be true. As a result of this strategy, ifMaybeTrue is a function, it will not get called ! (This
can have surprising effects when used in conjunction with properties)

String operators
There is only one string operator :+. It’s action is to concatenate the contents of the two strings (or
characters) it stands between. You cannot use+ to concatenate null-terminated (PChar) strings. The
following are valid string operations:

’This is ’ + ’VERY ’ + ’easy !’
Dirname+’\’

The following is not:

Var Dirname = Pchar;
...

Dirname := Dirname+’\’;

BecauseDirname is a null-terminated string.

Set operators
The following operations on sets can be performed with operators: Union, difference and intersec-
tion. The operators needed for this are listed in table (6.6). The set type of the operands must be the
same, or an error will be generated by the compiler.

Relational operators
The relational operators are listed in table (6.7) Left and right operands must be of the same type.
You can only mix integer and real types in relational expressions. Comparing strings is done on the
basis of their ASCII code representation. When comparing pointers, the addresses to which they
point are compared. This also is true forPChar type pointers. If you want to compare the strings the
Pchar points to, you must use theStrComp function from thestrings unit. Thein returnsTrue
if the left operand (which must have the same ordinal type as the set type) is an element of the set
which is the right operand, otherwise it returnsFalse

61

6.6. OPERATORS

Table 6.7: Relational operators

Operator Action
= Equal
<> Not equal
< Stricty less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

62

Chapter 7

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
your program or unit. You can label your statements, and jump to them (within certain limits) with
Goto statements. This can be seen in the following syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

7.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basically 4 kinds of
simple statements:

Simple statements

-- simple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, theraise statementwill be explained in the chapter on Exceptions (chapter 11,
page 94)

Assignments
Assignments give a value to a variable, replacing any previous value the variable might have had:

63

7.1. SIMPLE STATEMENTS

Table 7.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Addsb to a, and stores the result ina.
a -= b Substractsb from a, and stores the result ina.
a *= b Multipliesa with b, and stores the result ina.
a /= b Dividesa throughb, and stores the result ina.

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply replaces the value of
the varable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some c-style constructions. All available constructs are listed in table (7.1). For these
constructs to work, you should specify the-Sc command-line switch.

Remark: These constructions are just for typing convenience, they don’t generate different code. Here are
some examples of valid assignment statements:

X := X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
X/=2; { Same as X := X/2, needs -Sc command line switch}
Done := False;
Weather := Good;
MyPi := 4* Tan(1);

Procedure statements
Procedure statements are calls to subroutines. There are different possibilities for procedure calls: A
normal procedure call, an object method call (fully qualified or not), or even a call to a procedural
type variable. All types are present in the following diagram.

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

actual parameter list

-�

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

64

7.2. STRUCTURED STATEMENTS

Usage;
WriteLn(’Pascal is an easy language !’);
Doit();

Goto statements
Free Pascal supports thegoto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When usinggoto statements, you must keep the following in mind:

1. The jump label must be defined in the same block as theGoto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have strange effects.

3. To be able to use theGoto statement, you need to specify the-Sg compiler switch.

Goto statements are considered bad practice and should be avoided as much as possible. It is always
possible to replace agoto statement by a construction that doesn’t need agoto , although this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
statement:

label
jumpto;

...
Jumpto :

Statement;
...
Goto jumpto;
...

7.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
repetitive statement

conditional statement
exception statement

with statement

-�

Conditional statements come in 2 flavours :

65

7.2. STRUCTURED STATEMENTS

Conditional statements

-- conditional statement if statement
case statement

-�

Repetitive statements come in 3 flavours:

Repetitive statements

-- repetitive statement for statament
repeat statement
while statement

-�

The following sections deal with each of these statements.

Compound statements
Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywordsBegin andEnd. The Last statement doesn’t need to be followed by a semicolon,
although it is allowed. A compound statement is a way of grouping statements together, executing
the statements sequentially. They are treated as one statement in cases where Pascal syntax expects
1 statement, such as inif ... then statements.

Compound statements

-- compound statement begin
6
statement

;
end -�

The Case statement
Free Pascal supports thecase statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case

; else part ;
end -�

-- case
6
constant

.. constant
,

: statement -�

-- else part else statement -�

66

7.2. STRUCTURED STATEMENTS

The constants appearing in the various case parts must be known at compile-time, and can be of the
following types : enumeration types, Ordinal types (except boolean), and chars. The expression must
be also of this type, or a compiler error will occur. All case constants must have the same type. The
compiler will evaluate the expression. If one of the case constants values matches the value of the
expression, the statement that follows this constant is executed. After that, the program continues
after the finalend . If none of the case constants match the expression value, the statement after
theelse keyword is executed. This can be an empty statement. If no else part is present, and no
case constant matches the expression value, program flow continues after the finalend . The case
statements can be compound statements (i.e. abegin..End block).

Remark: Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;
...
Case i of

3 : DoSomething;
1..5 : DoSomethingElse;

end;

The compiler will generate aDuplicate case label error when compiling this, because the 3
also appears (implicitly) in the range1..5 . This is similar to Delhpi syntax.

The following are valid case statements:

Case C of
’a’ : WriteLn (’A pressed’);
’b’ : WriteLn (’B pressed’);
’c’ : WriteLn (’C pressed’);

else
WriteLn (’unknown letter pressed : ’,C);

end;

Or

Case C of
’a’,’e’,’i’,’o’,’u’ : WriteLn (’vowel pressed’);
’y’ : WriteLn (’This one depends on the language’);

else
WriteLn (’Consonant pressed’);

end;

Case Number of
1..10 : WriteLn (’Small number’);
11..100 : WriteLn (’Normal, medium number’);

else
WriteLn (’HUGE number’);

end;

The If..then..else statement
TheIf .. then .. else.. prototype syntax is

If then statements

67

7.2. STRUCTURED STATEMENTS

-- if statement if expression then statement
else statement

-�

The expression between theif andthen keywords must have a boolean return type. If the expres-
sion evaluates toTrue then the statement followingthen is executed.

If the expression evaluates toFalse , then the statement followingelse is executed, if it is present.

Be aware of the fact that the boolean expression will be short-cut evaluated. (Meaning that the
evaluation will be stopped at the point where the outcome is known with certainty) Also, before
the else keyword, no semicolon (;) is allowed, but all statements can be compound statements.
In nestedIf.. then .. else constructs, some ambiguity may araise as to whichelse
statement pairs with whichif statement. The rule is that theelse keyword matches the firstif
keyword not already matched by anelse keyword. For example:

If exp1 Then
If exp2 then

Stat1
else

stat2;

Despite it’s appearance, the statement is syntactically equivalent to

If exp1 Then
begin
If exp2 then

Stat1
else

stat2
end;

and not to

{ NOT EQUIVALENT }
If exp1 Then

begin
If exp2 then

Stat1
end

else
stat2

If it is this latter construct you want, you must explicitly put thebegin andend keywords. When
in doubt, add them, they don’t hurt.

The following is a valid statement:

If Today in [Monday..Friday] then
WriteLn (’Must work harder’)

else
WriteLn (’Take a day off.’);

The For..to/downto..do statement
Free Pascal supports theFor loop construction. A for loop is used in case one wants to calculated
something a fixed number of times. The prototype syntax is as follows:

68

7.2. STRUCTURED STATEMENTS

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

Statement can be a compound statement. When this statement is encountered, the control variable
is initialized with the initial value, and is compared with the final value. What happens next depends
on whetherto or downto is used:

1. In the caseTo is used, if the initial value larger than the final value thenStatement will
never be executed.

2. In the caseDownTo is used, if the initial value larger than the final value thenStatement
will never be executed.

After this check, the statement afterDo is executed. After the execution of the statement, the control
variable is increased or decreased with 1, depending on whetherTo or Downto is used. The control
variable must be an ordinal type, no other types can be used as counters in a loop.

Remark: Contrary to ANSI pascal specifications, Free Pascal first initializes the counter variable, and only
then calculates the upper bound.

The following are valid loops:

For Day := Monday to Friday do Work;
For I := 100 downto 1 do

WriteLn (’Counting down : ’,i);
For I := 1 to 7*dwarfs do KissDwarf(i);

If the statement is a compound statement, then theBreak (107) andContinue (109) reserved words
can be used to jump to the end or just after the end of theFor statement.

The Repeat..until statement
The repeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax of theRepeat..until statement
is

Repeat statement

-- repeat statement repeat
6
statement

;
until expression -�

69

7.2. STRUCTURED STATEMENTS

This will execute the statements betweenrepeat anduntil up to the moment whenExpres-
sion evaluates toTrue . Since theexpression is evaluatedafter the execution of the statements,
they are executed at least once. Be aware of the fact that the boolean expressionExpression will
be short-cut evaluated. (Meaning that the evaluation will be stopped at the point where the outcome
is known with certainty) The following are validrepeat statements

repeat
WriteLn (’I =’,i);
I := I+2;

until I>100;
repeat

X := X/2
until x<10e-3

TheBreak (107) andContinue (109) reserved words can be used to jump to the end or just after the
end of therepeat .. until statement.

The While..do statement
A while statement is used to execute a statement as long as a certain condition holds. This may
imply that the statement is never executed. The prototype syntax of theWhile..do statement is

While statements

-- while statement while expression do statement -�

This will executeStatement as long asExpression evaluates toTrue . SinceExpression
is evaluatedbeforethe execution ofStatement , it is possible thatStatement isn’t executed at
all. Statement can be a compound statement. Be aware of the fact that the boolean expression
Expression will be short-cut evaluated. (Meaning that the evaluation will be stopped at the point
where the outcome is known with certainty) The following are validwhile statements:

I := I+2;
while i<=100 do

begin
WriteLn (’I =’,i);
I := I+2;
end;

X := X/2;
while x>=10e-3 do

X := X/2;

They correspond to the example loops for therepeat statements.

If the statement is a compound statement, then theBreak (107) andContinue (109) reserved words
can be used to jump to the end or just after the end of theWhile statement.

The With statement
Thewith statement serves to access the elements of a record1 or object or class, without having to
specify the name of the each time. The syntax for awith statement is

1 Thewith statement does not work correctly when used with objects or classes until version 0.99.6

70

7.2. STRUCTURED STATEMENTS

With statement

-- with statement
6
variable reference

,
do statement -�

The variable reference must be a variable of a record, object or class type. In thewith statement,
any variable reference, or method reference is checked to see if it is a field or method of the record
or object or class. If so, then that field is accessed, or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];
end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := ’Michael’;
TheCustomer.Flight := ’PS901’;

and

With TheCustomer do
begin
Name := ’Michael’;
Flight := ’PS901’;
end;

The statement

With A,B,C,D do Statement;

is equivalent to

With A do
With B do

With C do
With D do Statement;

This also is a clear example of the fact that the variables are triedlast to first, i.e., when the compiler
encounters a variable reference, it will first check if it is a field or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

Program testw;
Type AR = record

X,Y : Longint;
end;

Var S,T : Ar;
begin

S.X := 1;S.Y := 1;
T.X := 2;T.Y := 2;

71

7.3. ASSEMBLER STATEMENTS

With S,T do
WriteLn (X,’ ’,Y);

end.

The output of this program is

2 2

Showing thus that theX,Y in theWriteLn statement match theT record variable.

Exception Statements
As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a convenient way to
program error and error-recovery mechanisms, and are closely related to classes. Exception support
is explained in chapter 11, page 94

7.3 Assembler statements

An assembler statement allows you to insert assembler code right in your pascal code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

-- registerlist [
6
stringconstant

,
] -�

More information about assembler blocks can be found in the Programmers’ guide. The register
list is used to indicate the registers that are modified by an assembler statement in your code. The
compiler stores certain results in the registers. If you modify the registers in an assembler statement,
the compiler should, sometimes, be told about it. The registers are denoted with their Intel names
for the I386 processor, i.e.,’EAX’ , ’ESI’ etc... As an example, consider the following assembler
code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end; [’EAX’,’EBX’];

This will tell the compiler that it should save and restore the contents of theEAXandEBXregisters
when it encounters this asm statement.

72

file:../prog/prog.html

Chapter 8

Using functions and procedures

Free Pascal supports the use of functions and procedures, but with some extras: Function overloading
is supported, as well asConst parameters and open arrays.

Remark: In many of the subsequent paragraphs the wordsprocedure andfunction will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

8.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code. The procedure
can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

See section 8.3, page 74 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid procedure :

Procedure DoSomething (Para : String);
begin

Writeln (’Got parameter : ’,Para);
Writeln (’Parameter in upper case : ’,Upper(Para));

end;

Note that it is possible that a procedure calls itself.

73

8.2. FUNCTION DECLARATION

8.2 Function declaration

A function declaration defines an identifier and associates it with a block of code. The block of
code will return a result. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
modifiers

-�

-- subroutine block block
external directive

asm block
forward

-�

The result type of a function can be any previously declared type. contrary to Turbo pascal, where
only simple types could be returned.

8.3 Parameter lists

When you need to pass arguments to a function or procedure, these parameters must be declared
in the formal parameter list of that function or procedure. The parameter list is a declaration of
identifiers that can be referred to only in that procedure or function’s block.

Parameters

-- formal parameter list (
6
parameter declaration

;
) -�

-- parameter declaration value parameter
variable parameter
constant parameter

-�

Constant parameters and variable parameters can also beuntyped parameters if they have no type
identifier.

Value parameters
Value parameters are declared as follows:

Value parameters

74

8.3. PARAMETER LISTS

-- value parameter identifier list :
array of

parameter type -�

When you declare parameters as value parameters, the procedure getsa copyof the parameters that
the calling block passes. Any modifications to these parameters are purely local to the procedure’s
block, and do not propagate back to the calling block. A block that wishes to call a procedure with
value parameters must pass assignment compatible parameters to the procedure. This means that the
types should not match exactly, but can be converted (conversion code is inserted by the compiler
itself)

Take care that using value parameters makes heavy use of the stack, especially if you pass large
parameters. The total size of all parameters in the formal parameter list should be below 32K for
portability’s sake (the Intel version limits this to 64K).

You can pass open arrays as value parameters. See section 8.3, page 76 for more information on
using open arrays.

Variable parameters
Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
parameter type

-�

When you declare parameters as variable parameters, the procedure or function accesses immediatly
the variable that the calling block passed in its parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to access the variable’s value. From this, it follows
that any changes that you make to the parameter, will proagate back to the calling block. This
mechanism can be used to pass values back in procedures. Because of this, the calling block must
pass a parameter ofexactlythe same type as the declared parameter’s type. If it does not, the compiler
will generate an error.

Variable parameters can be untyped. In that case the variable has no type, and hence is incompatible
with all other types. However, you can use the address operator on it, or you can pass it to a function
that has also an untyped parameter. If you want to use an untyped parameter in an assigment, or you
want to assign to it, you must use a typecast.

File type variables must always be passed as variable parameters.

You can pass open arrays as variable parameters. See section 8.3, page 76 for more information on
using open arrays.

Constant parameters
In addition to variable parameters and value parameters Free Pascal also supports Constant parame-
ters. You can specify a constant parameter as follows:

Constant parameters

75

8.4. FUNCTION OVERLOADING

-- constant parameter const identifier list
:

array of
parameter type

-

- -�

A constant argument is passed by reference if it’s size is larger than a longint. It is passed by value if
the size equals 4 or less. This means that the function or procedure receives a pointer to the passed
argument, but you are not allowed to assign to it, this will result in a compiler error. Likewise, you
cannot pass a const parameter on to another function that requires a variable parameter. The main
use for this is reducing the stack size, hence improving performance, and still retaining the semantics
of passing by value...

Constant parameters can also be untyped. See section 8.3, page 75 for more information about
untyped parameters.

You can pass open arrays as constant parameters. See section 8.3, page 76 for more information on
using open arrays.

Open array parameters
Free Pascal supports the passing of open arrays, i.e. you can declare a procedure with an array
of unspecified length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index 0, and last element index
High(paremeter) . For example, the parameter

Row : Array of Integer;

would be equivalent to

Row : Array[0..N-1] of Integer;

WhereN would be the actual size of the array that is passed to the function.N-1 can be calculated
asHigh(Row) . Open parameters can be passed by value, by reference or as a constant parameter.
In the latter cases the procedure receives a pointer to the actual array. In the former case, it receives
a copy of the array. In a function or procedure, you can pass open arrays only to functions which are
also declared with open arrays as parameters,not to functions or procedures which accept arrays of
fixed length. The following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var I : longint;

Temp : Real;
begin

Temp := Row[0];
For I := 1 to High(Row) do

Temp := Temp + Row[i];
Average := Temp / (High(Row)+1);

end;

8.4 Function overloading

Function overloading simply means that you can define the same function more than once, but each
time with a different formal parameter list. The parameter lists must differ at least in one of it’s

76

8.5. FORWARD DEFINED FUNCTIONS

elements type. When the compiler encounters a function call, it will look at the function parameters
to decide which one of the defined functions it should call. This can be useful if you want to define
the same function for different types. For example, in the RTL, theDec procedure is is defined as:

...
Dec(Var I : Longint;decrement : Longint);
Dec(Var I : Longint);
Dec(Var I : Byte;decrement : Longint);
Dec(Var I : Byte);
...

