Free Pascal :
Users’ manual

.|
Users’ manual for Free Pascal, version 0.99.14
1.6
January 2000

Michaél Van Canneyt
Florian Klampfi

Contents

T__Infroduction] 4

T ADOOfTRISAOCOMEAENt e e e e e e e e e e e 4

[[Z_ADOUTTINE COMPIIEr o o ot e e e e e e e e e e e e e e e e e e 4
[[3~ Getling MOre INTOTMATIAN. . .« . . v v v v e e e e e e e e e e e e e e e e 5

¢ Installing the compiler 6
E-I _Before Installation : ReEqQUITEMantS o v v v i i e e e e e e e 6
BYSIEEMTEQUITEMEMLS o ot e e e e e e e e e e e e e e e e 6
SOfWare TeqQUITEMENTS . .« . v v v v v e e e e e e e e e e e e e 6
6
7
7

P Z _INST@lingINE COMPIIBL. v v o v v o e e e e e e e e e e e e e e e e
INSTE@ANNGUNAET DUS ot e e e e e e e e e e e e e e e e e e
INSTAMNGUNOET LINUX . . . & v v v e v e e e e e e e e e e e e e e e e e e e

E-3__Opfional CONTIQUIAtION STAPS « « « « « v v v v v e e e e e e e e e e e e e e e 9

P4 TeStNgINE COMPIIBr . . o . v v v o e e e e e e e e e e e e e 10

B~ Compiler usage 12

3 OB DS . e e 14
CONHQUIATION TITE + v v v v v e e e e e e e e e e e e e e e e e e e 14
B4 _CompiliNgaprogralm v v o v e e e e e e e e e e e 14
B _Compilingaunit v e e 15
B6_Units, librarieSand smartinking v v v v v v v e e e e e 15
B-7_Creating an executable for GO32VIand PMODE/DJTargets 16
... 16
....................................... 16
B8 ReduCing the Siz€ Of YOUT PTOTNAM . .« « v v v v e e e e e e e e e e e e e e e 17
7] pDIliNng prob < 18
BFT Generalproblems e e e 18

CONTENTS

BZ__Problems you may encounter under DOS 18
b Compiler configuration 19
BT _Usingthe command-INE OPT®NS« v v v vt e e e e e e et e e e 19
GENETAIOPIIONS .+ « -« « v v v v v e e e e e e e e e e e e 19
Opiionsforgettingieedback e 20
[Opiions concerning filesS and difeCIofies v« v v v v v v v e oo e 20
Options conrollingthe KINd Of OUtpUt. o v v v v e e e e e e e 21
[Options concerning the Sources (langquage oplions) v v v v v v v v v o . 23
BZ UsSingthe configuration fjle it i e e 24
BIEDEHR o e e e e e e 25
BIENDIER ot e e e e e e e e e e e 25
BELSE o e e e 26
... 26
.. 26
BONDEFE o o e e e e e e e e e e e e e e e e e e 26
BEWRTTH o e e e e e e e e e e e e e e 26
BINCTUIIH o v o e 27
BSECTIOM e e e e e e e e e e e 27
b3 Variable SubStuton N Paths o i e 28
f—_Porting Turbo Pascal Code 29
B _ThingSThatWillNOTWORK o o e e e e e e e e e e e 29
BZ _TRNOGSWNICAArE EXIra v v v v v et e e e e e e e e e e e e e e e e e 30
B-3—_Turbo Pascalcompatibilitymade 32
B4 _ANoleonlongiileNamesS undBDS v v v v v v e e 33
7 ifilifies and units that come wiith Free Pasca 34
L SUPDPIEADIOTIAINS . . - « « « e oo e e e e e e 34
DPUAUMP PTOTTAIM . . .« v v v v v v e e e e e e e e e e e e e e e e 34
DEMOPIOTIAMIS .« « « v« v vt v e e e e e e e e e e e e e e e e 34
DoCUMENTation EXampPIE PTOTTAMS .« .« « « « « v v v e vt e e e e e e e e e 35
PRUMOVE PIOTIAIM o o v e e e e e e e e e e e e e e e 35
PIOD - Pascal SOUICE DEAUTIIer v v v v v e e e e e e e e e e e e e 36
[STCONV DTOTTAIM . .« . v v v o v e et e e e e e e e e e e e e 39
... 40
[ZSUPPMEAUNIS .« « « v v v v e e e e e e e e e e e e 40
gnitscommonto all platfiorms v o i e 40
ONAET DTS L . o e e e e e e e e e e e e e e e e e e 41
UNAer TINLUX o o e e e e e e e e e e e e e e e 41

CONTENTS

B—_Debugging your Programs
. ompliing your program wi epugger support

BZ_Usinggdb to debug your program ea e ...

B-3__Caveais when debugging qugl
B4_Supportfogproi _,theGNUprofilef

P CGIprogramming in Free Pascal

Pl _Geftingyourdata v v v v v e e
Data coming through standard input.

Data passed through an environment varjable

BZZ _Producingoutput
B3 Tmunder Windows, Wnat now ? v v v v v v v o

B _Alphabeticallisting of command-line opition$

b Alphabetical ISt of reserved Words

L __Compiler messages

CI _GeneralcCOMpIlErmessSages - . « « v v v v v v v v v v e e
CZ _SCannNermesSSagesS. . « .« v v v v v v e e e e e
C3 ParSETMESSAYUES « « « « v v v e e et e e
CZ4 _TypechecKiNg Errars v v v v v v o e e e e
CoSymbolhandiifg« v v v e e e e
[C:6_COdE GENETator MESSAQES - - « « « « v v v v v e e e e e
C7 _UNtIoading MESSATES. - - « « « v v v o e e e e e e e e e
C8_Command-line handling ermprso«

SSembler reader erors.

(Keneral assembpler err

[BB6SPECITICEITOIS '« « « v v v v e e e e e e e e e e e e e
MBBKSPECITIC EITONS. . . . v« v v et e e e e e e e e e e e

D Kun fime errors

E_The Floating Point Coprocessor emulaigr

F__Asampleqgdb.ini_filg

Chapter 1

Introduction

1.1 About this document

This is the user's manual for Free Pascal. It describes the installation and use of the Free Pascal
compiler on the different supported platforms. It does not attempt to give an exhaustive list of all
supported commands, nor a definition of the Pascal language. Look at the Reference guide for
these things. For a description of the possibilities and the inner workings of the compiler, see the
Programmers’ guide. In the appendices of this document you will find lists of reserved words and
compiler error messages (with descriptions).

This document describes the compiler as it is/functions at the time of writing. Since the compiler is
under continuous development, some of the things described here may be outdated. In case of doubt,
consult theREADME files, distributed with the compiler. THREADME files are, in case of conflict

with this manual, authoritative.

1.2 About the compiler

Free Pascal is a 32-bit compiler for the i386 and m68k procdsgdtsrently, it supports 6 operating
systems:

e DOS

e LINUX

ATARI (version 0.99.5 only)

AMIGA (version 0.99.5 only)
e WINDOWS NT

e 092 (using the EMX package, so it also works on DOS/Windows)

and work is in progress to port it to other platforms (notabEEBSD).

Free Pascal is designed to be, as much as possible, source compatible with Turbo Pascal 7.0 and
Delphi 4 (although this goal is not yet attained), but it also enhances these languages with elements
like function overloading. And, unlike these ancestors, it supports multiple platforms.

It also differs from them in the sense that you cannot use compiled units from one system for the
other.

1Work is being done on a port to ALPHA Architecture

file:../ref/ref.html
file:../prog/prog.html

1.3. GETTING MORE INFORMATION.

Also, at the time of writing, there is no Integrated Development Environment (IDE) available for
Free Pascal. This gap will, hopefully, be filled in the future.

Free Pascal consists of three parts :

1. The compiler program itself.
2. The Run-Time Library (RTL).

3. Utility programs and units.

Of these you only need the first two, in order to be able to use the compiler. In this document, we
describe the use of the compiler. The RTL is described in the Reference guide.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the following addresses:

e http:/itidecl.fys.kuieuven.ac.be/ michaei/fpcifpc.html is the main site. It contains also useful
mail addresses and links to other places. It also contains the instructions for inscribing to the
mailing-list

e http://www.brain.uni-freiburg.de/ Kiaus/fpcifpc.html is a mirror of the main Free Pascal infor-
mation site.

Both places can be used to download the Free Pascal distribution, although you can probably find
them on other places also.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me[at michaei@tidecl.fys.kuieuven.ac.be .