When the compiler encounters a call to the dec function, it will first search which function it should
use. It therefore checks the parameters in your function call, and looks if there is a function definition
which matches the specified parameter list. If the compiler finds such a function, a call is inserted to
that function. If no such function is found, a compiler error is generated. You cannot have overloaded
functions that have acdecl or export modifier (Technically, because these two modifiers prevent
the mangling of the function name by the compiler).

8.5 Forward defined functions

You can define a function without having it followed by it’s implementation, by having it followed
by the forward procedure. The effective implementation of that function must follow later in
the module. The function can be used after aforward declaration as if it had been implemented
already. The following is an example of a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
begin

Second;
end.

You cannot define a function twice as forward (nor is there any reason why you would want to do
that). Likewise, in units, you cannot have a forward declared function of a function that has been
declared in the interface part. The interface declaration counts as aforward declaration. The
following unit will give an error when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin

77

8.6. EXTERNAL FUNCTIONS

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
end.

8.6 External functions

The external modifier can be used to declare a function that resides in an external object file.
It allows you to use the function in your code, and at linking time, you must link the object file
containing the implementation of the function or procedure.

External directive

-- external directive external
string constant

name string constant
index integer constant

-�

It replaces, in effect, the function or procedure code block. As such, it can be present only in an
implementation block of a unit, or in a program. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

Remark: The parameters in our declaration of theexternal function should match exactly the ones in the
declaration in the object file.

If the external modifier is followed by a string constant:

external ’lname’;

Then this tells the compiler that the function resides in library ’lname’. The compiler will then
automatically link this library to your program.

You can also specify the name that the function has in the library:

external ’lname’ name Fname;

This tells the compiler that the function resides in library ’lname’, but with name ’Fname’. The
compiler will then automatically link this library to your program, and use the correct name for the
function. Under WINDOWS andOS/2, you can also use the following form:

external ’lname’ Index Ind;

This tells the compiler that the function resides in library ’lname’, but with indexInd . The compiler
will then automatically link this library to your program, and use the correct index for the function.

78

8.7. ASSEMBLER FUNCTIONS

8.7 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
you use theassembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assembler in the Programmers’
guide.

8.8 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various possibilities:

Modifiers

-- modifiers
6
; public

alias : string constant
interrupt

call modifiers

-�

-- call modifiers register
pascal
cdecl

stdcall
popstack

-�

Free Pascal doesn’t support all Turbo Pascal modifiers, but does support a number of additional
modifiers. They are used mainly for assembler and reference to C object files. More on the use of
modifiers can be found in the Programmers’ guide.

Public
The Public keyword is used to declare a function globally in a unit. This is useful if you don’t
want a function to be accessible from the unit file, but you do want the function to be accessible from
the object file. as an example:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

79

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

8.8. MODIFIERS

First := 0;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the functionSecond , since it
isn’t declared in the interface part. However, it will be possible to access the functionSecond at the
assembly-language level, by using it’s mangled name (see the Programmers’ guide).

cdecl
Thecdecl modifier can be used to declare a function that uses a C type calling convention. This
must be used if you wish to acces functions in an object file generated by a C compiler. It allows you
to use the function in your code, and at linking time, you must link the object file containing theC
implementation of the function or procedure. As an example:

program CmodDemo;
{$LINKLIB c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

When compiling this, and linking to the C-library, you will be able to call thestrlen function
throughout your program. Theexternal directive tells the compiler that the function resides in an
external object filebrary (see 8.6).

Remark: The parameters in our declaration of theC function should match exactly the ones in the declaration
in C. SinceC is case sensitive, this means also that the name of the function must be exactly the same.
the Free Pascal compiler will use the nameexactlyas it is typed in the declaration.

popstack
Popstack does the same ascdecl , namely it tells the Free Pascal compiler that a function uses the C
calling convention. In difference with thecdecl modifier, it still mangles the name of the function
as it would for a normal pascal function. Withpopstack you could access functions by their pascal
names in a library.

Export
Sometimes you must provide a callback function for a C library, or you want your routines to be
callable from a C program. Since Free Pascal and C use different calling schemes for functions
and procedures1, the compiler must be told to generate code that can be called from a C routine.
This is where theExport modifier comes in. Contrary to the other modifiers, it must be specified
separately, as follows:

function DoSquare (X : Longint) : Longint; export;
1More techically: In C the calling procedure must clear the stack. In Free Pascal, the subroutine clears the stack.

80

file:../prog/prog.html

8.9. UNSUPPORTED TURBO PASCAL MODIFIERS

Table 8.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

begin
...
end;

The square brackets around the modifier are not allowed in this case.

Remark: as of version 0.9.8, Free Pascal supports the Delphicdecl modifier. This modifier works in the
same way as theexport modifier. More information about these modifiers can be found in the
Programmers’ guide, in the section on the calling mechanism and the chapter on linking.

StdCall
As of version 0.9.8, Free Pascal supports the Delphistdcall modifier. This modifier does actually
nothing, since the Free Pascal compiler by default pushes parameters from right to left on the stack,
which is what the modifier does under Delphi (which pushes parameters on the stack from left to
right). More information about this modifier can be found in the Programmers’ guide, in the section
on the calling mechanism and the chapter on linking.

Alias
The Alias modifier allows you to specify a different name for a procedure or function. This is
mostly useful for referring to this procedure from assembly language constructs. As an example,
consider the following program:

Program Aliases;
Procedure Printit; [Alias : ’DOIT’];
begin

WriteLn (’In Printit (alias : "DOIT")’);
end;
begin

asm
call DOIT
end;

end.

Remark: the specified alias is inserted straight into the assembly code, thus it is case sensitive.

TheAlias modifier, combined with thePublic modifier, make a powerful tool for making exter-
nally accessible object files.

8.9 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo pascal, but aren’t supported by Free Pascal, are listed in table (8.1).

81

file:../prog/prog.html
file:../prog/prog.html

Chapter 9

Operator overloading

9.1 Introduction

Free Pascal supports operator overloading. This means that it is possible to define the action of some
operators on self-defined types, and thus allow the use of these types in mathematical expressions.

Defining the action of an operator is much like the definition of a function or procedure, only there
are some restrictions on the possible definitions, as will be shown in the subsequent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, It is
important to keep in mind that some implicit rules may produce some unexpected results. This will
be indicated.

9.2 Operator declarations

To define the action of an operator is much like defining a function:

Operator definitions

-- operator definition operator assignment operator definition
arithmetic operator definition

comparision operator definition

-

- result identifier : result type ; subroutine block -�

-- assignment operator definition := (value parameter) -�

-- arithmetic operator definition +
-
*
/
**

(parameter list) -�

-- comparision operator definition =
<

<=
>

>=

(parameter list) -�

82

9.3. ASSIGNMENT OPERATORS

The parameter list for a comparision operator or an arithmetic operator must always contain 2 pa-
rameters. The result type of the comparision operator must beBoolean .

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be defined; error conditions are not
checked bythe compiler, and the code must take care of all possible cases, throwing a run-time error
if some error condition is encountered.

In the following, the three types of operator definitions will be examined. As an example, throughout
this chapter the following type will be used to define overloaded operators on :

type
complex = record

re : real;
im : real;

end;

this type will be used in all examples.

The sources of the Run-Time Library contain a unitucomplex, which contains a complete calculus
for complex numbers, based on operator overloading.

9.3 Assignment operators

The assignment operator defines the action of a assignent of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and define an assignment for that type. For instance,
to be able to assign a newly defined type ’Complex’

Var
C,Z : Complex; // New type complex

begin
Z:=C; // assignments between complex types.

end;

You would have to define the following assignment operator:

Operator := (C : Complex) z : complex;

To be able to assign a real type to a complex type as follows:

var
R : real;
C : complex;

begin
C:=R;

end;

the following assignment operator must be defined:

83

9.3. ASSIGNMENT OPERATORS

Operator := (r : real) z : complex;

As can be seen from this statement, it defines the action of the operator:= with at the right a real
expression, and at the left a complex expression.

an example implementation of this could be as follows:

operator := (r : real) z : complex;

begin
z.re:=r;
z.im:=0.0;

end;

As can be seen in the example, the result identifier (z in this case) is used to store the result of
the assignment. When compiling in Delphi mode or objfpc mode, the use of the special identifier
Result is also allowed, and can be substituted for thez , so the above would be equivalent to

operator := (r : real) z : complex;

begin
Result.re:=r;
Result.im:=0.0;

end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it finds one that matches the types of the left hand
and right hand expressions. If no such operator is found, a ’type mismatch’ error is given.

Remark: The assignment operator is not commutative; the compiler will never reverse the role of the two
arguments. in other words, given the above definition of the assignment operator, the following is
notpossible:

var
R : real;
C : complex;

begin
R:=C;

end;

if the reverse assignment should be possible (this is not so for reals and complex numbers) then the
assigment operator must be defined for that as well.

Remark: The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following definitions:

operator := (r : real) z : complex;
function exp(c : complex) : complex;

then the following assignment will give a type mismatch:

Var
r1,r2 : real;

begin
r1:=exp(r2);

end;

84

9.4. ARITHMETIC OPERATORS

because the compiler will encounter the definition of theexp function with the complex argument. It
implicitly converts r2 to a complex, so it can use the aboveexp function. The result of this function
is a complex, which cannot be assigned to r1, so the compiler will give a ’type mismatch’ error. The
compiler will not look further for anotherexp which has the correct arguments.

It is possible to avoid this particular problem by specifying

r1:=system.exp(r2);

An experimental solution for this problem exists in the compiler, but is not enabled by default. Maybe
someday it will be.

9.4 Arithmetic operators

Arithmetic operators define the action of a binary operator. Possible operations are:

multiplication to multiply two types, the* multiplication operator must be overloaded.

division to divide two types, the/ division operator must be overloaded.

addition to add two types, the+ addition operator must be overloaded.

substraction to substract two types, the- substraction operator must be overloaded.

exponentiation to exponentiate two types, the** exponentiation operator must be overloaded.

The definition of an arithmetic operator takes two parameters. The first parameter must be of the
type that occurs at the left of the operator, the second parameter must be of the type that is at the
right of the arithmetic operator. The result type must match the type that results after the arithmetic
operation.

To compile an expression as

var
R : real;
C,Z : complex;

begin
C:=R*Z;

end;

one needs a definition of the multiplication operator as:

Operator * (r : real; z1 : complex) z : complex;

begin
z.re := z1.re * r;
z.im := z1.im * r;

end;

As can be seen, the first operator is a real, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between a real and a complex is defined,
the compiler will not use that definition when it encounters a complex and a real (in that order). It is
necessary to define both operations.

So, given the above definition of the multiplication, the compiler will not accept the following state-
ment:

85

9.5. COMPARISION OPERATOR

var
R : real;
C,Z : complex;

begin
C:=Z*R;

end;

since the types ofZ andRdon’t match the types in the operator definition.

The reason for this behaviour is that it is possible that a multiplication is not always commutative.
e.g. the multiplication of a(n,m) with a (m,n) matrix will result in a(n,n) matrix, while the
mutiplication of a(m,n) with a (n,m) matrix is a(m,m) matrix, which needn’t be the same in all
cases.

9.5 Comparision operator

The comparision operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. The result type of a comparision operator is always a boolean.

The comparision operators that can be overloaded are:

equal to (=) to determine if two variables are equal.

less than (<) to determine if one variable is less than another.

greater than (>) to determine if one variable is greater than another.

greater than or equal to (>=) to determine if one variable is greater than or equal to another.

less than or equal to (<=) to determine if one variable is greater than or equal to another.

There is no separate operator forunequal to(<>). To evaluate a statement that contans theunequal
to operator, the compiler uses theequal tooperator (=), and negates the result.

As an example, the following opetrator allows to compare two complex numbers:

operator = (z1, z2 : complex) b : boolean;

the above definition allows comparisions of the following form:

Var
C1,C2 : Complex;

begin
If C1=C2 then

Writeln(’C1 and C2 are equal’);
end;

The comparision operator definition needs 2 parameters, with the types that the operator is meant to
compare. Here also, the compiler doesn’t apply commutativity; if the two types are different, then it
necessary to define 2 comparision operators.

In the case of complex numbers, it is, for instance necessary to define 2 comparsions: one with the
complex type first, and one with the real type first.

Given the definitions

86

9.5. COMPARISION OPERATOR

operator = (z1 : complex;r : real) b : boolean;
operator = (r : real; z1 : complex) b : boolean;

the following two comparisions are possible:

Var
R,S : Real;
C : Complex;

begin
If (C=R) or (S=C) then

Writeln (’Ok’);
end;

Note that the order of the real and complex type in the two comparisions is reversed.

87

Chapter 10

Programs, units, blocks

A Pascal program consists of modules calledunits . A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

10.1 Programs

A pascal program consists of the program header, followed possibly by a ’uses’ clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-�

-- program parameters identifier list -�

-- uses clause uses
6
identifier

,
; -�

The program header is provided for backwards compatibility, and is ignored by the compiler. The
uses clause serves to identify all units that are needed by the program. The system unit doesn’t have
to be in this list, since it is always loaded by the compiler. The order in which the units appear is
significant, it determines in which order they are initialized. Units are initialized in the same order as
they appear in the uses clause. Identifiers are searched in the opposite order, i.e. when the compiler
searches for an identifier, then it looks first in the last unit in the uses clause, then the last but one,
and so on. This is important in case two units declare different types with the same identifier. When
the compiler looks for unit files, it adds the extension.ppu (.ppw for Win32 platforms) to the name
of the unit. OnLINUX , unit names are converted to all lowercase when looking for a unit.

If a unit name is longer than 8 characters, the compiler will first look for a unit name with this length,
and then it will truncate the name to 8 characters and look for it again. For compatibility reasons,
this is also true on platforms that suport long file names.

88

10.2. UNITS

10.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part
finalization part

begin
6
statement

;

end . -�

-- unit header unit unit identifier ; -�

-- interface part interface
6 constant declaration part

type declaration part
procedure headers part

-�

-- procedure headers part procedure header
function header

;
call modifiers ;

-�

-- implementation part implementation
uses clause

declaration part -�

-- initialization part initialization
6
statement

;
-�

-- finalization part finalization
6
statement

;
-�

The interface part declares all identifiers that must be exported from the unit. This can be constant,
type or variable identifiers, and also procedure or function identifier declarations. Declarations inside
the implementation part arenot accessible outside the unit. The implementation must contain a
function declaration for each function or procedure that is declared in the interface part. If a function
is declared in the interface part, but no declaration of that function is present in the implementation
part, then the compiler will give an error.

When a program uses a unit (sayunitA) and this units uses a second unit, sayunitB, then the program
depends indirectly also onunitB . This means that the compiler must have access tounitB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identifiers from a unit on which a program depends indirectly, are not accessible to the
program. To have access to the identifiers of a unit, you must put that unit in the uses clause of the
program or unit where you want to yuse the identifier.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. This is
allowed, on the condition that at least one of the references is in the implementation section of the
unit. This also holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then there is circular unit dependence, and the compiler will generate an error. As
and example : the following is not allowed:

89

10.3. BLOCKS

Unit UnitA;
interface
Uses UnitB;
implementation
end.

Unit UnitB
interface
Uses UnitA;
implementation
end.

But this is allowed :

Unit UnitA;
interface
Uses UnitB;
implementation
end.
Unit UnitB
implementation
Uses UnitA;
end.

BecauseUnitB usesUnitA only in it’s implentation section. In general, it is a bad idea to have
circular unit dependencies, even if it is only in implementation sections.

10.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types
variables and functions or procedures. Blocks can be nested in certain ways, i.e., a procedure or
function declaration can have blocks in themselves. A block looks like the following:

Blocks

-- block declaration part statement part -�

-- declaration part
6 label declaration part

constant declaration part
resourcestring declaration part

type declaration part
variable declaration part

procedure/function declaration part

-�

-- label declaration part label
6
label

,
; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

90

10.4. SCOPE

-- resourcestring declaration part resourcestring
6
string constant declaration -

- -�

-- type declaration part type
6
type declaration -�

-- variable declaration part var
6
variable declaration -�

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label declaration part
of that block. Each label can only identify one statement. Constants that are to be used only in one
block should be declared in that block’s constant declaration part. Variables that are to be used only
in one block should be declared in that block’s constant declaration part. Types that are to be used
only in one block should be declared in that block’s constant declaration part. Lastly, functions and
procedures that will be used in that block can be declared in the procedure/function declaration part.
After the different declaration parts comes the statement part. This contains any actions that the block
should execute. All identifiers declared before the statement part can be used in that statement part.

10.4 Scope

Identifiers are valid from the point of their declaration until the end of the block in which the dec-
laration occurred. The range where the identifier is known is thescopeof the identifier. The exact
scope of an identifier depends on the way it was defined.

Block scope
Thescopeof a variable declared in the declaration part of a block, is valid from the point of declara-
tion until the end of the block. If a block contains a second block, in which the identfier is redeclared,
then inside this block, the second declaration will be valid. Upon leaving the inner block, the first
declaration is valid again. Consider the following example:

Program Demo;
Var X : Real;
{ X is real variable }
Procedure NewDeclaration
Var X : Integer; { Redeclare X as integer}
begin

// X := 1.234; {would give an error when trying to compile}
X := 10; { Correct assigment}

end;
{ From here on, X is Real again}
begin

91

10.4. SCOPE

X := 2.468;
end.

In this example, inside the procedure, X denotes an integer variable. It has it’s own storage space,
independent of the variableX outside the procedure.

Record scope
The field identifiers inside a record definition are valid in the following places:

1. to the end of the record definition.

2. field designators of a variable of the given record type.

3. identifiers inside aWith statement that operates on a variable of the given record type.

Class scope
A component identifier is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class, unless it is in the private part of the class declaration.

3. In all method declaration blocks of this class and descendent classes.

4. In a with statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

Unit scope
All identifiers in the interface part of a unit are valid from the point of declaration, until the end
of the unit. Furthermore, the identifiers are known in programs or units that have the unit in their
uses clause. Identifiers from indirectly dependent units arenot available. Identifiers declared in the
implementation part of a unit are valid from the point of declaration to the end of the unit. The system
unit is automatically used in all units and programs. It’s identifiers are therefore always known, in
each program or unit you make. The rules of unit scope implie that you can redefine an identifier of
a unit. To have access to an identifier of another unit that was redeclared in the current unit, precede
it with that other units name, as in the following example:

unit unitA;
interface
Type

MyType = Real;
implementation
end.
Program prog;
Uses UnitA;

{ Redeclaration of MyType}
Type MyType = Integer;
Var A : Mytype; { Will be Integer }

B : UnitA.MyType { Will be real }
begin
end.

92

10.5. LIBRARIES

This is especially useful if you redeclare the system unit’s identifiers.

10.5 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 andOS/2) trough the use of
theLibrary keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use your library.

In order to make functions or procedures available from the library, you must export them in an
export clause:

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6
exports entry

,
-�

-- exports entry identifier
index integer constant name string constant

-

- -�

Under Win32, an index clause can be added to an exports entry. an index entry must be a positive
number larger or equal than 1. It is best to use low index values, although nothing forces you to do
this.

Optionally, an exports entry can have a name specifier. If present, the name specifier gives the exact
name (case sensitive) of the function in the library.

If neither of these constructs is present, the functions or procedures are exported with the exact names
as specified in the exports clause.

93

Chapter 11

Exceptions

As of version 0.99.7, Free Pascal supports exceptions. Exceptions provide a convenient way to
program error and error-recovery mechanisms, and are closely related to classes. Exception support
is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error condition.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serve to clean up memory or close files in case an exception
occurs. The compiler generates many implicitTry ... Finally blocks around proce-
dure, to force memory consistence.

11.1 The raise statement

Theraise statement is as follows:

Raise statement

-- raise statement
exception instance

at address expression

-�

This statement will raise an exception. If it is specified, the exception instance must be an initialized
instance of a class, which is the raise type. The address exception is optional. If itis not specified,
the compiler will provide the address by itself. If the exception instance is omitted, then the current
exception is re-raised. This construct can only be used in an exception handling block (see further).

Remark: Controlneverreturns after an exception block. The control is transferred to the firsttry...finally
or try...except statement that is encountered when unwinding the stack. If no such statement
is found, the Free Pascal Run-Time Library will generate a run-time error 217 (see also section 11.5,
page 97).

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of typeEDivException

94

11.2. THE TRY...EXCEPT STATEMENT

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin

If Y=0 then
Raise EDivException.Create (’Division by Zero would occur’);

Result := X Div Y;
end;

The classException is defined in theSysutils unit of the rtl. (section 11.5, page 97)

11.2 The try...except statement

A try...except exception handling block is of the following form :

Try..except statement

-- try statement try statement list except exceptionhandlers end -�

-- statement list
6
statement

;
-�

-- exceptionhandlers

6
exception handler

; else statement list
statement list

-�

-- exception handler on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of thestatement list , then all statements in the
list will be executed sequentially, and the except block will be skipped, transferring program flow to
the statement after the finalend .

If an exception occurs during the execution of thestatement list , the program flow will be
transferred to the except block. Statements in the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the correspondingDo will be executed. The first matching
type is used. After theDo block was executed, the program continues after theEnd statement.

The identifier in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block foillowing theDo keyword.

If none of theOn handlers matches the exception object type, then the statement list afterelse is
executed. If no such list is found, then the exception is automatically re-raised. This process allows
to nesttry...except blocks.

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program flow continues. The exception is destroyed through a
call to the object’sDestroy destructor.

As an example, given the previous declaration of theDoDiv function, consider the following

95

11.3. THE TRY...FINALLY STATEMENT

Try
Z := DoDiv (X,Y);

Except
On EDivException do Z := 0;

end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program flow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program flow continues past the lastend statement. To
allow error recovery, theTry ... Finally block is supported. ATry...Finally block
ensures that the statements following theFinally keyword are guaranteed to be executed, even if
an exception occurs.

11.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally finally statements end -�

-- finally statements statementlist -�

If no exception occurs inside thestatement List , then the program runs as if theTry , Fi-
nally andEnd keywords were not present.

If, however, an exception occurs, the program flow is immediatly transferred from the point where
the excepion was raised to the first statement of theFinally statements .

All statements after the finally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the first statement
of theFinally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin

Try
Assign (F,Name);
Rewrite (name);
... File handling ...

Finally
Close(F);

end;

If during the execution of the file handling an execption occurs, then program flow will continue at
the close(F) statement, skipping any file operations that might follow between the place where
the exception was raised, and theClose statement. If no exception occurred, all file operations will
be executed, and the file will be closed at the end.

96

11.4. EXCEPTION HANDLING NESTING

11.4 Exception handling nesting

It is possible to nestTry...Except blocks withTry...Finally blocks. Program flow will be
done according to alifo (last in, first out) principle: The code of the last encounteredTry...Except
or Try...Finally block will be executed first. If the exception is not caught, or it was a finally
statement, program flow will be transferred to the last-but-one block,ad infinitum.

If an exception occurs, and there is no exception handler present, then a runerror 217 will be gener-
ated. If you use thesysutils unit, a default handler is installed which will show the exception object
message, and the address where the exception occurred, after which the program will exit with a
Halt instruction.

11.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the following exception
types:

Exception = class(TObject)
private

fmessage : string;
fhelpcontext : longint;

public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;

end;
ExceptClass = Class of Exception;
{ mathematical exceptions }
EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The sysutils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with a exit code of 217. If the
exception object is not a descendent object of theException object, then the class name is printed
instead of the exception message.

It is recommended to use theException object or a descendant class for allraise statements,
since then you can use the message field of the exception object.

97

Chapter 12

Using assembler

Free Pascal supports the use of assembler in your code, but not inline assembler macros. To have
more information on the processor specific assembler syntax and its limitations, see the Program-
mers’ guide.

12.1 Assembler statements

The following is an example of assembler inclusion in your code.

...
Statements;
...
Asm

your asm code here
...

end;
...
Statements;

The assembler instructions between theAsmandend keywords will be inserted in the assembler
generated by the compiler. You can still use conditionals in your assembler, the compiler will recog-
nise it, and treat it as any other conditionals.

Remark: Before version 0.99.1, Free Pascal did not support reference to variables by their names in the
assembler parts of your code.

12.2 Assembler procedures and functions

Assembler procedures and functions are declared using theAssembler directive. TheAssem-
bler keyword is supported as of version 0.9.7. This permits the code generator to make a number
of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of floating point values, these depend on the target processor
and emulation options.

Remark: From version 0.99.1 to 0.99.5 (excludingFPC 0.99.5a), theAssembler directive did not have the
same effect as in Turbo Pascal, so beware! The stack frame would be omitted if there were no local

98

file:../prog/prog.html
file:../prog/prog.html

12.2. ASSEMBLER PROCEDURES AND FUNCTIONS

variables, in this case if the assembly routine had any parameters, they would be referenced directly
via the stack pointer. This wasNOT like Turbo Pascal where the stack frame is only omitted if
there are no parametersand no local variables. As stated earlier, starting from version 0.99.5a, Free
Pascal now has the same behaviour as Turbo Pascal.

99

Part II

Reference : The System unit

100

Chapter 13

The system unit

The system unit contains the standard supported functions of Free Pascal. It is the same for all
platforms. Basically it is the same as the system unit provided with Borland or Turbo Pascal.

Functions are listed in alphabetical order. Arguments of functions or procedures that are optional are
put between square brackets.

The pre-defined constants and variables are listed in the first section. The second section contains the
supported functions and procedures.

13.1 Types, Constants and Variables

Types
The following integer types are defined in the System unit:

shortint = -128..127;
Longint = $80000000..$7fffffff;
integer = -32768..32767;
byte = 0..255;
word = 0..65535;

And the following pointer types:

PChar = ^char;
pPChar = ^PChar;

For theSetJmp (141) andLongJmp (127) calls, the following jump bufer type is defined (for the
I386 processor):

jmp_buf = record
ebx,esi,edi : Longint;
bp,sp,pc : Pointer;
end;

PJmp_buf = ^jmp_buf;

Constants
The following constants for file-handling are defined in the system unit:

101

13.1. TYPES, CONSTANTS AND VARIABLES

Const
fmclosed = $D7B0;
fminput = $D7B1;
fmoutput = $D7B2;
fminout = $D7B3;
fmappend = $D7B4;
filemode : byte = 2;

Further, the following non processor specific general-purpose constants are also defined:

const
er roraddr : po in te r = n i l ;
errorcode : word = 0 ;

{ max leve l in dumping on er ro r }
max_frame_dump : word = 20 ;

Remark: Processor specific global constants are named Testxxxx where xxxx represents the processor num-
ber (such as Test8086, Test68000), and are used to determine on what generation of processor the
program is running on.

Variables
The following variables are defined and initialized in the system unit:

var
output,input,stderr : text;
exitproc : pointer;
exitcode : word;
stackbottom : Longint;
loweststack : Longint;

The variablesExitProc , exitcode are used in the Free Pascal exit scheme. It works similarly to
the one in Turbo Pascal:

When a program halts (be it through the call of theHalt function orExit or through a run-time
error), the exit mechanism checks the value ofExitProc . If this one is non-Nil , it is set toNil ,
and the procedure is called. If the exit procedure exits, the value of ExitProc is checked again. If it is
non-Nil then the above steps are repeated. So if you want to install your exit procedure, you should
save the old value ofExitProc (may be non-Nil , since other units could have set it before you
did). In your exit procedure you then restore the value ofExitProc , such that if it was non-Nil
the exit-procedure can be called.

The ErrorAddr andExitCode can be used to check for error-conditions. IfErrorAddr is
non-Nil , a run-time error has occurred. If so,ExitCode contains the error code. IfErrorAddr
is Nil , then ExitCode contains the argument toHalt or 0 if the program terminated normally.

ExitCode is always passed to the operating system as the exit-code of your process.

UnderGO32, the following constants are also defined :

const
seg0040 = $0040;
segA000 = $A000;
segB000 = $B000;
segB800 = $B800;

These constants allow easy access to the bios/screen segment via mem/absolute.

102

13.2. FUNCTIONS AND PROCEDURES

13.2 Functions and Procedures

Abs
Declaration: Function Abs (X : Every numerical type) : Every numerical type;

Description: Abs returns the absolute value of a variable. The result of the function has the same type as its
argument, which can be any numerical type.

Errors: None.

See also: Round (139)

Program Example1 ;

{ Program to demonstrate the Abs func t i on . }

Var
r : rea l ;
i : i n teger ;

begin
r := abs (−1 . 0) ; { r : = 1 . 0 }
i := abs (−21) ; { i :=21 }

end .

Addr
Declaration: Function Addr (X : Any type) : Pointer;

Description: Addr returns a pointer to its argument, which can be any type, or a function or procedure name.
The returned pointer isn’t typed. The same result can be obtained by the@operator, which can return
a typed pointer (Programmers’ guide).

Errors: None

See also: SizeOf (144)

Program Example2 ;

{ Program to demonstrate the Addr func t i on . }

Const Zero : in teger = 0 ;

Var p : po in te r ;
i : In teger ;

begin
p:= Addr (p) ; { P po in ts to i t s e l f }
p:= Addr (I) ; { P po in ts to I }
p:= Addr (Zero) ; { P po in ts to ’ Zero ’ }

end .

Append
Declaration: Procedure Append (Var F : Text);

103

file:../prog/prog.html

13.2. FUNCTIONS AND PROCEDURES

Description: Append opens an existing file in append mode. Any data written toF will be appended to the file.
If the file didn’t exist, it will be created, contrary to the Turbo Pascal implementation ofAppend ,
where a file needed to exist in order to be opened byAppend . Only text files can be opened in
append mode.

Errors: If the file can’t be created, a run-time error will be generated.

See also: Rewrite (137),Close (108),Reset (137)

Program Example3 ;

{ Program to demonstrate the Append func t i on . }

Var f : t ex t ;

begin
Assign (f , ’ t es t . t x t ’) ;
Rewrite (f) ; { f i l e is opened fo r wr i te , and emptied }
Writeln (F, ’ This is the f i r s t l i n e of tex t . t x t ’) ;
c lose (f) ;
Append (f) ; { f i l e is opened fo r wr i te , but NOT emptied .

any tex t w r i t t e n to i t i s appended . }
Writeln (f , ’ This is the second l i n e of tex t . t x t ’) ;
c lose (f) ;

end .

Arctan
Declaration: Function Arctan (X : Real) : Real;

Description: Arctan returns the Arctangent ofX, which can be any Real type. The resulting angle is in radial
units.

Errors: None

See also: Sin (143),Cos (110)

Program Example4 ;

{ Program to demonstrate the ArcTan func t i on . }

Var R : Real ;

begin
R:= ArcTan (0) ; { R:= 0 }
R:= ArcTan (1) / pi ; { R:=0 .25 }

end .

Assign
Declaration: Procedure Assign (Var F; Name : String);

Description: Assign assigns a name toF, which can be any file type. This call doesn’t open the file, it just
assigns a name to a file variable, and marks the file as closed.

Errors: None.

104

13.2. FUNCTIONS AND PROCEDURES

See also: Reset (137),Rewrite (137),Append (103)

Program Example5 ;

{ Program to demonstrate the Assign func t i on . }

Var F : tex t ;

begin
Assign (F, ’ ’) ;
Rewrite (f) ;
{ The fo l l ow ing can be put in any f i l e by r e d i r e c t i n g i t

from the command l i n e . }
Writeln (f , ’ This goes to standard output ! ’) ;
Close (f) ;
Assign (F, ’ Test . t x t ’) ;
rewri te (f) ;
wri te ln (f , ’ This doesn ’ ’ t go to standard output ! ’) ;
c lose (f) ;

end .

Assigned
Declaration: Function Assigned (P : Pointer) : Boolean;

Description: Assigned returnsTrue if P is non-nil and retunsFalse of P is nil. The main use of Assigned
is that Procedural variables, method variables and class-type variables also can be passed toAs-
signed .

Errors: None

See also: New (130)

Program Example96 ;

{ Program to demonstrate the Assigned func t i on . }

Var P : Poin ter ;

begin
I f Not Assigned (P) then

Writeln (’ Po in ter is i n i t i a l l y NIL ’) ;
P:=@P;
I f Not Assigned (P) then

Writeln (’ I n t e r n a l incons is tency ’)
else

Writeln (’ A l l i s wel l in FPC’)
end .

BinStr
Declaration: Function BinStr (Value : longint; cnt : byte) : String;

Description: BinStr returns a string with the binary representation ofValue . The string has at mostcnt
characters. (i.e. only thecnt rightmost bits are taken into account) To have a complete representation
of any longint-type value, you need 32 bits, i.e.cnt=32

105

13.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Str (146),Val (148),HexStr (121)

Program example82 ;

{ Program to demonstrate the BinStr func t i on }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I :=8 to 20 do

Writeln (B inStr (Value , I) : 2 0) ;
end .

Blockread
Declaration: Procedure Blockread (Var F : File; Var Buffer; Var Count : Longint

[; var Result : Longint]);

Description: Blockread readscount or less records from fileF. A record is a block of bytes with size
specified by theRewrite (137) orReset (137) statement.

The result is placed inBuffer , which must contain enough room forCount records. The function
cannot read partial records. IfResult is specified, it contains the number of records actually read.
If Result isn’t specified, and less thanCount records were read, a run-time error is generated.
This behavior can be controlled by the{$i} switch.

Errors: If Result isn’t specified, then a run-time error is generated if less thancount records were read.