Let's get on with something useful.

file:../ref/ref.html
http://tfdec1.fys.kuleuven.ac.be/~{}michael/fpc/fpc.html
http://www.brain.uni-freiburg.de/~{}klaus/fpc/fpc.html
mailto:michael@tfdec1.fys.kuleuven.ac.be

Chapter 2

Installing the compiler

2.1 Before Installation : Requirements
System requirements
The compiler needs at least the following hardware:

1. An 1386 or higher processor. A coprocessor is not required, although it will slow down your
program’s performance if you do floating point calculations.

2. 2 Mb of free memory. Undepos, if you use DPMI memory management, such as under
Windows, you will need at least 16 Mb.

3. Atleast 500 Kb. free disk space.

Software requirements
Under DOS

Theposdistribution contains all the files you need to run the compiler and compile pascal programs.

Under Linux
UnderLINUX you need to have the following programs installed :

1. GNU as, theGNU assembler.
2. GNU Id, theGNuU linker.

3. Optionally (but highly recommendediNu make. For easy recompiling of the compiler and
Run-Time Library, this is needed.

Other than that, Free Pascal should run on almost anyu886x system.

2.2 Installing the compiler.

The installation of Free Pascal is easy, but is platform-dependent. We discuss the process for each
platform separately.

2.2. INSTALLING THE COMPILER.

Installing under DOS

Mandatory installation steps.

First, you must get the latest distribution files of Free Pascal. They come as zip files, which you must
unzip first, or you can download the compiler as a series of separate files. This is especially useful if
you have a slow connection, but it is also nice if you want to install only some pats of the compiler

distribution. The distribution zip file contains an installation progt&8 TALL.EXE. You must run
this program to install the compiler.

The screen of the installation program looks like figure 2.1.
The program allows you to select:

e What components you wish to install. e.g do you want the sources or not, do you want docs or
not. Items that you didn’t download when downloading as separate files, will not be enabled,
i.e. you can't select them.

e Where you want to install (the default locationGs\PP).

In order to run Free Pascal from any directory on your system, you must extend your path variable to
contain theC:\PP\BIN directory. Usually this is done in tl SUTOEXEC.BAT file. It should look
something like this :

SET PATH=%PATH%;C:\PP\BIN

(Again, assuming that you installed in the default location).

If you want to use the graphic drivers you must modify the environment varadig2 Instructions
for doing this can be found in the documentation of the Graph unit, dhtt@raph procedure.

Optional Installation: The coprocessor emulation

For people who have an older CPU type, without math coprocessor (i387) it is necessary to install a
coprocessor emulation, since Free Pascal uses the coprocessor to do all floating point operations.

The installation of the coprocessor emulation is handled by the installation proigN&TXLL.EXE).
However,

Installing under Linux

Mandatory installation steps.
TheLINuX distribution of Free Pascal comes in three forms:

e atar.gz version, also available as seperate files.
e a.rpm (Red Hat Package Manager) version, and

e a.deb (debian) version.

All of these packages containELF version of the compiler binaries and units. the oldeut
binaries are no longer distributed, although you still can use the comiler anwtn system if you
recompile it.

If you use therpm format, installation is limited to

rpm -i fpc-pascal-XXX.rpm

2.2. INSTALLING THE COMPILER.

Figure 2.1: Theposinstall program screen.

Install

2.3. OPTIONAL CONFIGURATION STEPS

(XXXis the version number of thepm file)
If you use debian, installation is limited to

dpkg -i fpc-XXX.deb

Here againXXXis the version number of theeb file.

You need root access to install these packages..f@ndile allows you to do an installation if you
don’t have root permissions.

When downloading thear file, or the separate files, installation is more interactive.

In case you downloaded ther file, you should first untar the file, in some directory where you have
write permission, using the following command:

tar -xvf fpc.tar

We supposed here that you downloaded theffiletar somewhere from the Internet. (The real
filename will have some version number in it, which we omit here for clarity.)

When the file is untarred, you will be left with more archive files, and an install program: an instal-
lation shell script.

If you downloaded the files as separate files, you should at least downloabthkksh script, and
the libraries (inlibs.tar.gz).

To install Free Pascal, all that you need to do now is give the following command:
Jinstall.sh

And then you must answer some questions. They're very simple, they're mainly concerned with 2
things :

1. Places where you can install different things.

2. Deciding if you want to install certain components (such as sources and demo programs).

The script will automatically detect which components are present and can be installed. It will only
offer to install what has been found. because of this feature, you must keep the original names when
downloading, since the script expects this.

If you run the installation script as thieot user, you can just accept all installation defaults. If you
don't run agoot , you must take care to supply the installation program with directory names where
you have write permission, as it will attempt to create the directories you specify. In principle, you
can install it wherever you want, though.

At the end of installation, the installation program will generate a configuration file for the Free
Pascal compiler which reflects the settings that you chose. It will install this file itetbeirectory,
(if you are not installing asoot , this will fail), and in the directory where you installed the libraries.

If you want the Free Pascal compiler to use this configuration file, it must be predett,ior you
can set the environment varial®C_CONFIG_PATHUndercsh, you can do this by adding a

setenv PPC_CONFIG_PATH /usr/lib/ppc/0.99.1

line to your.login file in your home directory. (see also the next section)

2.3 Optional configuration steps

On any platform, after installing the compiler you may wish to set some environment variables. The
Free Pascal compiler recognizes the following variables :

2.4. TESTING THE COMPILER

e PPC_EXEC_PATIontains the directory wheras’ and 'ld’ are. (defaultfusr/bin)

e PPC_GCCLIB_PATHontains the directory whefigcc.a is (no default). This if forinuX
only.

e PPC_CONFIG_PATHpecifies an alternate path to fipdc386.cfg (default underiNnux is
/etc)

e PPC_ERROR_FILBpecifies the path and name of the error-definition file. (defasiiflib/fpc/errorE.msg)

These locations are, however, set in the sample configuration file which is built at the end of the
installation process, except for tR®C_CONFIG_PATHariable, which you must set if you didn'’t
install things in the default places.

finally

Also distributed in Free Pascal is a README file. It contains the latest instructions for installing
Free Pascal, and should always be read first.

2.4 Testing the compiler

After the installation is completed and the environment variables are set as described above, your
first program can be compiled.

Included in the Free Pascal distribution are some demonstration programs, showing what the com-
piler can do. You can test if the compiler functions correctly by trying to compile these programs.

The compiler is called

e PPC386.EXE underpos, and

e ppc386 underLINUX

To compile a program (e demo\hello.pp) simply type :

ppc386 hello

at the command prompt. If you don’t have a configuration file, then you may need to tell the compiler
where it can find the units, for instance as follows:

ppc386 -Upc:\pp\rthdos\go32v2 hello

underpos, and undeLINUX you could type

ppc386 -Up/usr/lib/fpc/0.99.7/linuxunits hello

This is, of course, assuming that you installed ur@&PP or /usr/lib/fpc/0.99.7, respectively.

If you got no error messages, the compiler has generated an executablénedeftho extension)
underLINUX, and a filehello.exe underpos.

To execute the program, simply type :

hello

If all went well, you should see the following friendly greeting:

10

2.4. TESTING THE COMPILER

Hello world

In the DOS case, this friendly greeting may be preceded by some ugly message froBOB2
extender program. This unfriendly behavior can be switched off by settinG@@&2 environment

variable.

11

Remark:

Chapter 3

Compiler usage

Here we describe the essentials to compile a program and a unit. We also describe how to make a
stand-alone executable of the compiled program undex For more advanced uses of the compiler,
see the section on configuring the compiler, and the Programmers’ guide.

The examples in this section suppose that you happa386.cfg which is set up correctly, and
which contains at least the path setting for the RTL units. In principle this file is generated by the
installation program. You may have to check that it is in the correct place (see Section 5.2 for more
information on this).

3.1 File searching

Before you start compiling a program or a series of units, it is important to know where the compiler
looks for its source files and other files. In this section we discuss this, and we indicate how to
influence this.

The use of slashes (/) and backslashésas directory separators is irrelevant, the compiler will
convert to whatever character is used on the current operating system. Examples will be given using
slashes, since this avoids problemsL.omux .

Command line files
The file that you specify on the command line, such as in

ppc386 foo.pp

will be looked for ONLY in the current directory. If you specify a directory in the filename, then the
compiler will look in that directory:

ppc386 subdir/foo.pp

will look for foo.pp in the subdirectorgubdir of the current directory.

UnderLINUX, the name of this file is case sensitive, under other operating systerssWINDOWS
NT, 0s/2) this is not the case.

Unit files

When you compile a unit or program that needs other units, the compiler will look for compiled
versions of these units in the following way:

12

file:../prog/prog.html

3.2. INCLUDE FILES

1. It will look in the current directory.
2. It will look in the directory where the compiler binary is. (not underux)

3. It will look in all the directories specified in the unit search path.

You can add a directory to the unit search path with-the option (Sed5]1). Every occurrence of
one of this options wilinserta directory to the unit search path.