See also: Blockwrite (107),Close (108),Reset (137),Assign (104)

Program Example6 ;

{ Program to demonstrate the BlockRead and BlockWri te func t ions . }

Var Fin , fou t : Fi le ;
NumRead, NumWritten : Word;
Buf : Array [1 . . 2 0 4 8] of byte ;
Tota l : Longint ;

begin
Assign (Fin , Paramstr (1)) ;
Assign (Fout , Paramstr (2)) ;
Reset (Fin , 1) ;
Rewrite (Fout , 1) ;
Tota l :=0 ;
Repeat

BlockRead (Fin , buf , Sizeof (buf) , NumRead) ;
BlockWrite (Fout , Buf , NumRead, NumWritten) ;
inc (Tota l , NumWritten) ;

Unt i l (NumRead=0) or (NumWritten<>NumRead) ;
Write (’ Copied ’ , Tota l , ’ bytes from f i l e ’ , paramstr (1)) ;
Writeln (’ to f i l e ’ , paramstr (2)) ;
c lose (f i n) ;
close (fou t) ;

end .

106

13.2. FUNCTIONS AND PROCEDURES

Blockwrite
Declaration: Procedure Blockwrite (Var F : File; Var Buffer; Var Count : Longint);

Description: BlockWrite writescount records frombuffer to the fileF.A record is a block of bytes with
size specified by theRewrite (137) orReset (137) statement.

If the records couldn’t be written to disk, a run-time error is generated. This behavior can be con-
trolled by the{$i} switch.

Errors: A run-time error is generated if, for some reason, the records couldn’t be written to disk.

See also: Blockread (106),Close (108),Rewrite (137),Assign (104)

For the example, seeBlockread (106).

Break
Declaration: Procedure Break;

Description: Break jumps to the statement following the end of the current repetitive statement. The code
between theBreak call and the end of the repetitive statement is skipped. The condition of the
repetitive statement is NOT evaluated.

This can be used withFor , varrepeat andWhile statements.

Note that while this is a procedure,Break is a reserved word and hence cannot be redefined.

Errors: None.

See also: Continue (109),Exit (115)

Program Example87 ;

{ Program to demonstrate the Break func t i on . }

Var I : l o n g i n t ;

begin
I :=0 ;
While I <10 Do

begin
Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;
end ;

I :=0 ;
Repeat

Inc (I) ;
I f I >5 Then

Break ;
Writeln (i) ;

Unt i l I >=10;
For I :=1 to 10 do

begin
I f I >5 Then

Break ;
Writeln (i) ;
end ;

end .

107

13.2. FUNCTIONS AND PROCEDURES

Chdir
Declaration: Procedure Chdir (const S : string);

Description: Chdir changes the working directory of the process toS.

Errors: If the directoryS doesn’t exist, a run-time error is generated.

See also: Mkdir (129),Rmdir (138)

Program Example7 ;

{ Program to demonstrate the ChDir func t i on . }

begin
{ $I−}
ChDir (ParamStr (1)) ;
i f IOresul t <>0 then

Writeln (’ Cannot change to d i r e c t o r y : ’ , paramstr (1)) ;
end .

Chr
Declaration: Function Chr (X : byte) : Char;

Description: Chr returns the character which has ASCII valueX.

Errors: None.

See also: Ord (131),Str (146)

Program Example8 ;

{ Program to demonstrate the Chr func t i on . }

begin
Write (chr (10) , chr (1 3)) ; { The same e f f e c t as Wr i te ln ; }

end .

Close
Declaration: Procedure Close (Var F : Anyfiletype);

Description: Close flushes the buffer of the fileF and closesF. After a call toClose , data can no longer be
read from or written toF. To reopen a file closed withClose , it isn’t necessary to assign the file
again. A call toReset (137) orRewrite (137) is sufficient.

Errors: None.

See also: Assign (104),Reset (137),Rewrite (137),Flush (118)

Program Example9 ;

{ Program to demonstrate the Close func t i on . }

Var F : tex t ;

begin

108

13.2. FUNCTIONS AND PROCEDURES

Assign (f , ’ Test . t x t ’) ;
ReWrite (F) ;
Writeln (F, ’ Some tex t w r i t t e n to Test . t x t ’) ;
c lose (f) ; { Flushes contents of bu f fe r to disk ,

closes the f i l e . Omit t ing t h i s may
cause data NOT to be w r i t t e n to disk . }

end .

Concat
Declaration: Function Concat (S1,S2 [,S3, ... ,Sn]) : String;

Description: Concat concatenates the stringsS1,S2 etc. to one long string. The resulting string is truncated at
a length of 255 bytes. The same operation can be performed with the+ operation.

Errors: None.

See also: Copy (110),Delete (112),Insert (123),Pos (133),Length (126)

Program Example10 ;

{ Program to demonstrate the Concat func t i on . }
Var

S : String ;

begin
S:= Concat (’ This can be done ’ , ’ Easier ’ , ’ wi th the + operator ! ’) ;

end .

Continue
Declaration: Procedure Continue;

Description: Continue jumps to the end of the current repetitive statement. The code between theContinue
call and the end of the repetitive statement is skipped. The condition of the repetitive statement is
then checked again.

This can be used withFor , varrepeat andWhile statements.

Note that while this is a procedure,Continue is a reserved word and hence cannot be redefined.

Errors: None.

See also: Break (107),Exit (115)

Program Example86 ;

{ Program to demonstrate the Continue func t i on . }

Var I : l o n g i n t ;

begin
I :=0 ;
While I <10 Do

begin
Inc (I) ;
I f I <5 Then

Continue ;

109

13.2. FUNCTIONS AND PROCEDURES

Writeln (i) ;
end ;

I :=0 ;
Repeat

Inc (I) ;
I f I <5 Then

Continue ;
Writeln (i) ;

Unt i l I >=10;
For I :=1 to 10 do

begin
I f I <5 Then

Continue ;
Writeln (i) ;
end ;

end .

Copy
Declaration: Function Copy (Const S : String;Index : Integer;Count : Byte) : String;

Description: Copy returns a string which is a copy if theCount characters inS, starting at positionIndex . If
Count is larger than the length of the stringS, the result is truncated. IfIndex is larger than the
length of the stringS, then an empty string is returned.

Errors: None.

See also: Delete (112),Insert (123),Pos (133)

Program Example11 ;

{ Program to demonstrate the Copy func t i on . }

Var S, T : String ;

begin
T:= ’1234567’ ;
S:= Copy (T , 1 , 2) ; { S:= ’12 ’ }
S:= Copy (T , 4 , 2) ; { S:= ’45 ’ }
S:= Copy (T , 4 , 8) ; { S:= ’4567 ’ }

end .

Cos
Declaration: Function Cos (X : Real) : Real;

Description: Cos returns the cosine ofX, where X is an angle, in radians.

Errors: None.

See also: Arctan (104),Sin (143)

Program Example12 ;

{ Program to demonstrate the Cos func t i on . }

Var R : Real ;

110

13.2. FUNCTIONS AND PROCEDURES

begin
R:= Cos (Pi) ; { R:=−1 }
R:= Cos (Pi / 2) ; { R:=0 }
R:= Cos (0) ; { R:=1 }

end .

CSeg
Declaration: Function CSeg : Word;

Description: CSeg returns the Code segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

See also: DSeg (113),Seg (141),Ofs (131),Ptr (134)

Program Example13 ;

{ Program to demonstrate the CSeg func t i on . }

var W : word ;

begin
W:= CSeg ; {W: = 0 , provided fo r c o m p a t i b i l i t y ,

FPC is 32 b i t . }
end .

Dec
Declaration: Procedure Dec (Var X : Any ordinal type[; Decrement : Longint]);

Description: Dec decreases the value ofX with Decrement . If Decrement isn’t specified, then 1 is taken as
a default.

Errors: A range check can occur, or an underflow error, if you try to decreaseX below its minimum value.

See also: Inc (123)

Program Example14 ;

{ Program to demonstrate the Dec func t i on . }

Var
I : In teger ;
L : Longint ;
W : Word;
B : Byte ;
Si : Shor t In t ;

begin
I :=1 ;
L :=2;
W:=3;
B:=4;
Si :=5 ;

111

13.2. FUNCTIONS AND PROCEDURES

Dec (i) ; { i :=0 }
Dec (L , 2) ; { L :=0 }
Dec (W, 2) ; { W:=1 }
Dec (B,−2) ; { B:=6 }
Dec (Si , 0) ; { Si : = 5 }

end .

Delete
Declaration: Procedure Delete (var S : string;Index : Integer;Count : Integer);

Description: Delete removesCount characters from stringS, starting at positionIndex . All characters after
the delected characters are shiftedCount positions to the left, and the length of the string is adjusted.

Errors: None.

See also: Copy (110),Pos (133),Insert (123)

Program Example15 ;

{ Program to demonstrate the Delete func t i on . }

Var
S : String ;

begin
S:= ’ This is not easy ! ’ ;
Delete (S , 9 , 4) ; { S:= ’ This is easy ! ’ }

end .

Dispose
Declaration: Procedure Dispose (P : pointer);

Procedure Dispiose (P : Typed Pointer; Des : Procedure);

Description: The first formDispose releases the memory allocated with a call toNew (130). The pointerP
must be typed. The released memory is returned to the heap.

The second form ofDispose accepts as a first parameter a pointer to an object type, and as a
second parameter the name of a destructor of this object. The destructor will be called, and the
memory allocated for the object will be freed.

Errors: An error will occur if the pointer doesn’t point to a location in the heap.

See also: New (130),Getmem (120),Freemem (119)

Program Example16 ;

{ Program to demonstrate the Dispose and New func t ions . }

Type SS = String [2 0] ;

AnObj = Object
I : i n teger ;
Constructor I n i t ;
Destructor Done;
end ;

112

13.2. FUNCTIONS AND PROCEDURES

Var
P : ^ SS;
T : ^ AnObj ;

Constructor Anobj . I n i t ;

begin
Writeln (’ I n i t i a l i z i n g an instance of AnObj ! ’) ;

end ;

Destructor AnObj . Done;

begin
Writeln (’ Destroying an instance of AnObj ! ’) ;

end ;

begin
New (P) ;
P^:= ’ Hel lo , World ! ’ ;
Dispose (P) ;
{ P is undefined from here on ! }
New(T, I n i t) ;
T^ . i :=0 ;
Dispose (T, Done) ;

end .

DSeg
Declaration: Function DSeg : Word;

Description: DSeg returns the data segment register. In Free Pascal, it returns always a zero, since Free Pascal
is a 32 bit compiler.

Errors: None.

See also: CSeg (111),Seg (141),Ofs (131),Ptr (134)

Program Example17 ;

{ Program to demonstrate the DSeg func t i on . }

Var
W : Word;

begin
W:= DSeg ; {W: = 0 , This func t ion is provided fo r c o m p a t i b i l i t y ,

FPC is a 32 b i t comi ler . }
end .

Eof
Declaration: Function Eof [(F : Any file type)] : Boolean;

Description: Eof returnsTrue if the file-pointer has reached the end of the file, or if the file is empty. In all
other casesEof returnsFalse . If no file F is specified, standard input is assumed.

113

13.2. FUNCTIONS AND PROCEDURES

Errors: None.

See also: Eoln (114),Assign (104),Reset (137),Rewrite (137)

Program Example18 ;

{ Program to demonstrate the Eof func t i on . }

Var T1 , T2 : tex t ;
C : Char ;

begin
{ Set f i l e to read from . Empty means from standard input . }
assign (t1 , paramstr (1)) ;
reset (t1) ;
{ Set f i l e to wr i te to . Empty means to standard output . }
assign (t2 , paramstr (2)) ;
rewri te (t2) ;
While not eof (t1) do

begin
read (t1 , C) ;
write (t2 , C) ;
end ;

Close (t1) ;
Close (t2) ;

end .

Eoln
Declaration: Function Eoln [(F : Text)] : Boolean;

Description: Eof returnsTrue if the file pointer has reached the end of a line, which is demarcated by a line-
feed character (ASCII value 10), or if the end of the file is reached. In all other casesEof returns
False . If no file F is specified, standard input is assumed. It can only be used on files of typeText .

Errors: None.

See also: Eof (113),Assign (104),Reset (137),Rewrite (137)

Program Example19 ;

{ Program to demonstrate the Eoln func t i on . }

begin
{ This program waits fo r keyboard input . }
{ I t w i l l p r i n t True when an empty l i n e is put in ,

and fa lse when you type a non−empty l i n e .
I t w i l l only stop when you press enter . }

While not Eoln do
Writeln (eoln) ;

end .

Erase
Declaration: Procedure Erase (Var F : Any file type);

114

13.2. FUNCTIONS AND PROCEDURES

Description: Erase removes an unopened file from disk. The file should be assigned withAssign , but not
opened withReset or Rewrite

Errors: A run-time error will be generated if the specified file doesn’t exist, or is opened by the program.

See also: Assign (104)

Program Example20 ;

{ Program to demonstrate the Erase func t i on . }

Var F : Text ;

begin
{ Create a f i l e wi th a l i n e of tex t in i t }
Assign (F, ’ t es t . t x t ’) ;
Rewrite (F) ;
Writeln (F, ’ Try and f i nd t h i s when I ’ ’ m f i n i shed ! ’) ;
c lose (f) ;
{ Now remove the f i l e }
Erase (f) ;

end .

Exit
Declaration: Procedure Exit ([Var X : return type)];

Description: Exit exits the current subroutine, and returns control to the calling routine. If invoked in the main
program routine, exit stops the program. The optional argumentX allows to specify a return value,
in the caseExit is invoked in a function. The function result will then be equal toX.

Errors: None.

See also: Halt (120)

Program Example21 ;

{ Program to demonstrate the Ex i t f unc t i on . }

Procedure DoAnExit (Yes : Boolean) ;

{ This procedure demonstrates the normal Ex i t }

begin
Writeln (’ Hel lo from DoAnExit ! ’) ;
I f Yes then

begin
Writeln (’ Ba i l i ng out ear ly . ’) ;
ex i t ;
end ;

Writeln (’ Cont inuing to the end . ’) ;
end ;

Function Pos i t i ve (Which : In teger) : Boolean ;

{ This func t i on demonstrates the ext ra FPC feature of Ex i t :
You can spec i fy a re tu rn value fo r the func t i on }

115

13.2. FUNCTIONS AND PROCEDURES

begin
i f Which >0 then

ex i t (True)
else

ex i t (False) ;
end ;

begin
{ This c a l l w i l l go to the end }
DoAnExit (False) ;
{ This c a l l w i l l b a i l out ear ly }
DoAnExit (True) ;
i f Pos i t i ve (−1) then

Writeln (’ The compi ler is nuts , −1 is not p o s i t i v e . ’)
else

Writeln (’ The compi ler is not so bad , −1 seems to be negat ive . ’) ;
end .

Exp
Declaration: Function Exp (Var X : Real) : Real;

Description: Exp returns the exponent ofX, i.e. the numbere to the powerX.

Errors: None.

See also: Ln (126),Power (133)

Program Example22 ;

{ Program to demonstrate the Exp func t i on . }

begin
Writeln (Exp (1) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

Filepos
Declaration: Function Filepos (Var F : Any file type) : Longint;

Description: Filepos returns the current record position of the file-pointer in fileF. It cannot be invoked with
a file of typeText . If you try to do this, a compiler error will be generated.

Errors: None.

See also: Filesize (117)

Program Example23 ;

{ Program to demonstrate the Fi lePos func t i on . }

Var F : Fi le of Longint ;
L , FP : l o n g i n t ;

begin
{ F i l l a f i l e wi th data :

Each pos i t i on conta ins the pos i t i on ! }

116

13.2. FUNCTIONS AND PROCEDURES

Assign (F, ’ t es t . dat ’) ;
Rewrite (F) ;
For L :=0 to 100 do

begin
FP:= FilePos (F) ;
Write (F, FP) ;
end ;

Close (F) ;
Reset (F) ;
{ I f a l l goes wel l , nothing is displayed here . }
While not (Eof (F)) do

begin
FP:= FilePos (F) ;
Read (F, L) ;
i f L<>FP then

Writeln (’ Something wrong : Got ’ , l , ’ on pos ’ , FP) ;
end ;

Close (F) ;
Erase (f) ;

end .

Filesize
Declaration: Function Filesize (Var F : Any file type) : Longint;

Description: Filesize returns the total number of records in fileF. It cannot be invoked with a file of type
Text . (underLINUX , this also means that it cannot be invoked on pipes.) IfF is empty, 0 is returned.

Errors: None.

See also: Filepos (116)

Program Example24 ;

{ Program to demonstrate the F i leS ize func t i on . }

Var F : Fi le Of byte ;
L : Fi le Of Longint ;

begin
Assign (F, paramstr (1)) ;
Reset (F) ;
Writeln (’ F i l e s ize in bytes : ’ , Fi leSize (F)) ;
Close (F) ;
Assign (L , paramstr (1)) ;
Reset (L) ;
Writeln (’ F i l e s ize in Longints : ’ , Fi leSize (L)) ;
Close (f) ;

end .

Fillchar
Declaration: Procedure Fillchar (Var X;Count : Longint;Value : char or byte);;

Description: Fillchar fills the memory starting atX with Count bytes or characters with value equal to
Value .

117

13.2. FUNCTIONS AND PROCEDURES

Errors: No checking on the size ofX is done.

See also: Fillword (118),Move (130)

Program Example25 ;

{ Program to demonstrate the F i l lCha r func t i on . }

Var S : String [1 0] ;
I : Byte ;

begin
For i :=10 downto 0 do

begin
{ F i l l S wi th i spaces }
Fi l lChar (S, SizeOf (S) , ’ ’) ;
{ Set Length }
SetLength (S, I) ;
Writeln (s , ’ ∗ ’) ;
end ;

end .