On LINUX, the compiler will first convert the filename of a unit to all-lowercase. This is necessary,
since Pascal is case-independent, and the staterdsets Unitl; or uses unitl; should

have the same effect. Also, unit names that are longer than 8 characters will first be looked for with
their full length. If the unit is not found with this name, the name will be truncated to 8 characters,
and the compiler will look again in the same directories, but with the truncated name.

For instance, suppose that the fi®.pp needs the unibar. Then the command
ppc386 -Up.. -Upunits foo.pp
will tell the compiler to look for the unibar in the following places:

1. In the current directory.

2. In the directory where the compile binary is (not underux).
3. Inthe parent directory of the current directory.
4

. In the subdirectorunits of the current directory

If the compiler finds the unit it needs, it will look for the source file of this unit in the same directory
where it found the unit. If it finds the source of the unit, then it will compare the file times. If the
source file was modified more recent than the unit file, the compiler will attempt to recompile the
unit with this source file.

If the compiler doesn’t find a compiled version of the unit, or when-Bieoption is specified, then
the compiler will look in the same manner for the unit source file, and attempt to recompile it.

It is recommended to set the unit search path in the configuratiopdd886.cfg. If you do this,
you don'’t need to specify the unit search path on the command-line every time you want to compile
something.

3.2 Include files

If you include files in your source with thgl filename} directive, the compiler will look for
it in the following places:

1. It will look in the path specified in the incude file name.
2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add files to the include file search path with-thg/See[511) option.
As an example, consider the following include statement in aifiles/foo.pp:

{$i ../bar.inc}

13

3.3. OBJECT FILES

Then the following command :
ppc386 -lincfiles units/foo.pp
will cause the compiler to look in the following directories tfuar.inc:

1. the parent directory of the current directory
2. theunits subdirectory of the current directory

3. theincfiles directory of the current directory.

3.3 Object files

When you link to object files (using tH8L file.o} directive, the compiler will look for this file
in the same way as it looks for include files:

1. It will look in the path specified in the object file name.
2. It will look in the directory where the current source file is.

3. itwill look in all directories specified in the object file search path.

You can add files to the object file search path with-fhe (See[5]1) option.

Configuration file

Unless you specify then (Seqg5]1) option, the compiler will look for a configuration filec386.cfg
in the following places:

e UnderLINUX

1. The current directory.
2. In your home directory, it looks fappc386.cfg.

3. The directory specified in the environment varidBRC_CONFIG_PATHand if it's not
set underetc.

e Under all other OSes:

1. The current directory.
2. Ifitis set, the directory specified in the environment variaBleC_CONFIG_PATH
3. The directory where the compiler is.

3.4 Compiling a program

Compiling a program is very simple. Assuming that you have a program source in theofilgp,
you can compile this with the following command:

ppc386 [options] prog.pp

14

Remark:

3.5. COMPILING A UNIT

The square brackefs] indicate that what is between them is optional.

If your program file has thepp or .pas extension, you can omit this on the command line, e.g. in
the previous example you could have typed:

ppc386 [options] prog

If all went well, the compiler will produce an executable, or, for version 1 ofiths extender, a file
which can be converted to an executable.

Unless you are usingos and version 1 of theos extender, the file you obtained is the executable.

You can execute it straight away, you don’t need to do anything else. Under version 1opshe
extender, additional processing is required. See seffipn 3.7 on how to create an executable in this
case.

You will notice that there is also another file in your directory, with extensiond his contains the
object file for your program. If you compiled a program, you can delete the objectd)lebit not

if you compiled a unit. Then the object file contains the code of the unit, and will be linked in any
program that uses the unit you compiled, so you shouldn’t remove it.

3.5 Compiling a unit

Compiling a unit is not essentially different from compiling a program. The difference is mainly that
the linker isn’t called in this case.

To compile a unit in the filéoo.pp, just type :
ppc386 foo

Recall the remark about file extensions in the previous section.
When all went well, you will be left with 2 (two) unit files:

1. foo.ppu This is the file describing the unit you just compiled.

2. foo.o This file contains the actual code of the unit. This file will eventually end up in the
executables.

Both files are needed if you plan to use the unit for some programs. So don'’t delete them. If you
want to distribute the unit, you must provide both tppu and.o file. One is useless without the
other.

UnderLINUX, a unit source filanusthave a lowercase filename. Since Pascal is case independent,
you can specify the names of units in thees clause in either case. To get a unique filename, the
Free Pascal compiler changes the name of the unit to all lowercase when looking for unit files.

The compiler produces lowercase files, so your unit will be found, even if your source file has up-
percase letters in it. Only when the compiler tries to recompile the unit, it will not find your source
because of the uppercase letters.

3.6 Units, libraries and smartlinking

The Free Pascal compiler supports smartlinking and the creation of libraries. However, the default
behaviour is to compile each unit into 1 big object file, which will be linked as a whole into your
program.

15

3.7. CREATING AN EXECUTABLE FOR GO32V1 AND PMODE/DJ TARGETS

Not only is it possible to compile a shared library undemows andLINUX, but also it is possible
to take existing units and put them together in 1 static or shared library.

begin

3.7 Creating an executable for GO32V1 and PMODE/DJ targets

The GO32V1 platform is officially no longer supported, so this section is of interest only to people
who wish to make go32V1 binaries anyway.

GO32v1

When compiling undepos, GO32V2 is the default target. However, if you use go32V1 (using the
-TGO32V1 switch), the compilation process leaves you with a file which you cannot execute right
away. There are 2 things you can do when compiling has finished.

The first thing is to use theos extender from D.J. Delorie to execute your program :

go32 prog

This is fine for testing, but if you want to use a program regularly, it would be easier if you could just
type the program name, i.e.

prog
This can be accomplished by makingas executable of your compiled program.

There two ways to createos executable (undavos only):

1. if the GO32.EXE is already installed on the computers where the program should run, you
must only copy a program callé&8lTUB.EXE at the begin of the AOUT file. This is accom-
plished with theAOUT2EXE.EXE program. which comes with the compiler:

AOUT2EXE PROG

and you get a>0s executable which loads th8032.EXE automatically. the5032.EXE
executable must be in current directory or be in a directory irPh&Hvariable.

2. The second way to creat®asexecutable is to pusO32.EXE at the beginning of thAOUT
file. To do this, at the command prompt, type :

COPY /B GO32.EXE+PROG PROG.EXE

(assuming Free Pascal created a file cal®DG, of course.) This becomes then a stand-
alone executable favos, which doesn’t need the O32.EXE on the machine where it should
run.

PMODE/DJ

You can also use the PMODE/DJ extender to run your Free Pascal applications. To make an exe-
cutable which works with the PMODE extender, you can simply create an GO32V2 executable (the
default), and then convert it to a PMODE executable with the following two extra commands:

1. First, strip the GO32V2 header of the executable:

16

Remark:

3.8. REDUCING THE SIZE OF YOUR PROGRAM

EXE2COFF PROG.EXE

(we suppose th&®ROG.EXE is the program generated by the compilation process.

2. Secondly, add the PMODE stub:
COPY /B PMODSTUB.EXE+PROG PROG.EXE

If the PMODSTUB.EXE file isn’t in your local directory, you need to supply the whole path
toit.

That's it. No additional steps are needed to create a PMODE extender executable.

Be aware, though, that the PMODE extender doesn’t support virtual memory, so if you're short on
memory, you may run unto trouble. Also, officially there is not support for the PMODE/DJ extender.
It just happens that the compiler and some of the programs it generates, run under this extender too.

3.8 Reducing the size of your program

When you created your program, it is possible to reduce its size. This is possible, because the
compiler leaves a lot of information in the program which, strictly speaking, isn’t required for the
execution of it. The surplus of information can be removed with a small program cstied It

comes with theGO32development environment undeps, and is standard oniNUX machines

where you can do development. The usage is simple. Just type

strip prog

On the command line, and therip program will remove all unnecessary information from your
program. This can lead to size reductions of up to 30 %.

In the WIN32 versionstrip is calledstripw.

You can use theXs switch to let the compiler do this stripping automatically at program compile
time (the switch has no effect when compiling units).

Another technigue to reduce the size of a program is to use smartlinking. Normally, units (including
the system unit) are linked in as a whole. It is however possible to compile units such that the can be
smartlinked. This means that only the functions and procedures are linked in your program, leaving
out any unnecessary code. This technique is described in full in the programmers guide.

17

Chapter 4

Compiling problems

4.1 General problems

e |O-error -2 at ... : UnderLINUX you can get this message at compiler startup. It means
typically that the compiler doesn’t find the error definitions file. You can correct this mistake
with the-Fr option underLINuX. (Seg5]1)

e Error : File not found : xxx or Error: couldn’t compile unit xxx : This typically happens
when your unit path isn’'t set correctly. Remember that the compiler looks for units only in
the current directory, and in the directory where the compiler itself is. If you want it to look
somewhere else too, you must explicitly tell it to do so usingEhe option (Seg¢5]1). Or you
must set op a configuration file.

4.2 Problems you may encounter under DOS

e No space in environment
An error message like this can occur, if you GBET _PP.BAT in the AUTOEXEC.BAT.

To solve this problem, you must extend your environment memory. To do this, search a line in
the CONFIG.SYS like

SHELL=C:\DOS\COMMAND.COM
and change it to the following:
SHELL=C:\DOS\COMMAND.COM /E:1024

You may just need to specify a higher value, if this parameter is already set.

e Coprocessor missing
If the compiler writes a message that there is no coprocessor, install the coprocessor emulation.

e Not enough DPMI memory

If you want to use the compiler withPMIyou must have at least 7-8 MB fr&PMI memory,
but 16 Mb is a more realistic amount.

18

Chapter 5

Compiler configuration

The output of the compiler can be controlled in many ways. This can be done essentially in two
distinct ways:

e Using command-line options.

¢ Using the configuration fileppc386.cfg.

The compiler first reads the configuration file. Only then the command line options are checked. This
creates the possibility to set some basic options in the configuration file, and at the same time you
can still set some specific options when compiling some unit or program. First we list the command
line options, and then we explain how to specify the command line options in the configuration file.
When reading this, keep in mind that the options are case sensitive. While this is customary for
LINUX, itisn't underbos.

5.1 Using the command-line options

The available options for version 0.99.10 of the compiler are listed by category (see appendix A for
a listing as generated by the compiler):

General options
-h if you specify this option, the compiler outputs a list of all options, and exits after that.

-? idem as-h , waiting after every screenfull for the enter key.

-i This option tells the compiler to print the copyright information. You can give it an option, as
-ixxx where xxx can be one of the following:
D : Returns the compiler date.
V : Returns the compiler version.
SO : Returns the compiler OS.
SP : Returns the compiler processor.
TO : Returns the target OS.
TP : Returns the target Processor.

-| This option tells the compiler to print the Free Pascal logo on standard output. It also gives you
the Free Pascal version number.

19

5.1. USING THE COMMAND-LINE OPTIONS

-n Tells the compiler not to read default the configuration file. You can still pass a configuration file
with the @option.

Options for getting feedback

-vxxx Be verbosexxx is a combination of the following :

e e : Tells the compiler to show only errors. This option is on by default.
e i : Tells the compiler to show some general information.

e W: Tells the compiler to issue warnings.

e n: Tells the compiler to issue notes.

e h: Tells the compiler to issue hints.

e | : Tells the compiler to show the line numbers as it processes a file. Numbers are shown
per 100.

e U : Tells the compiler to print information on the units it loads.
e t : Tells the compiler to print the names of the files it tries to open.

e p : Tells the compiler to print the names of procedures and functions as it is processing
them.

e C : Tells the compiler to warn you when it processes a conditional.

e m: Tells the compiler to write which macros are defined.

e d : Tells the compiler to write other debugging info.

e a: Tells the compiler to write all possible info. (this is the same as specifying all options)

e 0 : Tells the compiler to write no messages. This is useful when you want to override the
default setting in the configuration file.

e b : Tells the compiler to show all procedure declarations if an overloaded function error
occurs.

e X : Tells the compiler to output some executable info (for Win32 platform only).

¢ 1 : Rhide/GCC compatibility mode: formats the errors differently, so they are understood
by RHIDE.

Options concerning files and directories

-exxx xxx specifies the directory where the compiler can find the executabl@ke assembler) and
Id (the linker).

-FD same ase .
-Fexxx This option tells the compiler to write errors, etc. to the file nanced

-FExxx tells the compiler to write the executable and units in directoty instead of th current
directory.

-FIxxx Addsxxx to the include file search path.
-FIxxx Addsxxx to the library searching path, and is passed to the linker.

-FLxxx (LINUX only) Tells the compiler to usgxx as the dynamic linker. Default this i8b/Id-
linux.so.2, or/Hlib/ld-linux.so.1, depending on which one is found first.

-Foxxx Addsxxx to the object file search path. This path is used when looking for files that need to
be linked in.

20

5.1. USING THE COMMAND-LINE OPTIONS

-Frxxx xxx specifies the file which contain the compiler messages. Default the compiler has built-in
messages. Specifying this option will override the default messages.

-Fuxxx Add xxx to the unit search path. Units are first searched in the current directory. If they are
not found there then the compiler searches them in the unit path. Youatwestssupply the
path to the system unit.

-FUxxx Tells the compiler to write units in directopgx instead of the current directory. It over-
rides the-FE option.

-Ixxx Add xxx to the include file search path. This option has the same effeEi as

-P uses pipes instead of files when assembling. This may speed up the comgE2@ndLINUX.
Only with assemblers (such axu as) that support piping...

Options controlling the kind of output.

for more information on these options, see aiso Programmers’|guide

-a Tells the compiler not to delete the assembler files it generates (not when using the internal as-
sembler). This also counts for the (possibly) generated batch script.

-al Tells the compiler to include the sourcecode lines in the assembler file as comments.

-ar tells the compiler to list register allocation and release info in the assembiler file. This is primarily
intended for debugging the code generated bythe compiler.

-at tells the compiler to list information about temporary allocations and deallocations in the assem-
bler file.

-Axxx specifies what kind of assembler should be generated . ¥t&ras one of the following :

as assemble usingNu as.

asaout assemble usingNu as for aout (Go32v1).

nasmcoff coff (Go32v2) file using Nasm.

nasmelf elf32 (Linux) file using Nasm.

nasmobj object file using Nasm.

masm object file using Masm (Microsoft).

tasm object file using Tasm (Borland).

coff coff object file (Go32v2) using the internal binary object writer.
pecoff pecoff object file (Win32) using the internal binary object writer.

-B tells the compiler to re-compile all used units, even if the unit sources didn’t change since the last
compilation.

-b tells the compiler to generate browser info. This information can be used by an Integrated Devel-
opment Environment (IDE) to provide information on classes, objects, procedures, types and
variables in a unit.

-bl is the same ag but also generates information about local variables, types and procedures.

-CD Create a dynamic library. This is used to transform units into dynamically linkable libraries on
LINUX.

-Chxxx Reservesxx bytes heapxxx should be between 1024 and 67107840.

21

file:../prog/prog.html

5.1. USING THE COMMAND-LINE OPTIONS

-Ci Generate Input/Output checking code. In case some input/output code of your program returns
an error status, the program will exit with a run-time error. Which error is generated depends
on the 1/O error.

-Cn Omit the linking stage.

-Co Generate Integer overflow checking code. In case of integer errors, a run-time error will be
generated by your program.

-Cr Generate Range checking code. In case your program acesses an array element with an in-
valid index, or if it increases an enumerated type beyond it's scope, a run-time error will be
generated.

-Csxxx Set stack size tmxx .

-Ct generate stack checking code. In case your program performs a faulty stack operation, a run-
rime error will be generated.

-CX Create a smartlinked unit when writing a unit. smartlinking will only link in the code parts that
are actually needed by the program. All unused code is left out. This can lead to substantially
smaller binaries.

-dxxx Define the symbol namexx . This can be used to conditionally compile parts of your code.
-E Same asCn.

-g Generate debugging information for debugging vgttb

-gg idem asqg .

-gd generate debugging info falbx.

-gh use the heaptrc unit (sée Unit reference).

-gc generate checks for pointers.

-Oxxx optimize the compiler’s outpukxx can have one of the following values :

g optimize for size, try to generate smaller code.

G optimize for time, try to generate faster code (default).

r keep certain variables in registers (experimental, use with caution).
u Uncertain optimizations

1 Level 1 optimizations (quick optimizations).

2 Level 2 optimizations{O1 plus some slower optimizations).

3 Level 3 optimizations{02 plus-Ou).

Pn (Intel only) Specify processon can be one of

1 optimize for 386/486
2 optimize for Pentium/PentiumMMX (tm)
3 optimizations for PentiumPro/PII/Cyrix 6x86/K6 (tm)

The exact effect of these effects can be found in the Programmers| guide.
-oxxx Tells the compiler to usexx as the name of the output file (executable). Only with programs.

-pg Generate profiler code fgprof.

22

file:../units/units.html
file:../prog/prog.html

5.1. USING THE COMMAND-LINE OPTIONS

-s Tells the compiler not to call the assembler and linker. Instead, the compiler writes a script,
PPAS.BAT underpos, or ppas.sh underLINUX, which can then be executed to produce an
executable. This can be used to speed up the compiling process or to debug the compiler’s
output.