Fillword
Declaration: Procedure Fillword (Var X;Count : Longint;Value : Word);;

Description: Fillword fills the memory starting atX with Count words with value equal toValue .

Errors: No checking on the size ofX is done.

See also: Fillchar (117),Move (130)

Program Example76 ;

{ Program to demonstrate the Fi l lWord func t i on . }

Var W : Array [1 . . 1 0 0] of Word;

begin
{ Quick i n i t i a l i z a t i o n of array W }
Fi l lWord (W, 1 0 0 , 0) ;

end .

Flush
Declaration: Procedure Flush (Var F : Text);

Description: Flush empties the internal buffer of an opened fileF and writes the contents to disk. The file is
not closed as a result of this call.

Errors: If the disk is full, a run-time error will be generated.

See also: Close (108)

Program Example26 ;

{ Program to demonstrate the Flush func t i on . }

118

13.2. FUNCTIONS AND PROCEDURES

Var F : Text ;

begin
{ Assign F to standard output }
Assign (F, ’ ’) ;
Rewrite (F) ;
Writeln (F, ’ This l i n e is w r i t t e n f i r s t , but appears l a t e r ! ’) ;
{ At t h i s po in t the tex t is in the i n t e r n a l pascal bu f fe r ,

and not yet w r i t t e n to standard output }
Writeln (’ This l i n e appears f i r s t , but is w r i t t e n l a t e r ! ’) ;
{ A w r i t e l n to ’ output ’ always causes a f lush − so t h i s tex t is

w r i t t e n to screen }
Flush (f) ;
{ At t h i s po in t , the tex t w r i t t e n to F is w r i t t e n to screen . }
Write (F, ’ F in i sh ing ’) ;
Close (f) ; { Closing a f i l e always causes a f lush f i r s t }
Writeln (’ o f f . ’) ;

end .

Frac
Declaration: Function Frac (X : Real) : Real;

Description: Frac returns the non-integer part ofX.

Errors: None.

See also: Round (139),Int (124)

Program Example27 ;

{ Program to demonstrate the Frac func t i on . }

Var R : Real ;

begin
Writeln (Frac (1 2 3 . 4 5 6) : 0 : 3) ; { P r in t s O.456 }
Writeln (Frac (−1 2 3 . 4 5 6) : 0 : 3) ; { P r in t s −O.456 }

end .

Freemem
Declaration: Procedure Freemem (Var P : pointer; Count : Longint);

Description: Freemem releases the memory occupied by the pointerP, of sizeCount (in bytes), and returns it
to the heap.P should point to the memory allocated to a dynamical variable.

Errors: An error will occur whenP doesn’t point to the heap.

See also: Getmem (120),New (130),Dispose (112)

Program Example28 ;

{ Program to demonstrate the FreeMem and GetMem func t ions . }

Var P : Poin ter ;
MM : Longint ;

119

13.2. FUNCTIONS AND PROCEDURES

begin
{ Get memory fo r P }
MM:= MemAvail ;
Writeln (’ Memory ava i l ab le before GetMem : ’ , MemAvail) ;
GetMem (P, 8 0) ;
MM:=MM−Memavail ;
Write (’ Memory ava i l ab le a f t e r GetMem : ’ , MemAvail) ;
Writeln (’ or ’ ,MM, ’ bytes less than before the c a l l . ’) ;
{ f i l l i t wi th spaces }
Fi l lChar (P^ ,80 , ’ ’) ;
{ Free the memory again }
FreeMem (P, 8 0) ;
Writeln (’ Memory ava i l ab le a f t e r FreeMem : ’ , MemAvail) ;

end .

Getdir
Declaration: Procedure Getdir (drivenr : byte;var dir : string);

Description: Getdir returns indir the current directory on the drivedrivenr , where drivenr is 1 for the
first floppy drive, 3 for the first hard disk etc. A value of 0 returns the directory on the current disk.
On LINUX , drivenr is ignored, as there is only one directory tree.

Errors: An error is returned underDOS, if the drive requested isn’t ready.

See also: Chdir (108)

Program Example29 ;

{ Program to demonstrate the GetDir func t i on . }

Var S : String ;

begin
GetDir (0 , S) ;
Writeln (’ Current d i r e c t o r y is : ’ , S) ;

end .

Getmem
Declaration: Procedure Getmem (var p : pointer;size : Longint);

Description: GetmemreservesSize bytes memory on the heap, and returns a pointer to this memory inp. If
no more memory is available, nil is returned.

Errors: None.

See also: Freemem (119),Dispose (112),New (130)

For an example, seeFreemem (119).

Halt
Declaration: Procedure Halt [(Errnum : byte)];

120

13.2. FUNCTIONS AND PROCEDURES

Description: Halt stops program execution and returns control to the calling program. The optional argument
Errnum specifies an exit value. If omitted, zero is returned.

Errors: None.

See also: Exit (115)

Program Example30 ;

{ Program to demonstrate the Hal t f unc t i on . }

begin
Writeln (’ Before Hal t . ’) ;
Halt (1) ; { Stop with e x i t code 1 }
Writeln (’ A f te r Hal t doesn ’ ’ t get executed . ’) ;

end .

HexStr
Declaration: Function HexStr (Value : longint; cnt : byte) : String;

Description: HexStr returns a string with the hexadecimal representation ofValue . The string has at most
cnt charaters. (i.e. only thecnt rightmost nibbles are taken into account) To have a complete
representation of a Longint-type value, you need 8 nibbles, i.e.cnt=8 .

Errors: None.

See also: Str (146),Val (148),BinStr (105)

Program example81 ;

{ Program to demonstrate the HexStr func t i on }

Const Value = 45678;

Var I : l o n g i n t ;

begin
For I :=1 to 10 do

Writeln (HexStr (Value , I)) ;
end .

Hi
Declaration: Function Hi (X : Ordinal type) : Word or byte;

Description: Hi returns the high byte or word fromX, depending on the size of X. If the size of X is 4, then the
high word is returned. If the size is 2 then the high byte is returned.Hi cannot be invoked on types
of size 1, such as byte or char.

Errors: None

See also: Lo (126)

121

13.2. FUNCTIONS AND PROCEDURES

Program Example31 ;

{ Program to demonstrate the Hi func t i on . }

var
L : Longint ;
W : Word;

begin
L :=1 Shl 1 6 ; { = $10000 }
W:=1 Shl 8 ; { = $100 }
Writeln (Hi (L)) ; { P r in t s 1 }
Writeln (Hi (W)) ; { P r in t s 1 }

end .

High
Declaration: Function High (Type identifier or variable reference) : Longint;

Description: The return value ofHigh depends on it’s argument:

1.If the argument is an ordinal type,High returns the lowest value in the range of the given
ordinal type.

2.If the argument is an array type or an array type variable thenHigh returns the highest possible
value of it’s index.

3.If the argument is an open array identifier in a function or procedure, thenHigh returns the
highest index of the array, as if the array has a zero-based index.

Errors: None.

See also: Low (127),Ord (131),Pred (134),Succ (146)

Program example80 ;

{ Example to demonstrate the High and Low func t ions . }

Type TEnum = (North , East , South , West) ;
TRange = 1 4 . . 5 5 ;
TArray = Array [2 . . 1 0] of Longint ;

Function Average (Row : Array of Longint) : Real ;

Var I : l o n g i n t ;
Temp : Real ;

begin
Temp : = Row[0] ;
For I : = 1 to High (Row) do

Temp : = Temp + Row[i] ;
Average : = Temp / (High (Row)+1) ;

end ;

Var A : TEnum;
B : TRange;
C : TArray ;
I : l o n g i n t ;

122

13.2. FUNCTIONS AND PROCEDURES

begin
Writeln (’ TEnum goes from : ’ , Ord (Low (TEnum)) , ’ to ’ , Ord (high (TEnum)) , ’ . ’) ;
Writeln (’ A goes from : ’ , Ord (Low (A)) , ’ to ’ , Ord (high (A)) , ’ . ’) ;
Writeln (’ TRange goes from : ’ , Ord (Low (TRange)) , ’ to ’ , Ord (high (TRange)) , ’ . ’) ;
Writeln (’ B goes from : ’ , Ord (Low (B)) , ’ to ’ , Ord (high (B)) , ’ . ’) ;
Writeln (’ TArray index goes from : ’ , Ord (Low (TArray)) , ’ to ’ , Ord (high (TArray)) , ’ . ’) ;
Writeln (’ C index goes from : ’ , Low (C) , ’ to ’ , high (C) , ’ . ’) ;
For I :=Low (C) to High (C) do

C[i] := I ;
Writeln (’ Average : ’ , Average (c)) ;

end .

Inc
Declaration: Procedure Inc (Var X : Any ordinal type[; Increment : Longint]);

Description: Inc increases the value ofX with Increment . If Increment isn’t specified, then 1 is taken as
a default.

Errors: If range checking is on, then A range check can occur, or an overflow error, if you try to increaseX
over its maximum value.

See also: Dec (111)

Program Example32 ;

{ Program to demonstrate the Inc func t i on . }

Const
C : Cardinal = 1;
L : Longint = 1;
I : In teger = 1;
W : Word = 1;
B : Byte = 1;
SI : Shor t In t = 1 ;
CH : Char = ’ A’ ;

begin
Inc (C) ; { C:=2 }
Inc (L , 5) ; { L :=6 }
Inc (I ,−3) ; { I :=−2 }
Inc (W, 3) ; { W:=4 }
Inc (B, 1 0 0) ; { B:=101 }
Inc (SI ,−3) ; { Si :=−2 }
Inc (CH, 1) ; { ch := ’ B ’ }

end .

Insert
Declaration: Procedure Insert (Const Source : String;var S : String;Index : Longint);

Description: Insert inserts stringSource in stringS, at positionIndex , shifting all characters afterIndex
to the right. The resulting string is truncated at 255 characters, if needed. (i.e. for shortstrings)

Errors: None.

123

13.2. FUNCTIONS AND PROCEDURES

See also: Delete (112),Copy (110),Pos (133)

Program Example33 ;

{ Program to demonstrate the Inse r t func t i on . }

Var S : String ;

begin
S:= ’ Free Pascal is d i f f i c u l t to use ! ’ ;
Inser t (’ NOT ’ , S, pos (’ d i f f i c u l t ’ , S)) ;
wri te ln (s) ;

end .

Int
Declaration: Function Int (X : Real) : Real;

Description: Int returns the integer part of any RealX, as a Real.

Errors: None.

See also: Frac (119),Round (139)

Program Example34 ;

{ Program to demonstrate the In t func t i on . }

begin
Writeln (In t (1 2 3 . 4 5 6) : 0 : 1) ; { P r in t s 123.0 }
Writeln (In t (−123 .456) :0 :1) ; { P r in t s −123.0 }

end .

IOresult
Declaration: Function IOresult : Word;

Description: IOresult contains the result of any input/output call, when the{$i-} compiler directive is active,
disabling IO checking. When the flag is read, it is reset to zero. IfIOresult is zero, the operation
completed successfully. If non-zero, an error occurred. The following errors can occur:

DOS errors :

2 File not found.

3 Path not found.

4 Too many open files.

5 Access denied.

6 Invalid file handle.

12 Invalid file-access mode.

15 Invalid disk number.

16Cannot remove current directory.

17Cannot rename across volumes.

I/O errors :

124

13.2. FUNCTIONS AND PROCEDURES

100Error when reading from disk.

101Error when writing to disk.

102File not assigned.

103File not open.

104File not opened for input.

105File not opened for output.

106Invalid number.

Fatal errors :

150Disk is write protected.

151Unknown device.

152Drive not ready.

153Unknown command.

154CRC check failed.

155Invalid drive specified..

156Seek error on disk.

157Invalid media type.

158Sector not found.

159Printer out of paper.

160Error when writing to device.

161Error when reading from device.

162Hardware failure.

Errors: None.

See also: All I/O functions.

Program Example35 ;

{ Program to demonstrate the IOResult f unc t i on . }

Var F : tex t ;

begin
Assign (f , paramstr (1)) ;
{ $ i−}
Reset (f) ;
{ $ i +}
I f IOresul t <>0 then

wr i te ln (’ F i l e ’ , paramstr (1) , ’ doesn ’ ’ t ex i s t ’)
else

wr i te ln (’ F i l e ’ , paramstr (1) , ’ ex i s t s ’) ;
end .

125

13.2. FUNCTIONS AND PROCEDURES

Length
Declaration: Function Length (S : String) : Byte;

Description: Length returns the length of the stringS, which is limited to 255 for shortstrings. If the strings
S is empty, 0 is returned.Note: The length of the stringS is stored inS[0] for shortstrings only.
Ansistrings have their length stored elsewhere, theLength fuction should always be used on an-
sistrings.

Errors: None.

See also: Pos (133)

Program Example36 ;

{ Program to demonstrate the Length func t i on . }

Var S : String ;
I : In teger ;

begin
S:= ’ ’ ;
for i :=1 to 10 do

begin
S:= S+ ’ ∗ ’ ;
Writeln (Length (S) : 2 , ’ : ’ , s) ;
end ;

end .

Ln
Declaration: Function Ln (X : Real) : Real;

Description: Ln returns the natural logarithm of the Real parameterX. X must be positive.

Errors: An run-time error will occur whenX is negative.

See also: Exp (116),Power (133)

Program Example37 ;

{ Program to demonstrate the Ln func t i on . }

begin
Writeln (Ln (1)) ; { P r in t s 0 }
Writeln (Ln (Exp (1))) ; { P r in t s 1 }

end .

Lo
Declaration: Function Lo (O : Word or Longint) : Byte or Word;

Description: Lo returns the low byte of its argument if this is of typeInteger or Word. It returns the low
word of its argument if this is of typeLongint or Cardinal .

Errors: None.

See also: Ord (131),Chr (108),Hi (121)

126

13.2. FUNCTIONS AND PROCEDURES

Program Example38 ;

{ Program to demonstrate the Lo func t i on . }

Var L : Longint ;
W : Word;

begin
L : = (1 Shl 1 6) + (1 Shl 4) ; { $10010 }
Writeln (Lo (L)) ; { P r in t s 1 6 }
W: = (1 Shl 8) + (1 Shl 4) ; { $110 }
Writeln (Lo (W)) ; { P r in t s 1 6 }

end .

LongJmp
Declaration: Procedure LongJmp (Var env : Jmp_Buf; Value : Longint);

Description: LongJmp jumps to the adress in theenv jmp_buf , and resores the registers that were stored in
it at the correspondingSetJmp (141) call. In effect, program flow will continue at theSetJmp call,
which will returnvalue instead of 0. If you pas avalue equal to zero, it will be converted to 1
before passing it on. The call will not return, so it must be used with extreme care. This can be used
for error recovery, for instance when a segmentation fault occurred.

Errors: None.

See also: SetJmp (141)

For an example, seeSetJmp (141)

Low
Declaration: Function Low (Type identifier or variable reference) : Longint;

Description: The return value ofLow depends on it’s argument:

1.If the argument is an ordinal type,Low returns the lowest value in the range of the given ordinal
type.

2.If the argument is an array type or an array type variable thenLow returns the lowest possible
value of it’s index.

Errors: None.

See also: High (122),Ord (131),Pred (134),Succ (146)

for an example, seeHigh (122).

Lowercase
Declaration: Function Lowercase (C : Char or String) : Char or String;

Description: Lowercase returns the lowercase version of its argumentC. If its argument is a string, then the
complete string is converted to lowercase. The type of the returned value is the same as the type of
the argument.

Errors: None.

127

13.2. FUNCTIONS AND PROCEDURES

See also: Upcase (148)

Program Example73 ;

{ Program to demonstrate the Lowercase func t i on . }

Var I : Longint ;

begin
For i := ord (’ A’) to ord (’ Z ’) do

wri te (lowercase (chr (i))) ;
Writeln ;
Writeln (Lowercase (’ ABCDEFGHIJKLMNOPQRSTUVWXYZ’)) ;

end .

Mark
Declaration: Procedure Mark (Var P : Pointer);

Description: Mark copies the current heap-pointer toP.

Errors: None.

See also: Getmem (120),Freemem (119),New (130),Dispose (112),Maxavail (128)

Program Example39 ;

{ Program to demonstrate the Mark and Release func t ions . }

Var P, PP, PPP,MM : Poin ter ;

begin
Getmem (P,100) ;
Mark (MM) ;
Writeln (’ Getmem 1 0 0 : Memory ava i l ab le : ’ , MemAvail , ’ (marked) ’) ;
GetMem (PP,1000) ;
Writeln (’ Getmem 1 0 0 0 : Memory ava i l ab le : ’ , MemAvail) ;
GetMem (PPP,100000);
Writeln (’ Getmem 10000 : Memory ava i l ab le : ’ , MemAvail) ;
Release (MM) ;
Writeln (’ Released : Memory ava i l ab le : ’ , MemAvail) ;
{ At t h i s po in t , PP and PPP are i n v a l i d ! }

end .

Maxavail
Declaration: Function Maxavail : Longint;

Description: Maxavail returns the size, in bytes, of the biggest free memory block in the heap.

Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

See also: Release (136),Memavail (129),Freemem (119),Getmem (120)

128

13.2. FUNCTIONS AND PROCEDURES

Program Example40 ;

{ Program to demonstrate the MaxAvail f unc t i on . }

Var
P : Poin ter ;
I : l o n g i n t ;

begin
{ This w i l l a l l oca te memory u n t i l there is no more memory}
I :=0 ;
While MaxAvail >=1000 do

begin
Inc (I) ;
GetMem (P,1000) ;
end ;

{ Defau l t 4MB heap is a l loca ted , so 4000 blocks
should be a l loca ted .
When compiled with the −Ch10000 switch , the program
w i l l be able to a l l oca te 10 block }

Writeln (’ A l located ’ , i , ’ b locks of 1000 bytes ’) ;
end .

Memavail
Declaration: Function Memavail : Longint;

Description: Memavail returns the size, in bytes, of the free heap memory.

Remark: The heap grows dynamically if more memory is needed than is available.

Errors: None.

See also: Maxavail (128),Freemem (119),Getmem (120)

Program Example41 ;

{ Program to demonstrate the MemAvail f unc t i on . }

Var
P, PP : Poin ter ;

begin
GetMem (P,100) ;
GetMem (PP,10000) ;
FreeMem (P,100) ;
{ Due to the heap fragmentat ion in t roduced

By the previous c a l l s , the maximum amount of memory
isn ’ t equal to the maximum block size ava i l ab le . }

Writeln (’ Tota l heap ava i l ab le (Bytes) : ’ , MemAvail) ;
Writeln (’ Largest block ava i l ab le (Bytes) : ’ , MaxAvail) ;

end .

Mkdir
Declaration: Procedure Mkdir (const S : string);

Description: Mkdir creates a new directoryS.

129

13.2. FUNCTIONS AND PROCEDURES

Errors: If a parent-directory of directoryS doesn’t exist, a run-time error is generated.

See also: Chdir (108),Rmdir (138)

For an example, seeRmdir (138).

Move
Declaration: Procedure Move (var Source,Dest;Count : Longint);

Description: Move movesCount bytes fromSource to Dest .

Errors: If either Dest or Source is outside the accessible memory for the process, then a run-time error
will be generated. With older versions of the compiler, a segmentation-fault will occur.

See also: Fillword (118),Fillchar (117)

Program Example42 ;

{ Program to demonstrate the Move func t i on . }

Var S1, S2 : String [3 0] ;

begin
S1:= ’ Hel lo World ! ’ ;
S2:= ’ Bye , bye ! ’ ;
Move (S1, S2, Sizeof (S1)) ;
Writeln (S2) ;

end .

New
Declaration: Procedure New (Var P : Pointer[, Constructor]);

Description: Newallocates a new instance of the type pointed to byP, and puts the address inP. If P is an object,
then it is possible to specify the name of the constructor with which the instance will be created.

Errors: If not enough memory is available,Nil will be returned.

See also: Dispose (112),Freemem (119),Getmem (120),Memavail (129),Maxavail (128)

For an example, seeDispose (112).

Odd
Declaration: Function Odd (X : Longint) : Boolean;

Description: Odd returnsTrue if X is odd, orFalse otherwise.

Errors: None.

See also: Abs (103),Ord (131)

130

13.2. FUNCTIONS AND PROCEDURES

Program Example43 ;

{ Program to demonstrate the Odd func t i on . }

begin
I f Odd (1) Then

Writeln (’ Everyth ing OK with 1 ! ’) ;
I f Not Odd (2) Then

Writeln (’ Everyth ing OK with 2 ! ’) ;
end .

Ofs
Declaration: Function Ofs Var X : Longint;

Description: Ofs returns the offset of the address of a variable. This function is only supported for compatibility.
In Free Pascal, it returns always the complete address of the variable, since Free Pascal is a 32 bit
compiler.

Errors: None.

See also: DSeg (113),CSeg (111),Seg (141),Ptr (134)

Program Example44 ;

{ Program to demonstrate the Ofs func t i on . }

Var W : Pointer ;

begin
W:= Poin ter (Ofs (W)) ; { W conta ins i t s own o f f s e t . }

end .

Ord
Declaration: Function Ord (X : Any ordinal type) : Longint;

Description: Ord returns the Ordinal value of a ordinal-type variableX.

Errors: None.

See also: Chr (108),Succ (146),Pred (134),High (122),Low (127)

Program Example45 ;

{ Program to demonstrate the Ord , Pred , Succ func t ions . }

Type
TEnum = (Zero , One, Two, Three , Four) ;

Var
X : Longint ;
Y : TEnum;

begin
X:=125;

131

13.2. FUNCTIONS AND PROCEDURES

Writeln (Ord (X)) ; { P r in t s 125 }
X:= Pred (X) ;
Writeln (Ord (X)) ; { p r i n t s 124 }
Y:= One;
Writeln (Ord (y)) ; { P r in t s 1 }
Y:= Succ (Y) ;
Writeln (Ord (Y)) ; { P r in t s 2 }

end .

Paramcount
Declaration: Function Paramcount : Longint;

Description: Paramcount returns the number of command-line arguments. If no arguments were given to the
running program,0 is returned.

Errors: None.

See also: Paramstr (132)

Program Example46 ;

{ Program to demonstrate the ParamCount and ParamStr func t ions . }
Var

I : Longint ;

begin
Writeln (paramstr (0) , ’ : Got ’ , ParamCount , ’ command−l i n e parameters : ’) ;
For i :=1 to ParamCount do

Writeln (ParamStr (i)) ;
end .

Paramstr
Declaration: Function Paramstr (L : Longint) : String;

Description: Paramstr returns theL-th command-line argument.L must be between0 andParamcount ,
these values included. The zeroth argument is the name with which the program was started.

In all cases, the command-line will be truncated to a length of 255, even though the operating system
may support bigger command-lines. If you want to access the complete command-line, you must use
theargv pointer to access the Real values of the command-line parameters.

Errors: None.

See also: Paramcount (132)

For an example, seeParamcount (132).

Pi
Declaration: Function Pi : Real;

Description: Pi returns the value of Pi (3.1415926535897932385).

Errors: None.

132

13.2. FUNCTIONS AND PROCEDURES

See also: Cos (110),Sin (143)

Program Example47 ;

{ Program to demonstrate the Pi func t i on . }

begin
Writeln (Pi) ; {3.1415926}
Writeln (Sin (Pi)) ;

end .

Pos
Declaration: Function Pos (Const Substr : String;Const S : String) : Byte;

Description: Pos returns the index ofSubstr in S, if S containsSubstr . In caseSubstr isn’t found,0 is
returned. The search is case-sensitive.

Errors: None

See also: Length (126),Copy (110),Delete (112),Insert (123)

Program Example48 ;

{ Program to demonstrate the Pos func t i on . }

Var
S : String ;

begin
S:= ’ The f i r s t space in t h i s sentence is at pos i t i on : ’ ;
Writeln (S, pos (’ ’ , S)) ;
S:= ’ The l a s t l e t t e r of the alphabet doesn ’ ’ t appear in t h i s sentence ’ ;
I f (Pos (’ Z ’ , S)=0) and (Pos (’ z ’ , S)=0) then

Writeln (S) ;
end .

Power
Declaration: Function Power (base,expon : Real) : Real;

Description: Power returns the value ofbase to the powerexpon . Base andexpon can be of type Longint,
in which case the result will also be a Longint.

The function actually returnsExp(expon*Ln(base))

Errors: None.

See also: Exp (116),Ln (126)

Program Example78 ;

{ Program to demonstrate the Power func t i on . }

begin
Writeln (Power (exp (1 . 0) , 1 . 0) : 8 : 2) ; { Should p r i n t 2 . 7 2 }

end .

133

13.2. FUNCTIONS AND PROCEDURES

Pred
Declaration: Function Pred (X : Any ordinal type) : Same type;

Description: Pred returns the element that precedes the element that was passed to it. If it is applied to the first
value of the ordinal type, and the program was compiled with range checking on ({$R+} , then a
run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (131),Pred (134),High (122),Low (127)

for an example, seeOrd (131)

Ptr
Declaration: Function Ptr (Sel,Off : Longint) : Pointer;

Description: Ptr returns a pointer, pointing to the address specified by segmentSel and offsetOff .

Remark:

1.In the 32-bit flat-memory model supported by Free Pascal, this function is obsolete.

2.The returned address is simply the offset. If you recompile the RTL with-dDoMapping
defined, then the compiler returns the following :ptr := pointer($e0000000+sel
shl 4+off) underDOS, or ptr := pointer(sel shl 4+off) on other OSes.

Errors: None.

See also: Addr (103)

Program Example59 ;

{ Program to demonstrate the Ptr func t i on . }

Var P : ^ String ;
S : String ;

begin
S:= ’ Hel lo , World ! ’ ;
P:= Ptr (Seg (S) , Longint (Ofs (S))) ;
{ P now poin ts to S ! }
Writeln (P^) ;

end .

Random
Declaration: Function Random [(L : Longint)] : Longint or Real;

Description: Randomreturns a random number larger or equal to0 and strictly less thanL. If the argumentL is
omitted, a Real number between 0 and 1 is returned. (0 included, 1 excluded)

Errors: None.

See also: Randomize (135)

134

13.2. FUNCTIONS AND PROCEDURES

Program Example49 ;

{ Program to demonstrate the Random and Randomize func t ions . }

Var I , Count , guess : Longint ;
R : Real ;

begin
Randomize ; { This way we generate a new sequence every time

the program is run }
Count :=0;
For i :=1 to 1000 do

I f Random >0.5 then inc (Count) ;
Writeln (’ Generated ’ , Count , ’ numbers > 0 . 5 ’) ;
Writeln (’ out of 1000 generated numbers . ’) ;
count :=0;
For i :=1 to 5 do

begin
wri te (’ Guess a number between 1 and 5 : ’) ;
readln (Guess) ;
I f Guess=Random (5)+1 then inc (count) ;
end ;

Writeln (’ You guessed ’ , Count , ’ out of 5 cor rec t . ’) ;
end .

Randomize
Declaration: Procedure Randomize ;

Description: Randomize initializes the random number generator of Free Pascal, by giving a value toRand-
seed , calculated with the system clock.

Errors: None.

See also: Random (134)

For an example, seeRandom (134).

Read
Declaration: Procedure Read ([Var F : Any file type], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a fileF, and stores the result inV1, V2, etc.; If no fileF is
specified, then standard input is read. IfF is of typeText , then the variablesV1, V2 etc. must be
of typeChar , Integer , Real , String or PChar . If F is a typed file, then each of the variables
must be of the type specified in the declaration ofF. Untyped files are not allowed as an argument.

Errors: If no data is available, a run-time error is generated. This behavior can be controlled with the{$i}
compiler switch.

See also: Readln (136),Blockread (106),Write (149),Blockwrite (107)

Program Example50 ;

{ Program to demonstrate the Read(Ln) func t i on . }

Var S : String ;

135

13.2. FUNCTIONS AND PROCEDURES

C : Char ;
F : Fi le of char ;

begin
Assign (F, ’ ex50 . pp ’) ;
Reset (F) ;
C:= ’ A’ ;
Writeln (’ The characters before the f i r s t space in ex50 . pp are : ’) ;
While not Eof (f) and (C<> ’ ’) do

Begin
Read (F, C) ;
Write (C) ;
end ;

Writeln ;
Close (F) ;
Writeln (’ Type some words . An empty l i n e ends the program . ’) ;
repeat

Readln (S) ;
un t i l S= ’ ’ ;

end .

Readln
Declaration: Procedure Readln [Var F : Text], V1 [, V2, ... , Vn]);

Description: Read reads one or more values from a fileF, and stores the result inV1, V2, etc. After that it goes
to the next line in the file (defined by theLineFeed (#10) character). If no fileF is specified,
then standard input is read. The variablesV1, V2 etc. must be of typeChar , Integer , Real ,
String or PChar .

Errors: If no data is available, a run-time error is generated. This behavior can be controlled with the{$i}
compiler switch.

See also: Read (135),Blockread (106),Write (149),Blockwrite (107)

For an example, seeRead (135).

Release
Declaration: Procedure Release (Var P : pointer);

Description: Release sets the top of the Heap to the location pointed to byP. All memory at a location higher
thanP is marked empty.

Errors: A run-time error will be generated ifP points to memory outside the heap.

See also: Mark (128),Memavail (129),Maxavail (128),Getmem (120),Freemem (119)New (130),Dis-
pose (112)

For an example, seeMark (128).

Rename
Declaration: Procedure Rename (Var F : Any Filetype; Const S : String);

Description: Renamechanges the name of the assigned fileF to S. F must be assigned, but not opened.

136

13.2. FUNCTIONS AND PROCEDURES

Errors: A run-time error will be generated ifF isn’t assigned, or doesn’t exist.

See also: Erase (114)

Program Example77 ;

{ Program to demonstrate the Rename func t i on . }
Var F : Text ;

begin
Assign (F, paramstr (1)) ;
Rename (F, paramstr (2)) ;

end .

Reset
Declaration: Procedure Reset (Var F : Any File Type[; L : Longint]);

Description: Reset opens a fileF for reading.F can be any file type. IfF is an untyped or typed file, then it is
opened for reading and writing. IfF is an untyped file, the record size can be specified in the optional
parameterL. Default a value of 128 is used.

Errors: If the file cannot be opened for reading, then a run-time error is generated. This behavior can be
changed by the{$i} compiler switch.

See also: Rewrite (137),Assign (104),Close (108),Append (103)

Program Example51 ;

{ Program to demonstrate the Reset func t i on . }

Function Fi leExis ts (Name : String) : boolean ;

Var F : Fi le ;

begin
{ $ i−}
Assign (F, Name) ;
Reset (F) ;
{ $I +}
Fi leExis ts := (IoResult =0) and (Name<> ’ ’) ;
Close (f) ;

end ;

begin
I f F i leExis ts (Paramstr (1)) then

Writeln (’ F i l e found ’)
else

Writeln (’ F i l e NOT found ’) ;
end .

Rewrite
Declaration: Procedure Rewrite (Var F : Any File Type[; L : Longint]);

137

13.2. FUNCTIONS AND PROCEDURES

Description: Rewrite opens a fileF for writing. F can be any file type. IfF is an untyped or typed file, then
it is opened for reading and writing. IfF is an untyped file, the record size can be specified in the
optional parameterL. Default a value of 128 is used. ifRewrite finds a file with the same name as
F, this file is truncated to length0. If it doesn’t find such a file, a new file is created.

Errors: If the file cannot be opened for writing, then a run-time error is generated. This behavior can be
changed by the{$i} compiler switch.

See also: Reset (137),Assign (104),Close (108),Flush (118),Append (103)

Program Example52 ;

{ Program to demonstrate the Rewrite func t i on . }

Var F : Fi le ;
I : l o n g i n t ;

begin
Assign (F, ’ Test . dat ’) ;
{ Create the f i l e . Recordsize is 4 }
Rewrite (F, Sizeof (I)) ;
For I :=1 to 10 do

BlockWrite (F, I , 1) ;
close (f) ;
{ F conta ins now a binary represen ta t ion of

10 long in t s going from 1 to 1 0 }
end .

Rmdir
Declaration: Procedure Rmdir (const S : string);

Description: Rmdir removes the directoryS.

Errors: If S doesn’t exist, or isn’t empty, a run-time error is generated.

See also: Chdir (108),Mkdir (129)

Program Example53 ;

{ Program to demonstrate the MkDir and RmDir func t ions . }

Const D : String [8] = ’ TEST. DIR ’ ;

Var S : String ;

begin
Writeln (’ Making d i r e c t o r y ’ , D) ;
Mkdir (D) ;
Writeln (’ Changing d i r e c t o r y to ’ , D) ;
ChDir (D) ;
GetDir (0 , S) ;
Writeln (’ Current D i rec to ry is : ’ , S) ;
WRiteln (’ Going back ’) ;
ChDir (’ . . ’) ;
Writeln (’ Removing d i r e c t o r y ’ , D) ;
RmDir (D) ;

end .

138

13.2. FUNCTIONS AND PROCEDURES

Round
Declaration: Function Round (X : Real) : Longint;

Description: Round roundsX to the closest integer, which may be bigger or smaller thanX.

Errors: None.

See also: Frac (119),Int (124),Trunc (147)

Program Example54 ;

{ Program to demonstrate the Round func t i on . }

begin
Writeln (Round (1 2 3 4 . 5 6)) ; { P r in t s 1235 }
Writeln (Round (−1234.56)) ; { P r in t s −1235 }
Writeln (Round (1 2 . 3 4 5 6)) ; { P r in t s 12 }
Writeln (Round (−12.3456)) ; { P r in t s −12 }

end .

Runerror
Declaration: Procedure Runerror (ErrorCode : Word);

Description: Runerror stops the execution of the program, and generates a run-time errorErrorCode .

Errors: None.