-Txxx Specifies the target operating systemx can be one of the following:

e GO32V1: bosand version 1 of the DJ DELORIE extender (no longer maintained).
e GO32V2: bosand version 2 of the DJ DELORIE extender.

e LINUX :LINUX.

e 0S2: 0S/2 (2.x) using th&MXextender.

e WIN32 : WINDOWS 32 bit.

-uxxx undefine the symbotxx . This is the opposite of thel option.
-uxxx Undefine symbokxx .

-Xx executable options. This tells the compiler what kind of executable should be generated. the
parametex can be one of the following:

e C: (LINUX only) Link with the C library. You should only use this when you start to port
Free Pascal to another operating system.

e D : Link with dynamic libraries (defines tHePC_LINK_DYNAMICsymbol)

s: Strip the symbols from the executable.

S: Link with static units (defines thEPC_LINK_STATIC symbol)

X : Link with smartlinked units (defines tHePC_LINK _SMARTsymbol)

Options concerning the sources (language options)

for more information on these options, see aiso Programmers’|guide

-Rxxx Specifies what kind of assembler you use in yasim assembler code blocks. Hetgx is
one of the following:
att asmblocks contain AT&T-style assembler. This is the default style.
intel asm blocks contain Intel-style assembiler.
direct asm blocks should be copied as-is in the assembler, only replacing certain variables.
file.

-S2 Switch on Delphi 2 extensions. This is different freBd because some Free Pascal constructs
are still available to you.

-Sc Support C-style operators, i.&s, +=, /= and -=

-Sd Tells the compiler to be Delphi compatible. This is more strict than &2 option, since some
fpc extensions are switched off.

-SeN The compiler stops after the N-th error. Normally, the compiler tries to continue compiling
after an error, until 50 errors are reached, or a fatal error is reached, and then it stops. With this
switch, the compiler will stop after the N-th error (if N is omitted, a default of 1 is assumed).

-Sg Support thdabel andgoto commands. By default these are not supported. You must also
specify this option if you use labels in assembler statements. (if you usAT&d style
assember)

23

file:../prog/prog.html

5.2. USING THE CONFIGURATION FILE

-Sh Use ansistrings by default for strings. If this keyword is specified, the compiler will interpret
thestring keyword as a ansistring. Otherwise it is supposed to be a short strings (TP style).

-Si SupportC++ style INLINE.

-Sm Support C-style macros.

-So Try to be Borland TP 7.0 compatible (no function overloading etc.).

-Sp Try to begpc (GNU pascal compiler) compatible.

-Ss The name of constructors mustipi , and the name of destructors shoulddome .
-St Allow the static keyword in objects.

-Un Do not check the unit name. Normally, the unit name is the same as the filename. This option
allows both to be different.

-Us Compile a system unit. This option causes the compiler to define only some very basic types.

5.2 Using the configuration file

Using the configuration filppc386.cfg is an alternative to command line options. When a configu-
ration file is found, it is read, and the lines in it are treated like you typed them on the command line.
They are treated before the options that you type on the command line.

You can specify comments in the configuration file with theign. Everything from thét on will
be ignored.

The compiler looks for thepc386.cfg file in the following places :

e UnderLINUX

1. The current directory.
2. In your home directory, it looks fappc386.cfg.
3. The directory specified in the environment variabRC_CONFIG_PATHand if it's not
set underetc.
e Under all other OSes:

1. The current directory.
2. Ifitis set, the directory specified in the environment variaBleC_CONFIG_PATH
3. The directory where the compiler is.

When the compiler has finished reading the configuration file, it continues to treat the command line
options.

One of the command-line options allows you to specify a second configuration file: Spe@@jing
on the command line will open fillwo, and read further options from there. When the compiler has
finished reading this file, it continues to process the command line.

The configuration file allows some kind of preprocessing. It understands the following directives,
which you should place on the first column of a line :

#IFDEF
#IFNDEF

24

5.2. USING THE CONFIGURATION FILE

#ELSE
#ENDIF
#DEFINE
#UNDEF
#WRITE
#INCLUDE
#SECTION

They work the same way as their {$...} counterparts in Pascal.
What follows is a description of the different directives.

#IFDEF
Syntax:

#IFDEF name

Lines following#IFDEF are skipped read if the keyworchme following it is not defined.

They are read until the keyword& L SE or #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFDEF VERO 99 5
-Up/usr/lib/fpc/0.99.5/linuxunits
#ENDIF

In the above exampléusr/lib/fpc/0.99.5/linuxunits will be added to the path if you're compiling
with version 0.99.5 of the compiler.

#IFNDEF
Syntax:

#IFNDEF name

Lines following#IFDEF are skipped read if the keyworthme following it is defined.

They are read until the keyword& L SE or #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFNDEF VERO_99 5
-Up/usr/lib/fpc/0.99.6/linuxunits
#ENDIF

In the above exampléusr/lib/fpc/0.99.6/linuxunits will be added to the path if you're NOT com-
piling with version 0.99.5 of the compiler.

25

5.2. USING THE CONFIGURATION FILE

#ELSE
Syntax:

#ELSE

#ELSE can be specified after’dFDEF or #IFNDEF directive as an alternative. Lines following
#ELSE are skipped read if the precedi#t-DEF #IFNDEF was accepted.

They are skipped until the keywo#ENDIF is encountered, after which normal processing is re-
sumed.

Example :

#IFDEF VERO 99 5
-Up/usr/lib/fpc/0.99.6/linuxunits
#ELSE

-Up/usr/lib/fpc/0.99.5/linuxunits
#ENDIF

In the above exampldusr/lib/fpc/0.99.5/linuxunits will be added to the path if you're compiling

with version 0.99.5 of the compiler, otherwisigsr/lib/fpc/0.99.6/linuxunits will be added to the
path.

#ENDIF
Syntax:

#ENDIF

#ENDIF marks the end of a block that started with-(N)DEF , possibly with ar¥ELSE between
it.

#DEFINE

Syntax:

#DEFINE name

#DEFINE defines a new keyword. This has the same effect-dsame command-line option.

#UNDEF
Syntax:

#UNDEF name
#UNDEFun-defines a keyword if it existed. This has the same effect-as@me command-line

option.

#WRITE
Syntax:

26

5.2. USING THE CONFIGURATION FILE

#WRITE Message Text

#WRITE writes Message Text to the screen. This can be useful to display warnings if certain
options are set.

Example:

#IFDEF DEBUG
#WRITE Setting debugging ON...

-0
#ENDIF

if DEBUGSs defined, this will produce a line
Setting debugging ON...

and will then switch on debugging information in the compiler.

#INCLUDE
Syntax:

#INCLUDE filename

#INCLUDE instructs the compiler to read the contentsfitdhame before continuing to process
options in the current file.

This can be useful if you want to have a particular configuration file for a project (or, undex ,
in your home directory), but still want to have the global options that are set in a global configuration
file.

Example:

#IFDEF LINUX
#INCLUDE /etc/ppc386.cfg
#ELSE
#IFDEF GO32V2
#INCLUDE c:\pp\bin\ppc386.cfg
#ENDIF
#ENDIF

This will include/etc/ppc386.cfg if you're on a linux machine, and will include\pp\bin\ppc386.cfg

on a dos machine.

#SECTION
Syntax:

#SECTION name

The#SECTIONdirective acts as #IFDEF directive, only it doesn’t require a#ENDIF directive.
the special namEOMMO&ways exists, i.e. lines followingSECTION COMMGQCiXe always read.

27

5.3. VARIABLE SUBSTITUTION IN PATHS

5.3 Variable substitution in paths

To avoid having to edit your configuration files too often, the compiler allows you to specify the
following variables in the paths that you feed to the compiler:

FPCVER is replaced by the compiler’s full version string.

FPCDATE is replaced by the compiler’s date.

FPCTARGET is replaced by the compiler’s target CPU (deprecated).
FPCCPU is also replaced by the compiler’s target CPU.

TARGET is replaced by the compiler’s target OS.(deprecated)
FPCOS is replaced by the compiler’s target OS.

To have these variables subsituted, just insert them witlpeepended, as follows:
-Fulusr/lib/fpc/$FPCVER/rtl/$FPCOS

This is equivalent to

-Fu/usr/lib/fpc/0.99.12a/rtl/linux

If the compiler version i9.99.12a and the target os inux
These replacemens are valid on the command-line and also in the configuration file.

On the linux command-line, you must be careful to escap®8 #iace otherwise the shell will expand
the variable for you, which may have undesired effects.

28

Chapter 6

Porting Turbo Pascal Code

Free Pascal was designed to resemble Turbo Pascal as closely as possible. There are, of course,
restrictions. Some of these are due to the fact that Free Pascal is a 32-bit compiler. Other restrictions
result from the fact that Free Pascal works on more than one operating system.