See also: Exit (115),Halt (120)

Program Example55 ;

{ Program to demonstrate the RunError func t i on . }

begin
{ The program w i l l stop end emit a run−er ro r 106 }
RunError (1 0 6) ;

end .

Seek
Declaration: Procedure Seek (Var F; Count : Longint);

Description: Seek sets the file-pointer for fileF to record Nr.Count . The first record in a file hasCount=0 .
F can be any file type, exceptText . If F is an untyped file, with no record size specified inReset
(137) orRewrite (137), 128 is assumed.

Errors: A run-time error is generated ifCount points to a position outside the file, or the file isn’t opened.

See also: Eof (113),SeekEof (140),SeekEoln (140)

Program Example56 ;

{ Program to demonstrate the Seek func t i on . }

Var
F : Fi le ;

139

13.2. FUNCTIONS AND PROCEDURES

I , j : l o n g i n t ;

begin
{ Create a f i l e and f i l l i t wi th data }
Assign (F, ’ t es t . dat ’) ;
Rewrite (F) ; { Create f i l e }
Close (f) ;
FileMode :=2;
ReSet (F, Sizeof (i)) ; { Opened read / wr i te }
For I :=0 to 10 do

BlockWrite (F, I , 1) ;
{ Go Back to the begining of the f i l e }
Seek (F , 0) ;
For I :=0 to 10 do

begin
BlockRead (F, J , 1) ;
I f J<> I then

Writeln (’ Er ror : expected ’ , i , ’ , got ’ , j) ;
end ;

Close (f) ;
end .

SeekEof
Declaration: Function SeekEof [(Var F : text)] : Boolean;

Description: SeekEof returnsTrue is the file-pointer is at the end of the file. It ignores all whitespace. Calling
this function has the effect that the file-position is advanced until the first non-whitespace character or
the end-of-file marker is reached. If the end-of-file marker is reached,True is returned. Otherwise,
False is returned. If the parameterF is omitted, standardInput is assumed.

Errors: A run-time error is generated if the fileF isn’t opened.

See also: Eof (113),SeekEoln (140),Seek (139)

Program Example57 ;

{ Program to demonstrate the SeekEof func t i on . }
Var C : Char ;

begin
{ t h i s w i l l p r i n t a l l characters from standard input except

Whitespace characters . }
While Not SeekEof do

begin
Read (C) ;
Write (C) ;
end ;

end .

SeekEoln
Declaration: Function SeekEoln [(Var F : text)] : Boolean;

Description: SeekEoln returnsTrue is the file-pointer is at the end of the current line. It ignores all whites-
pace. Calling this function has the effect that the file-position is advanced until the first non-
whitespace character or the end-of-line marker is reached. If the end-of-line marker is reached,True

140

13.2. FUNCTIONS AND PROCEDURES

is returned. Otherwise, False is returned. The end-of-line marker is defined as#10 , the LineFeed
character. If the parameterF is omitted, standardInput is assumed.

Errors: A run-time error is generated if the fileF isn’t opened.

See also: Eof (113),SeekEof (140),Seek (139)

Program Example58 ;

{ Program to demonstrate the SeekEoln func t i on . }
Var

C : Char ;

begin
{ This w i l l read the f i r s t l i n e of standard output and p r i n t

a l l characters except whitespace . }
While not SeekEoln do

Begin
Read (c) ;
Write (c) ;
end ;

end .

Seg
Declaration: Function Seg Var X : Longint;

Description: Seg returns the segment of the address of a variable. This function is only supported for compat-
ibility. In Free Pascal, it returns always 0, since Free Pascal is a 32 bit compiler, segments have no
meaning.

Errors: None.

See also: DSeg (113),CSeg (111),Ofs (131),Ptr (134)

Program Example60 ;

{ Program to demonstrate the Seg func t i on . }
Var

W : Word;

begin
W:= Seg (W) ; { W conta ins i t s own Segment }

end .

SetJmp
Declaration: Function SetJmp (Var Env : Jmp_Buf) : Longint;

Description: SetJmp fills env with the necessary data for a jump back to the point where it was called. It returns
zero if called in this way. If the function returns nonzero, then it means that a call toLongJmp (127)
with env as an argument was made somewhere in the program.

Errors: None.

See also: LongJmp (127)

141

13.2. FUNCTIONS AND PROCEDURES

program example79 ;

{ Program to demonstrate the setjmp , longjmp func t ions }

procedure dojmp (var env : jmp_buf ; value : l o n g i n t) ;

begin
value :=2;
Writeln (’ Going to jump ! ’) ;
{ This w i l l re tu rn to the setjmp c a l l ,

and re tu rn value instead of 0 }
longjmp (env , value) ;

end ;

var env : jmp_buf ;

begin
i f setjmp (env)=0 then

begin
wr i te ln (’ Passed f i r s t t ime . ’) ;
dojmp (env , 2) ;
end

else
wr i te ln (’ Passed second time . ’) ;

end .

SetLength
Declaration: Procedure SetLength(var S : String; Len : Longint);

Description: SetLength sets the length of the stringS to Len . S can be an ansistring or a short string. For
ShortStrings , Len can maximally be 255. ForAnsiStrings it can have any value. For
AnsiString strings,SetLength mustbe used to set the length of the string.

Errors: None.

See also: Length (126)

Program Example85 ;

{ Program to demonstrate the SetLength func t i on . }

Var S : String ;

begin
Fi l lChar (S[1] , 1 0 0 , # 3 2) ;
Set length (S,100) ;
Writeln (’ " ’ , S, ’ " ’) ;

end .

SetTextBuf
Declaration: Procedure SetTextBuf (Var f : Text; Var Buf[; Size : Word]);

Description: SetTextBuf assigns an I/O buffer to a text file. The new buffer is located atBuf and isSize
bytes long. IfSize is omitted, thenSizeOf(Buf) is assumed. The standard buffer of any text file

142

13.2. FUNCTIONS AND PROCEDURES

is 128 bytes long. For heavy I/0 operations this may prove too slow. TheSetTextBuf procedure
allows you to set a bigger buffer for your application, thus reducing the number of system calls, and
thus reducing the load on the system resources. The maximum size of the newly assigned buffer is
65355 bytes.

Remark:

•Never assign a new buffer to an opened file. You can assign a new buffer immediately after a
call to Rewrite (137),Reset (137) orAppend , but not after you read from/wrote to the file.
This may cause loss of data. If you still want to assign a new buffer after read/write operations
have been performed, flush the file first. This will ensure that the current buffer is emptied.

•Take care that the buffer you assign is always valid. If you assign a local variable as a buffer,
then after your program exits the local program block, the buffer will no longer be valid, and
stack problems may occur.

Errors: No checking onSize is done.

See also: Assign (104),Reset (137),Rewrite (137),Append (103)

Program Example61 ;

{ Program to demonstrate the SetTextBuf func t i on . }

Var
Fin , Fout : Text ;
Ch : Char ;
Buf in , Bufout : Array [1 . . 1 0 0 0 0] of byte ;

begin
Assign (Fin , paramstr (1)) ;
Reset (Fin) ;
Assign (Fout , paramstr (2)) ;
Rewrite (Fout) ;
{ This is harmless before IO has begun }
{ Try t h i s program again on a big f i l e ,

a f t e r commenting out the fo l l ow ing 2
l i nes and recompi l ing i t . }

SetTextBuf (Fin , Buf in) ;
SetTextBuf (Fout , Bufout) ;
While not eof (Fin) do

begin
Read (Fin , ch) ;
write (Fout , ch) ;
end ;

Close (Fin) ;
Close (Fout) ;

end .

Sin
Declaration: Function Sin (X : Real) : Real;

Description: Sin returns the sine of its argumentX, whereX is an angle in radians.

Errors: None.

See also: Cos (110),Pi (132),Exp (116),Ln (126)

143

13.2. FUNCTIONS AND PROCEDURES

Program Example62 ;

{ Program to demonstrate the Sin func t i on . }

begin
Writeln (Sin (Pi) : 0 : 1) ; { P r in t s 0 . 0 }
Writeln (Sin (Pi / 2) : 0 : 1) ; { P r in t s 1 . 0 }

end .

SizeOf
Declaration: Function SizeOf (X : Any Type) : Longint;

Description: SizeOf returns the size, in bytes, of any variable or type-identifier.

Remark: This isn’t really a RTL function. It’s result is calculated at compile-time, and hard-coded in your
executable.

Errors: None.

See also: Addr (103)

Program Example63 ;

{ Program to demonstrate the SizeOf func t i on . }
Var

I : Longint ;
S : String [1 0] ;

begin
Writeln (SizeOf (I)) ; { P r in t s 4 }
Writeln (SizeOf (S)) ; { P r in t s 1 1 }

end .

Sptr
Declaration: Function Sptr : Pointer;

Description: Sptr returns the current stack pointer.

Errors: None.

See also: SSeg (145)

Program Example64 ;

{ Program to demonstrate the SPtr func t i on . }
Var

P : Longint ;

begin
P:= Sptr ; { P Contains now the cur ren t stack pos i t i on . }

end .

144

13.2. FUNCTIONS AND PROCEDURES

Sqr
Declaration: Function Sqr (X : Real) : Real;

Description: Sqr returns the square of its argumentX.

Errors: None.

See also: Sqrt (145),Ln (126),Exp (116)

Program Example65 ;

{ Program to demonstrate the Sqr func t i on . }
Var i : In teger ;

begin
For i :=1 to 10 do

wr i te ln (Sqr (i) : 3) ;
end .

Sqrt
Declaration: Function Sqrt (X : Real) : Real;

Description: Sqrt returns the square root of its argumentX, which must be positive.

Errors: If X is negative, then a run-time error is generated.

See also: Sqr (145),Ln (126),Exp (116)

Program Example66 ;

{ Program to demonstrate the Sqrt func t i on . }

begin
Writeln (Sqrt (4) : 0 : 3) ; { P r in t s 2 . 0 0 0 }
Writeln (Sqrt (2) : 0 : 3) ; { P r in t s 1 . 4 1 4 }

end .

SSeg
Declaration: Function SSeg : Longint;

Description: SSeg returns the Stack Segment. This function is only supported for compatibility reasons, as
Sptr returns the correct contents of the stackpointer.

Errors: None.

See also: Sptr (144)

Program Example67 ;

{ Program to demonstrate the SSeg func t i on . }
Var W : Longint ;

begin
W:= SSeg ;

end .

145

13.2. FUNCTIONS AND PROCEDURES

Str
Declaration: Procedure Str (Var X[:NumPlaces[:Decimals]]; Var S : String);

Description: Str returns a string which represents the value of X. X can be any numerical type. The optional
NumPLaces andDecimals specifiers control the formatting of the string.

Errors: None.

See also: Val (148)

Program Example68 ;

{ Program to demonstrate the Str func t i on . }
Var S : String ;

Function IntToStr (I : Longint) : String ;

Var S : String ;

begin
Str (I , S) ;
IntToStr := S;

end ;

begin
S:= ’ ∗ ’ + IntToStr (−233)+ ’ ∗ ’ ;
Writeln (S) ;

end .

Succ
Declaration: Function Succ (X : Any ordinal type) : Same type;

Description: Succ returns the element that succeeds the element that was passed to it. If it is applied to the last
value of the ordinal type, and the program was compiled with range checking on ({$R+}), then a
run-time error will be generated.

Errors: Run-time error 201 is generated when the result is out of range.

See also: Ord (131),Pred (134),High (122),Low (127)

for an example, seeOrd (131).

Swap
Declaration: Function Swap (X) : Type of X;

Description: Swapswaps the high and low order bytes ofX if X is of typeWord or Integer , or swaps the high
and low order words ofX if X is of typeLongint or Cardinal . The return type is the type ofX

Errors: None.

See also: Lo (126),Hi (121)

146

13.2. FUNCTIONS AND PROCEDURES

Program Example69 ;

{ Program to demonstrate the Swap func t i on . }
Var W : Word;

L : Longint ;

begin
W:= $1234 ;
W:=Swap (W) ;
i f W<>$3412 then

wr i te ln (’ Er ror when swapping word ! ’) ;
L := $12345678 ;
L:=Swap (L) ;
i f L<>$56781234 then

wr i te ln (’ Er ror when swapping Longint ! ’) ;
end .

Trunc
Declaration: Function Trunc (X : Real) : Longint;

Description: Trunc returns the integer part ofX, which is always smaller than (or equal to)X in absolute value.

Errors: None.

See also: Frac (119),Int (124),Round (139)

Program Example70 ;

{ Program to demonstrate the Trunc func t i on . }

begin
Writeln (Trunc (1 2 3 . 4 5 6)) ; { P r in t s 123 }
Writeln (Trunc (−123.456)) ; { P r in t s −123 }
Writeln (Trunc (1 2 . 3 4 5 6)) ; { P r in t s 12 }
Writeln (Trunc (−12.3456)) ; { P r in t s −12 }

end .

Truncate
Declaration: Procedure Truncate (Var F : file);

Description: Truncate truncates the (opened) fileF at the current file position.

Errors: Errors are reported by IOresult.

See also: Append (103),Filepos (116),Seek (139)

Program Example71 ;

{ Program to demonstrate the Truncate func t i on . }

Var F : Fi le of l o n g i n t ;
I , L : Longint ;

begin
Assign (F, ’ t es t . dat ’) ;

147

13.2. FUNCTIONS AND PROCEDURES

Rewrite (F) ;
For I :=1 to 10 Do

Write (F, I) ;
Writeln (’ F i l e s i z e before Truncate : ’ , Fi leSize (F)) ;
Close (f) ;
Reset (F) ;
Repeat

Read (F, I) ;
Unt i l i =5;
Truncate (F) ;
Writeln (’ F i l e s i z e a f t e r Truncate : ’ , Fi les ize (F)) ;
Close (f) ;

end .

Upcase
Declaration: Function Upcase (C : Char or string) : Char or String;

Description: Upcase returns the uppercase version of its argumentC. If its argument is a string, then the com-
plete string is converted to uppercase. The type of the returned value is the same as the type of the
argument.

Errors: None.

See also: Lowercase (127)

Program Example72 ;

{ Program to demonstrate the Upcase func t i on . }

Var I : Longint ;

begin
For i := ord (’ a ’) to ord (’ z ’) do

wri te (upcase (chr (i))) ;
Writeln ;
{ This doesn ’ t work in TP, but i t does in Free Pascal }
Writeln (Upcase (’ abcdefghi jk lmnopqrstuvwxyz ’)) ;

end .

Val
Declaration: Procedure Val (const S : string;var V;var Code : word);

Description: Val converts the value represented in the stringS to a numerical value, and stores this value in the
variableV, which can be of typeLongint , Real andByte . If the conversion isn’t succesfull, then
the parameterCode contains the index of the character inS which prevented the conversion. The
stringS isn’t allowed to contain spaces.

Errors: If the conversion doesn’t succeed, the value ofCode indicates the position where the conversion
went wrong.

See also: Str (146)

148

13.2. FUNCTIONS AND PROCEDURES

Program Example74 ;

{ Program to demonstrate the Val func t i on . }
Var I , Code : In teger ;

begin
Val (ParamStr (1) , I , Code) ;
I f Code<>0 then

Writeln (’ Er ror at pos i t i on ’ , code , ’ : ’ , Paramstr (1) [Code])
else

Writeln (’ Value : ’ , I) ;
end .

Write
Declaration: Procedure Write ([Var F : Any filetype;] V1 [; V2; ... , Vn)];

Description: Write writes the contents of the variablesV1, V2 etc. to the fileF. F can be a typed file, or a
Text file. If F is a typed file, then the variablesV1, V2 etc. must be of the same type as the type in
the declaration ofF. Untyped files are not allowed. If the parameterF is omitted, standard output is
assumed. IfF is of typeText , then the necessary conversions are done such that the output of the
variables is in human-readable format. This conversion is done for all numerical types. Strings are
printed exactly as they are in memory, as well asPChar types. The format of the numerical conver-
sions can be influenced through the following modifiers:OutputVariable : NumChars
[: Decimals] This will print the value ofOutputVariable with a minimum ofNum-
Chars characters, from whichDecimals are reserved for the decimals. If the number cannot be
represented withNumChars characters,NumChars will be increased, until the representation fits.
If the representation requires less thanNumChars characters then the output is filled up with spaces,
to the left of the generated string, thus resulting in a right-aligned representation. If no formatting is
specified, then the number is written using its natural length, with nothing in front of it if it’s positive,
and a minus sign if it’s negative. Real numbers are, by default, written in scientific notation.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled with the{$i}
switch.

See also: WriteLn (149),Read (135),Readln (136),Blockwrite (107)

WriteLn
Declaration: Procedure WriteLn [([Var F : Text;] [V1 [; V2; ... , Vn)]];

Description: WriteLn does the same asWrite (149) for text files, and emits a Carriage Return - LineFeed
character pair after that. If the parameterF is omitted, standard output is assumed. If no variables are
specified, a Carriage Return - LineFeed character pair is emitted, resulting in a new line in the fileF.

Remark: UnderLINUX , the Carriage Return character is omitted, as customary in Unix environments.

Errors: If an error occurs, a run-time error is generated. This behavior can be controlled with the{$i}
switch.