In general we can say that if you keep your program code close to ANSI Pascal, you will have no
problems porting from Turbo Pascal, or even Delphi, to Free Pascal. To a large extent, the constructs
defined by Turbo Pascal are supported. This is even more so if you us®ahar -S2 switches.

In the following sections we will list the Turbo Pascal constructs which are not supported in Free
Pascal, and we will list in what ways Free Pascal extends the Turbo Pascal language.

6.1 Things that will not work

Here we give a list of things which are defined/allowed in Turbo Pascal, but which are not supported
by Free Pascal. Where possible, we indicate the reason.

1. Duplicate case labels are not allowed. This is a bug in Turbo Pascal and will not be changed.

2. Parameter lists of previously defined functions and procedures must match exactly. The reason
for this is the function overloading mechanism of Free Pascal. (howeve&hswitch solves
this. Sed511)

3.(* ... % as comment delimiters are not allowed in versions older than 0.9.1. This can
easily be remedied with a grown-up editor.

4. The MEM, MEMW, MEMInd PORTvariables for memory and port access are not avail-
able in the system unit. This is due to the operating system. Undsy the extender unit
(GO32.PPU) implements the mem constuct. undewux , theports unit implements such a
construct.

5. PROTECTED, PUBLIC, PUBLISHED, TRY, FINALLY, EXCEPT, RAISE arereserved
words. This means you cannot create procedures or variables with the same name. While they
are not reserved words in Turbo Pascal, they are in Delphi. UsingSiheswitch will solve
this problem if you want to compile Turbo Pascal code that uses these words.

6. The reserved wordsAR, NEARare ignored. This is because Free Pascal is a 32 bit compiler,
so they're obsolete.

7. INTERRUPTonly will work on a DOS machine.

29

6.2. THINGS WHICH ARE EXTRA

8.

10.

11.

12.
13.
14.
15.

6.2

Boolean expressions are only evaluated until their result is completely determined. The rest of
the expression will be ignored.

. By default the compiler use&sT&T assembler syntax. This is mainly because Free Pascal uses

GNU as. However other assembler forms are availabie, Programmers] guide.

Turbo Vision is not completely available. There is FreeVision, but the degree of compatibility
with Turbo Vision is unclear at this time.

The 'overlay’ unit is not available. It also isn’t necessary, since Free Pascal is a 32 bit compiler,
so program size shouldn’t be a point.

There are more reserved words. (see app¢gndix B for a list of all reserved words.)
The command-line parameters of the compiler are different.
Compiler switches and directives are mostly the same, but some extra exist.

Units are not binary compatible.

Things which are extra

Here we give a list of things which are possible in Free Pascal, but which didn’t exist in Turbo Pascal
or Delphi.

1.
2.

There are more reserved words. (see appdndix B for a list of all reserved words.)

Functions can also return complex types, such as records and arrays.

. You can handle function results in the function itself, as a variable. Example

function a : longint;

begin
a:=12;
while a>4 do
begin
{.}
end;
end;

The example above would work with TP, but the compiler would assume that>thds a
recursive call. To do a recursive call in this you must app@ndbehind the function name:

function a : longint;

begin
a:=12;
{ this is the recursive call }
if a()>4 then
begin
{-}
end;
end;

30

file:../prog/prog.html

6.2. THINGS WHICH ARE EXTRA

4. There is partial support of Delphi constructs. (se€ the Programmers’ guide for more informa-
tion on this).

5. Theexit call accepts a return value for functions.

function a : longint;

begin
a:=12;
if a>4 then
begin
exit(a*67); {function result upon exit is a*67 }
end;
end;

6. Free Pascal supports function overloading. That is, you can define many functions with the
same name, but with different arguments. For example:

procedure DoSomething (a : longint);
begin
{.}

end;

procedure DoSomething (a : real);
begin
{.}

end;

You can then call procedui2oSomething with an argument of typeongint or Real .
This feature has the consequence that a previously declared function must always be defined
with the header completely the same:

procedure x (v : longint); forward;

(.}

procedure x;{ This will overload the previously declared x}
begin
{.}

end;

This construction will generate a compiler error, because the compiler didn’t find a definition
of procedure x (v : longint); . Instead you should define your procedure x as:

procedure x (v : longint);

{ This correctly defines the previously declared x}
begin

{..}

end;

(The Se¢5]1 switch disables overloading. When you use it, the above will compile, as in Turbo
Pascal.

7. Operator overloading. Free Pascal allows to overload operators, i.e. you can define e.g. the '+’
operator for matrices.

8. On FAT16 and FAT32 systems, long file names are supported.

31

file:../prog/prog.html

6.3. TURBO PASCAL COMPATIBILITY MODE

6.3 Turbo Pascal compatibility mode

When you compile a program with th&o switch, the compiler will attempt to mimic the Turbo
Pascal compiler in the following ways:

e Assigning a procedural variable doesn'’t require a @ operator. One of the differences between
Turbo Pascal and Free Pascal is that the latter requires you to specify an address operator when

assigning a value to a procedural variable. In Turbo Pascal compatibility mode, this is not
required.

e Procedure overloading is disabled. This means that function header and implementation can
be different (i.e. the function iplementation doesn’t need to repeat the function header).

e Forward defined procedures don'’t need the full parameter list when they are defined. Due to
the procedure overloading feature of Free Pascal, you must always specify the parameter list
of a function when you define it, even when it was declared earlier Fotiward . In Turbo
Pascal compatibility mode, there is no function overloading, hence you can omit the parameter
list:

Procedure a (L : Longint); Forward,

Procedure a ; { No need to repeat the (L : Longint) }
begin
end:
e recursive function calls are handled dfferently. Consider the following example :
Function expr : Longint;
begin

Expr:=L:
Writeln (Expr);

end;

In Turbo Pascal compatibility mode, the function will be called recursively whewthieln

statement is processed. In Free Pascal, the function result will be printed. In order to call the
function recusively under Free Pascal, you need to implement it as follows :

Function expr : Longint;

begin

Expr:=L:
Writeln (Expr());

end;

e Any text after the finaEnd. statementis ignored. Normally, this text is processed too.

32

6.4. A NOTE ON LONG FILE NAMES UNDER DOS

e You cannot assign procedural variables to untyped pointers; so the following is invalid:

a: Procedure;

b: Pointer;

begin

b := a; /I Error will be generated.

e The @ operator is typed when applied on procedures.

e You cannot nest comments.

6.4 A note on long file names undebos

Under WINDOWS 95 and higher, long filenames are supported. Compiling for the win32 target
ensures that long filenames are supported in all functions that do fie or disk access in any way.

Moreover, Free Pascal supports the use of long filenames in the system unit and the dos unit also
for go32v2 executables. The system unit contains the boolean vatiBblsupport . If it is set

to True then all system unit functions and DOS unit functions will use long file names if they are
available. This should be so on all versions of Windows, with the possible exceptiomvafdis

2000. The system unit will check this by callimgs function 71A0h and checking whether long
filenames are supported on tGedrive.

It is possible to disable the long filename support by settind El¢Support variable toFalse

33

Chapter 7

Utilities and units that come with
Free Pascal

Besides the compiler and the Run-Time Library, Free Pascal comes with some utility programs and
units. Here we list these programs and units.

7.1 Supplied programs

ppudump program

ppudump is a program which shows the contents of a Free Pascal unit. It is distributed with the
compiler. You can just issue the following command

ppudump [options] foo.ppu

to display the contents of tHeo.ppu unit. You can specify multiple files on the command line.

The options can be used to change the verbosity of the display. By default, all available information
is displayed. You can set the verbosity level using-Whexx option. Herexxx is a combination of
the following letters:

h: show header info.

i show interface information.

m: show implementation information.
d: show only (interface) definitions.
s: show only (interface) symbols.

b: show browser info.

a: show everything (default if no -V option is present).

Demo programs

Also distributed with Free Pascal comes a series of demonstration programs. These programs have
no other purpose than demonstrating the capabilities of Free Pascal. They are locatedtimdhe
directory of the sources.

34

7.1. SUPPLIED PROGRAMS

Documentation Example programs

All example programs of the documentation are available. Check out the directories thatend on
in the documentation sources. There you will find all example sources.

ppumove program

ppumove is a program to make shared or static libraries from multiple units. It can be compared
with thetpumove program that comes with Turbo Pascal.

It should be distributed in binary form along with the compiler.
It's usage is very simple:

ppumove [options] unitl.ppu unit2.ppu ... unitn.ppu
Whereoptions is a combination of

-b: If specified, ppumve will generate a batch file that will contain the external linking and archiving
commands that must be executed. The name of this batch filmdsve.sh on LINUX, and
pmove.bat otherwise.

-d xxx: If specified, the output files will put in the directorxx

-e xxx: Sets the extension of the moved unit filesdox. By default, this isppl. You don’t have to
specify the dot.

-0 Xxxx: sets the name of the output file, i.e. the name of the file containing all the units. This
parameter is mandatory when you use multiple files.L®wx , ppumove will prepend this
name withlib if it isn’t already there, and will add an extension appropriate to the type of
library.

-q: Causeppumove to operate silently.

-s: Tells ppumove to make a static library instead of a dynamic one; By default a dynamic library
is made on.INUX.

-w: Tells ppumove that it is working under MDows NT. This will change the names of te linker
and archiving program tlolw andarw, respectively.

-h or -?: will display a short help.

The action of the ppumve program is as follows: It takes each of the unit files, and modifies it so that
the compile will know that it should look for the unit code in the library. The new unit files will have
an extensionppu, this can be changed with the option. It will then put together all the object

files of the units into one library, static or dynamic, depending on the presence-of ihgtion.

The name of this library must be set with thee option. If needed, the prefiib will be prepended
underLINUX .. The extension will be set ta for static libraries, for shared libraries the extensions
are.so on linux, and.dll under WNDOWS NT andos/2.

As an example, the following command
Jppumove -o both -e ppl ppu.ppu timer.ppu

under linux, will generate the following output:

35

7.1. SUPPLIED PROGRAMS

PPU-Mover Version 0.99.7
Copyright (c) 1998 by the Free Pascal Development Team

Processing ppu.ppu... Done.
Processing timer.ppu... Done.
Linking timer.o ppu.o

Done.

And it will produce the following files:

1. libboth.so : The shared library containing the code frppu.o andtimer.o. Under WINDOWS
NT, this file would be calledoth.dll.

2. timer.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

3. ppu.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

You could then use or distribute the filldsboth.so, timer.ppl andppu.ppl.

ptop - Pascal source beautifier

ptop program

ptop is a source beautifier written by Peter Grogono based on the ancient pretty-printer by Ledgard,
Hueras, and Singer, modernized by the Free Pascal team (objects, streams, configurability etc)

This configurability, and the thorough bottom-up design are the advantages of this program over the
diverse TurboPascal sourcebeautifiers on e.g. SIMTEL.

The program is quite simple to operate:
ptop "[-v] [-i indent] [-b bufsize][-coptsfile] infile outfile"

Thelnfile parameter is the pascal file to be processed, and will be writtentfile, overwriting an
existingoutfile if it exists.

Some options modify the behaviour of ptop:

-h Writes an overview of the possible parameters and commandline syntax.

-c ptop.cfg Read some configuration data from configuration file instead of using the internal de-
faults then. A config file is not required, the program can operate without one. See also -g.

-iident Sets the number of indent spaces used for BEGIN END; and other blocks.

-b bufsize Sets the streaming buffersize to bufsize. Default 255, 0 is considered non-valid and ig-
nored.

-v be verbose. Currently only outputs the number of lines read/written and some error messages.

-g ptop.cfg Writes a default configuration file to be edited to the file "ptop.cfg"

The ptop configuration file
Creating and distributing a configuration file for ptop is not necesarry, unless you want to modify the

standard behaviour gitop. The configuration file is never preloaded, so if you want to use it you
should always specify it with ec ptop.cfg parameter.

36

7.1. SUPPLIED PROGRAMS

Table 7.1: keywords for operators

Name of codeword operator

casevar : in a case label (unequal 'colon’)
becomes =

delphicomment 1

opencomment {or(*

closecomment }or®)

semicolon :

colon
equals
openparen
closeparen
period

———

The structure of a ptop configuration file is a simple buildingblock repeated several (20-30) times,
for each pascal keyword known to thtop program. (see the default configuration filepdopu.pp
source to find out which keywords are known)

The basic building block of the configuration file consists out of one or two lines, describing how
ptop should react on a certain keyword. First a line without square brackets with the following
format:

keyword=optionl,option2,option3,...

If one of the options is "dindonkey" (see further below), a second line (with square brackets) is
needed like this:

[keyword]=otherkeyword1,otherkeyword2,otherkeywords3,...

As you can see the block contains two types of identifiers, keywords(keyword and otherkeyword1..3
in above example) and options, (optionl1..3 above).

Keywords are the built-in valid Pascal structure-identifiers like BEGIN, END, CASE, IF, THEN,
ELSE, IMPLEMENTATION. The default configuration file lists most of these.

Besides the real Pascal keywords, some other codewords are used for operators and comment expres-
sions. table[(7]1)

The Options codewords define actions to be taken when the keyword before the equal sign is found,
table (72R)

The option "dindonkey" requires some extra parameters, which are set by a second line for that
option (the one with the square brackets), which is therefore is only needed if the options contain
"dinkdonkey" (contraction of de-indent on assiociated keyword).

"dinkdonkey" deindents if any of the keywords specified by the extra options of the square-bracket
line is found.

Example: The lines

else=crbefore,dindonkey,inbytab,upper
[else]=if,then,else

mean the following:

e The keyword this block is about elsebecause it's on the LEFT side of both equal signs.

e The optioncrbefore signals not to allow other code (so just spaces) before the ELSE key-
word on the same line.

37

7.1. SUPPLIED PROGRAMS

Table 7.2: Possible options

Option does what
crsupp suppress CR before the keyword.
crbefore force CR before keyword

(doesn’t go with crsupp :))
blinbefore blank line before keyword.
dindonkey de-indent on associated keywords

(see below)
dindent deindent (always)
spbef space before
spaft space after
gobsym Print symbols which follow a

keyword but which do not
affect layout. prints until
terminators occur.
(terminators are hard-coded in pptop,
still needs changing)
inbytab indent by tab.

crafter force CR after keyword.
upper prints keyword all uppercase
lower prints keyword all lowercase
capital capitalizes keyword: 1st letter

uppercase, rest lowercase.

e The optiondindonkey de-indents if the parser finds any of the keywords in the square brack-
ets line (if then,else)

e The optioninbytab means indent by a tab.

e The optionupper uppercase the keyword (else or Else becomes ELSE)

Try to play with the configfile step by step until you find the effect you desire. The configurability
and possibilities of ptop are quite large. E.g. | like all keywords uppercased instead of capitalized,
so | replaced all capital keywords in the default file by upper.

ptop is still development software, so it is wise to visually check the generated source and try to
compile it, to see iptop hasn’t made any errors.

ptopu unit

The source of th®toP program is conveniently split in two files: One is a unit containing an object
that does the actual beautifying of the source, the other is a shell built around this object so it can be
used from the command line. This design makes it possible to include the object in some program
(e.g. an IDE) and use it's features to format code.

The object resided in thetoPU unit, and is declared as follows

TPrettyPrinter=0Object(TObject)

Indent : Integer; { How many characters to indent ? }
InS : PStream;
OutS . PStream;

DiagS : PStream;

38

7.1. SUPPLIED PROGRAMS

CfgS : PStream;

Constructor Create;

Function PrettyPrint : Boolean;
end;

Using this object is very simple. The procedure is as follows:

1. Create the object, using it's constructor.

2. Setthdns stream. This is an open stream, from which pascal source will be read. This is a
mandatory step.

3. Set theOutS stream. This is an open stream, to which the beautified pascal source will be
written. This is a mandatory step.

4. SettheDiagS stream. Any diagnostics will be written to this stream. This step is optional. If
you don't set this, no diagnostics are written.

5. Set theCfgs stream. A configuration is read from this stream. (see the previous section for
more information about configuration). This step is optional. If you don't set this, a default
configuration is used.

6. Setthdndent variable. This is the number of spaces to use when indenting. Tab characters
are not used in the program. This step is optional. The indent variable is initialized to 2.

7. Call PrettyPrint . This will pretty-print the source ilns and write the result t®utS.
The function return3rue if no errors occurredyalse otherwise.

So, a minimal procedure would be:
Procedure CleanUpCode;

var
Ins,OutS : PBufStream;
PPRinter : TPrettyPrinter;

begin
Ins:=New(PBufStream, Init(ugly.pp’,StopenRead, TheBufSize));
OutS:=New(PBufStream,Init('beauty.pp’,StCreate, TheBufSize));
PPrinter.Create;
PPrinter.Ins:=Ins;
PPrinter.outS:=0utS;
PPrinter.PrettyPrint;

end;

Using memory streams allows very fast formatting of code, and is perfectly suitable for editors.

rstconv program

The rstconv program converts the resource string files generates by the compiler (when you use
resource string sections) 1po files that can be understood by the GMdgfmt program.