See also: Write (149),Read (135),Readln (136),Blockwrite (107)

Program Example75 ;

{ Program to demonstrate the Write (ln) func t i on . }

149

13.2. FUNCTIONS AND PROCEDURES

Var
F : Fi le of Longint ;
L : Longint ;

begin
Write (’ This is on the f i r s t l i n e ! ’) ; { No CR/ LF pa i r ! }
Writeln (’ And t h i s too . . . ’) ;
Writeln (’ But t h i s is already on the second l i n e . . . ’) ;
Assign (f , ’ t es t . dat ’) ;
Rewrite (f) ;
For L :=1 to 10 do

wri te (F, L) ; { No w r i t e l n al lowed here ! }
Close (f) ;

end .

150

Chapter 14

The OBJPAS unit

Theobjpas unit is meant for compatibility with Object Pascal as implemented by Delphi. The unit is
loaded automatically by the Free Pascal compiler whenever theDelphi or objfpc more is entered,
either through the command line switches-Sd or -Sh or with the{$MODE DELPHI} or {$MODE
OBJFPC} directives.

It redefines some basic pascal types, introduces some functions for compatibility with Delphi’s sys-
tem unit, and introduces some methods for the management of the resource string tables.

14.1 Types

Theobjpas unit redefines two integer types, for compatibity with Delphi:

type
smallint = system.integer;
integer = system.longint;

The resource string tables can be managed with a callback function which the user must provide:
TResourceIterator .

Type
TResourceIterator =

Function (Name,Value : AnsiString;Hash : Longint):AnsiString;

14.2 Functions and Procedures

AssignFile
Declaration: Procedure AssignFile(Var f: FileType;Name: Character type);

Description: AssignFile is completely equivalent to the system unit’sAssign (104) function: It assigns
Nameto a function of any type (FileType can beText or a typed or untypedFile variable).
Namecan be a string, a single character or aPChar .

It is most likely introduced to avoid confusion between the regularAssign (104) function and the
Assign method ofTPersistent in the Delphi VCL.

Errors: None.

151

14.2. FUNCTIONS AND PROCEDURES

See also: CloseFile (152),Assign (104),Reset (137),Rewrite (137),Append (103)

Program Example88 ;

{ Program to demonstrate the Ass ignFi le and CloseFi le func t ions . }

{$MODE Delphi }

Var F : tex t ;

begin
AssignFile (F, ’ t e x t f i l e . t x t ’) ;
Rewrite (F) ;
Writeln (F, ’ This is a s i l l y example of Ass ignFi le and CloseFi le . ’) ;
CloseFile (F) ;

end .

CloseFile
Declaration: Procedure CloseFile(Var F: FileType);

Description: CloseFile flushes and closes a fileF of any file type. F can beText or a typed or untyped
File variable. After a call toCloseFile , any attempt to write to the fileF will result in an error.

It is most likely introduced to avoid confusion between the regularClose (108) function and the
Close method ofTForm in the Delphi VCL.

Errors: None.

See also: Close (108),AssignFile (151),Reset (137),Rewrite (137),Append (103)

for an example, seeAssignFile (151).

Freemem
Declaration: Procedure FreeMem(Var p:pointer[;Size:Longint]);

Description: FreeMem releases the memory reserved by a call toGetMem (153). The (optional)Size param-
eter is ignored, since the object pascal version ofGetMemstores the amount of memory that was
requested.

be sure not to release memory that was not obtained with theGetmemcall in Objpas. Normally, this
should not happen, since objpas changes the default memory manager to it’s own memory manager.

Errors: None.

See also: Freemem (119),GetMem (153),Getmem (120)

Program Example89 ;

{ Program to demonstrate the FreeMem func t ion . }
{ $Mode Delphi }

Var P : Poin ter ;

begin
Writeln (’ Memory before : ’ , Memavail) ;
GetMem (P,10000) ;

152

14.2. FUNCTIONS AND PROCEDURES

FreeMem (P) ;
Writeln (’ Memory a f t e r : ’ , Memavail) ;

end .

Getmem
Declaration: Procedure Getmem(Var P:pointer;Size:Longint);

Description: GetMem reservesSize bytes of memory on the heap and returns a pointer to it inP. Size is
stored at offset -4 of the result, and is used to release the memory again.P can be a typed or untyped
pointer.

Be sure to release this memory with theFreeMem (152) call defined in theobjpas unit.

Errors: In case no more memory is available, and no more memory could be obtained from the system a
run-time error is triggered.

See also: FreeMem (152),Getmem (120).

For an example, seeFreeMem (152).

GetResourceStringCurrentValue
Declaration: Function GetResourceStringCurrentValue(TableIndex,StringIndex : Longint)

: AnsiString;

Description: GetResourceStringCurrentValue returns the current value of the resourcestring in table
TableIndex with indexStringIndex .

The current value depends on the system of internationalization that was used, and which language
is selected when the program is executed.

Errors: If eitherTableIndex or StringIndex are out of range, then a empty string is returned.

See also: SetResourceStrings (157),GetResourceStringDefaultValue (154),GetResourceStringHash
(154),GetResourceStringName (155),ResourceStringTableCount (157),ResourceStringCount
(156)

Program Example90 ;

{ Program to demonstrate the GetResourceStr ingCurrentValue func t ion . }
{ $Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;

begin
{ P r i n t cur ren t values of a l l resources t r i ngs }
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
Writeln (I , ’ , ’ , J , ’ : ’ , GetResourceStr ingCurrentValue (I , J)) ;

end .

153

14.2. FUNCTIONS AND PROCEDURES

GetResourceStringDefaultValue
Declaration: Function GetResourceStringDefaultValue(TableIndex,StringIndex : Longint)

: AnsiString

Description: GetResourceStringDefaultValue returns the default value of the resourcestring in table
TableIndex with indexStringIndex .

The default value is the value of the string that appears in the source code of the programmer, and is
compiled into the program.

Errors: If eitherTableIndex or StringIndex are out of range, then a empty string is returned.

Errors:

See also: SetResourceStrings (157),GetResourceStringCurrentValue (153),GetResourceStringHash
(154),GetResourceStringName (155),ResourceStringTableCount (157),ResourceStringCount
(156)

Program Example91 ;

{ Program to demonstrate the GetResourceStr ingDefaul tValue func t ion . }
{ $Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;

begin
{ P r i n t de fau l t values of a l l resources t r i ngs }
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
Writeln (I , ’ , ’ , J , ’ : ’ , GetResourceStr ingDefaul tValue (I , J)) ;

end .

GetResourceStringHash
Declaration: Function GetResourceStringHash(TableIndex,StringIndex : Longint) :

Longint;

Description: GetResourceStringHash returns the hash value associated with the resource string in table
TableIndex , with indexStringIndex .

The hash value is calculated from the default value of the resource string in a manner that gives the
same result as the GNUgettext mechanism. It is stored in the resourcestring tables, so retrieval is
faster than actually calculating the hash for each string.

Errors: If eitherTableIndex or StringIndex is zero, 0 is returned.

See also: Hash (155)SetResourceStrings (157),GetResourceStringDefaultValue (154),GetResourceS-
tringHash (154),GetResourceStringName (155),ResourceStringTableCount (157),ResourceS-
tringCount (156)

For an example, seeHash (155).

154

14.2. FUNCTIONS AND PROCEDURES

GetResourceStringName
Declaration: Function GetResourceStringName(TableIndex,StringIndex : Longint) :

Ansistring;

Description: GetResourceStringName returns the name of the resourcestring in tableTableIndex with
index StringIndex . The name of the string is always the unit name in which the string was
declared, followed by a period and the name of the constant, all in lowercase.

If a unitMyUnit declares a resourcestringMyTitle then the name returned will bemyunit.mytitle .
A resourcestring in the program file will have the name of the program prepended.

The name returned by this function is also the name that is stored in the resourcestring file generated
by the compiler.

Strictly speaking, this information isn’t necessary for the functioning of the program, it is provided
only as a means to easier translation of strings.

Errors: If eitherTableIndex or StringIndex is zero, an empty string is returned.

See also: SetResourceStrings (157),GetResourceStringDefaultValue (154),GetResourceStringHash
(154),GetResourceStringName (155),ResourceStringTableCount (157),ResourceStringCount
(156)

Program Example92 ;

{ Program to demonstrate the GetResourceStringName func t i on . }
{ $Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;

begin
{ P r i n t names of a l l resources t r ings }
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
Writeln (I , ’ , ’ , J , ’ : ’ , GetResourceStringName (I , J)) ;

end .

Hash
Declaration: Function Hash(S : AnsiString) : longint;

Description: Hash calculates the hash value of the stringS in a manner that is compatible with the GNU gettext
hash value for the string. It is the same value that is stored in the Resource string tables, and which
can be retrieved with theGetResourceStringHash (154) function call.

Errors: None. In case the calculated hash value should be 0, the returned result will be -1.

See also: GetResourceStringHash (154),

Program Example93 ;

{ Program to demonstrate the Hash func t i on . }
{ $Mode Delphi }

155

14.2. FUNCTIONS AND PROCEDURES

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;

begin
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
I f Hash(GetResourceStr ingDefaul tValue (I , J))

<>GetResourceStringHash (I , J) then
Writeln (’ Hash mismatch at ’ , I , ’ , ’ , J)

else
Writeln (’ Hash (’ , I , ’ , ’ , J , ’) matches . ’) ;

end .

Paramstr
Declaration: Function ParamStr(Param : Integer) : Ansistring;

Description: ParamStr returns theParam-th command-line parameter as an AnsiString. The system unit
Paramstr (132) function limits the result to 255 characters.

The zeroeth command-line parameter contains the path of the executable, except onLINUX , where it
is the command as typed on the command-line.

Errors: In caseParam is an invalid value, an empty string is returned.

See also: Paramstr (132)

For an example, seeParamstr (132).

ResetResourceTables
Declaration: Procedure ResetResourceTables;

Description: ResetResourceTables resets all resource strings to their default (i.e. as in the source code)
values.

Normally, this should never be called from a user’s program. It is called in the initialization code of
theobjpas unit. However, if the resourcetables get messed up for some reason, this procedure will
fix them again.

Errors: None.

See also: SetResourceStrings (157),GetResourceStringDefaultValue (154),GetResourceStringHash
(154),GetResourceStringName (155),ResourceStringTableCount (157),ResourceStringCount
(156)

ResourceStringCount
Declaration: Function ResourceStringCount(TableIndex : longint) : longint;

Description: ResourceStringCount returns the number of resourcestrings in the table with indexTableIn-
dex . The strings in a particular table are numbered from0 to ResourceStringCount-1 , i.e.
they’re zero based.

156

14.2. FUNCTIONS AND PROCEDURES

Errors: If an invalidTableIndex is given,-1 is returned.

See also: SetResourceStrings (157), GetResourceStringCurrentValue (153), GetResourceStringDe-
faultValue (154),GetResourceStringHash (154),GetResourceStringName (155),ResourceS-
tringTableCount (157),

For an example, seeGetResourceStringDefaultValue (154)

ResourceStringTableCount
Declaration: Function ResourceStringTableCount : Longint;

Description: ResourceStringTableCount returns the number of resource string tables; this may be zero
if no resource strings are used in a program.

The tables are numbered from 0 toResourceStringTableCount-1 , i.e. they’re zero based.

Errors:

See also: SetResourceStrings (157),GetResourceStringDefaultValue (154),GetResourceStringHash
(154),GetResourceStringName (155),ResourceStringCount (156)

For an example, seeGetResourceStringDefaultValue (154)

SetResourceStrings
Declaration: TResourceIterator = Function (Name,Value : AnsiString;Hash : Longint):AnsiString;

Procedure SetResourceStrings (SetFunction : TResourceIterator);

Description: SetResourceStrings callsSetFunction for all resourcestrings in the resourcestring tables
and sets the resourcestring’s current value to the value returned bySetFunction .

TheName,Value andHash parameters passed to the iterator function are the values stored in the
tables.

Errors: None.

See also: SetResourceStrings (157), GetResourceStringCurrentValue (153), GetResourceStringDe-
faultValue (154),GetResourceStringHash (154),GetResourceStringName (155),ResourceS-
tringTableCount (157),ResourceStringCount (156)

Program Example95 ;

{ Program to demonstrate the SetResourceStr ings func t i on . }
{ $Mode obj fpc }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;
S : Ans iS t r ing ;

Function Trans la te (Name, Value : Ans iS t r ing ; Hash : l o n g i n t) : Ans iS t r ing ;

begin

157

14.2. FUNCTIONS AND PROCEDURES

Writeln (’ Trans la te (’ , Name, ’) = > ’ , Value) ;
Write (’−>’) ;
Readln (Result) ;

end ;

begin
SetResourceStr ings (@Translate) ;
Writeln (’ Translated s t r i n g s : ’) ;
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
begin
Writeln (GetResourceStr ingDefaul tValue (I , J)) ;
Writeln (’ Trans la tes to : ’) ;
Writeln (GetResourceStr ingCurrentValue (I , J)) ;
end ;

end .

SetResourceStringValue
Declaration: Function SetResourceStringValue(TableIndex,StringIndex : longint; Value

: Ansistring) : Boolean;

Description: SetResourceStringValue assignsValue to the resource string in tableTableIndex with
indexStringIndex .

Errors:

See also: SetResourceStrings (157), GetResourceStringCurrentValue (153), GetResourceStringDe-
faultValue (154),GetResourceStringHash (154),GetResourceStringName (155),ResourceS-
tringTableCount (157),ResourceStringCount (156)

Program Example94 ;

{ Program to demonstrate the SetResourceStr ingValue func t i on . }
{ $Mode Delphi }

ResourceStr ing

F i r s t = ’ F i r s t s t r i n g ’ ;
Second = ’ Second St r ing ’ ;

Var I , J : Longint ;
S : Ans iS t r ing ;

begin
{ P r i n t cur ren t values of a l l resources t r i ngs }
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
begin
Writeln (’ Trans la te = > ’ , GetResourceStr ingDefaul tValue (I , J)) ;
Write (’−>’) ;
Readln (S) ;
SetResourceStr ingValue (I , J , S) ;
end ;

Writeln (’ Translated s t r i n g s : ’) ;
For I :=0 to ResourceStringTableCount−1 do

For J :=0 to ResourceStringCount (i)−1 do
begin

158

14.2. FUNCTIONS AND PROCEDURES

Writeln (GetResourceStr ingDefaul tValue (I , J)) ;
Writeln (’ Trans la tes to : ’) ;
Writeln (GetResourceStr ingCurrentValue (I , J)) ;
end ;

end .

159

Index

Abs, 103
Addr, 103
Append, 103
Arctan, 104
Assign, 104
Assigned, 105
AssignFile, 151

BinStr, 105
Blockread, 106
Blockwrite, 107
Break, 107

Chdir, 108
Chr, 108
Close, 108
CloseFile, 152
Concat, 109
Continue, 109
Copy, 110
Cos, 110
CSeg, 111

Dec, 111
Delete, 112
Dispose, 112
DSeg, 113

Eof, 113
Eoln, 114
Erase, 114
Exit, 115
Exp, 116

Filepos, 116
Filesize, 117
Fillchar, 117
Fillword, 118
Flush, 118
Frac, 119
Freemem, 119, 152

Getdir, 120
Getmem, 120, 153
GetResourceStringCurrentValue, 153
GetResourceStringDefaultValue, 154

GetResourceStringHash, 154
GetResourceStringName, 155

Halt, 120
Hash, 155
HexStr, 121
Hi, 121
High, 122

Inc, 123
Insert, 123
Int, 124
IOresult, 124

Length, 126
Ln, 126
Lo, 126
LongJmp, 127
Low, 127
Lowercase, 127

Mark, 128
Maxavail, 128
Memavail, 129
Mkdir, 129
Move, 130

New, 130

Odd, 130
Ofs, 131
Ord, 131

Paramcount, 132
Paramstr, 132, 156
Pi, 132
Pos, 133
Power, 133
Pred, 134
Ptr, 134

Random, 134
Randomize, 135
Read, 135
Readln, 136
Release, 136

160

INDEX

Rename, 136
Reset, 137
ResetResourceTables, 156
ResourceStringCount, 156
ResourceStringTableCount, 157
Rewrite, 137
Rmdir, 138
Round, 139
Runerror, 139

Seek, 139
SeekEof, 140
SeekEoln, 140
Seg, 141
SetJmp, 141
SetLength, 142
SetResourceStrings, 157
SetResourceStringValue, 158
SetTextBuf, 142
Sin, 143
SizeOf, 144
Sptr, 144
Sqr, 145
Sqrt, 145
SSeg, 145
Str, 146
Succ, 146
Swap, 146

Trunc, 147
Truncate, 147

Upcase, 148

Val, 148

Write, 149
WriteLn, 149

161

	List of Manuals
	The Pascal language
	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Character types
	Structured Types
	Pointers
	Procedural types

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	Properties

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators

	Statements
	Simple statements
	Structured statements
	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparision operator

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

	Reference : The System unit
	The system unit
	Types, Constants and Variables
	Functions and Procedures

	The OBJPAS unit
	Types
	Functions and Procedures