Its usage is very easy; it accepts the following options:

-i file Use the specified file instead of stdin as input file. This option is optional.

-o file write output to the specified file. This option is required.

39

7.2. SUPPLIED UNITS

-f format Specifies the output format. At the moment, only one output format is suppquoedr
GNU gettextpo format. It is the default format.

As an example:
rstconv -i resdemo.rst -0 resdemo.po

will convert theresdemo.rst file to resdemo.po.

More information on thestconv utility can be found in thé Programmers’ quide, under the chapter
about resource strings.

fpcmake
fpcmake is the Free Pascal makefile constructor program.

It reads aMakefile.fpc configuration file and converts it toMakefile suitable for reading by GNU
make to compile your projects. Itis similar in functionality to GN&itoconf or Imake for making
X projects.

fpcmake accepts filenames of makefile description files as it's command-line arguments. For each
of these files it will create Makefile in the same directory where the file is located, overwriting any
other existing file.

If no options are given, it just attempts to read the ffllakefile.fpc in the current directory and tries
to construct a makefile from it. any previously existidgkefile will be erased.

The format of thefpcmake configuration file is described in great detail in the appendices of the
Programmers’ guide.

7.2 Supplied units

Here we list the units that come with the Free Pascal distribution. Since there is a difference in the
supplied units per operating system, we list them separately per system. They are documented in the
Unit reference.

Units common to all platforms

The following units are common to all platform; i.e. their workings are guaranteed to be the same on
all platforms.

getopts This unit gives you thenu getopts command-line arguments handling mechanism. It also
supports long options.

mmx This unit provides support fanmxextensions in your code.
objects This unit provides basic routines for handling objects.

objpas is used for Delphi compatibility; you should never load this unit explicitly; it is automatically
loaded if you request Delphi mode.

strings This unit provides basic string handling routines forgblear type, comparable to similar
routines in standar@ libraries.

sysutils is an alternative implementation of the sysutils unit of Delphi.

typinfo Provides functions to acces Run-Time Type Information, just like Delphi.

40

file:../prog/prog.html
file:../prog/prog.html
file:../units/units.html

7.2. SUPPLIED UNITS

Under DOS
crt This unit provides basic screen handling routines. It provides the same functionality as the
Turbo PascaCRTunit.

dos This unit provides basic routines for accessing the operating systemit provides almost
the same functionality as the Turbo Pascal unit.

emu387 This unit provides support for the coprocessor emulator.

graph This unit provides basic graphics handling, with routines to draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

go32 This unit provides access to possibilities of B@32D0s extender.
ports This unit provides access to the ports[] construct of Turbo Pascal.
printer This unit provides all you need for rudimentary access to the printer.
dos This unit provides basic routines for accessing the operating sysbem It emulates this
functionality by issuing calls to the Windows operating system.

crt and wincrt These units provides basic screen handling routines. They provide the same functionality as
the Turbo PascalRTunit.

graph This unit provides basic graphics handling, with routines to draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

Windows This unit provides access to al Win32 API calls. Effort has been taken to make sure that it is
compatible to the Delphi version of this unit, so code for Delphi is easily ported to Free Pascal.

opengl provides access to the low-level opengl functions iRMdwWs.
winmouse provides access to the mouse iINBOWS.
ole2 provides access to the OLE capabilities af\ows.
winsock provides acces to thebows sockets API Winsock.

sockets is a wrapper around winsock that is compatible with.ithex sockets layer. Using this unit
ensures that your code will run both oniMbows andLINUX.

Under Linux

crt This unit provides basic screen handling routines. It provides the same functionality Turbo
PascalCRTunit. It should work on any terminal which supports th&00 escape sequences.

dos This unit provides an emulation of the same unit urmes. It is intended primarily for
easy porting of Pascal programs framps to LINUX. For good performance, however, it is
recommended to use thiaux unit.

linux This unit provides access to thevux operating system. It provides most file and 1/0 handling
routines that you may need. It implements most of the stan@dititary constructs that you
will find on a Unix system. If you do a lot of disk/file operations, the use of this unit is
recommended over the one you use under Dos.

printer This unit provides an interface to the standard Unix printing mechanism. It supports printing
to file and to any command you would like.

sockets This unit gives you access to sockets and TCP/IP programming.

41

7.2. SUPPLIED UNITS

graph Is an implementation of Borlandsaph unit, which works on the Linux console. It's imple-
mentation is as complete as on the other platforms (it shares the same code). It uses the libvga
and libvgagl graphics libraries, so you need these installed for this unit to work. Also, pro-
grams using this library need to be run as root, or setuid root, and hence are a potential security
risk.

ports This implements the variop®rt[] constructs. These are provided for compatibility only,
and it is not recommended to use them extensively. Programs using this construct must be run
as ruit or setuid root, and are a serious security risk on your system.

42

Chapter 8

Debugging your Programs

Free Pascal supports debug information for¢hes debuggegdb. This chapter describes shortly
how to use this feature. It doesn’t attempt to describe completelgthedebugger, however. For
more information on the workings of tl@Nu debugger, see thgrdb users’ guide.

Free Pascal also supogprof , theGNu profiler, see sectiopn 8.4 for more information on profiling.

8.1 Compiling your program with debugger support

First of all, you must be sure that the compiler is compiled with debugging support. Unfortunately,
there is no way to check this at run time, except by trying to compile a program with debugging
support.

To compile a program with debugging support, just specify-theoption on the command-line, as
follows:

ppc386 -g hello.pp

This will generate debugging information in the executable from your program. You will notice that
the size of the executable increases substantially becausefpf this

Note that the above will only generate debug informafionthe code that has been generated when
compiling hello.pp. This means that if you used some units (the system unit, for instance) which
were not compiled with debugging support, no debugging support will be available for the code in
these units.

There are 2 solutions for this problem.

1. Recompile all units manually with thg option.

2. Specify the "build’ option {B) when compiling with debugging support. This will recompile
all units, and insert debugging information in each of the units.

The second option may have undesirable side effects. It may be that some units aren’t found, or
compile incorrectly due to missing conditionals, etc..

If all went well, the executable now contains the necessary information with which you can debug it
usingGNuU gdb.

1A good reason not to include debug information in an executable you plan to distribute.

43

8.2. USING GDBTO DEBUG YOUR PROGRAM

8.2 Usinggdb to debug your program

To use gdb to debug your program, you can start the debugger, and give it as an optidimizee
of your program:

gdb hello
Or, undemos:
gdb hello.exe

This starts the debugger, and the debugger immediately loads your program into memory, but it
does not run the program yet. Instead, you are presented with the following (more or less) message,
followed by thegdb prompt’(gdb)’

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15.1 (i486-slackware-linux),

Copyright 1995 Free Software Foundation, Inc...

(gdb)

To start the program you can use then command. You can optionally specify command-line
parameters, which will then be fed to your program, for example:

(gdb) run -option -anotheroption needed_argument

If your program runs without problemggdb will inform you of this, and return the exit code of your
program. If the exit code was zero, then the mesdagegram exited normally’

If something went wrong (a segmentation fault or gmh will stop the execution of your program,
and inform you of this with an appropriate message. You can then use thegdth@ommands to
see what happened. Alternatively, you can instgdth to stop at a certain point in your program,
with thebreak command.

Here is a short list ofdb commands, which you are likely to need when debugging your program:
quit Exits the debugger.
kill Stops a running program.
help Gives help on algdb commands.
file Loads a new program into the debugger.
directory Add a new directory to the search path for source files.
Remark: My copy of gdb needs '’ to be added explicitly to the search path, otherwise it doesn'’t find
the sources.

list Lists the program sources per 10 lines. As an option you can specify a line number or function
name.

break Sets a breakpoint at a specified line or function
awatch Sets a watch-point for an expression. A watch-point stops execution of your program when-

ever the value of an expression is either read or written.

44

8.3. CAVEATS WHEN DEBUGGING WITH GDB

for more information, see thgdb users’ guide, or use thbkelp’ function ingdb.

The appendif]F contains a sample init file fidb, which produces good results when debugging
Free Pascal programs.

It is also possible to usRHIDE, a text-based IDE that uses gdb. There is a version of RHIDE
available that can work together with FPC.

8.3 Caveats when debugging witlgdb

There are some peculiarities of Free Pascal which you should be aware of whegdlsing/e list
the main ones here:

1. Free Pascal generates information for GDB in uppercare letters. This is a consequence of the
fact that pascal is a case insensitive language. So, when referring to a variable or function, you
need to make it's name all uppercase.

As an example, of you want to watch the value of a loop variablet , you should type
watch COUNT

Or if you want stop when a certain function (&tyFunction) is called, type

break MYFUNCTION

2. Line numbers may be off by a little. This is a bug in Free Pascal and will be fixed as soon as
possible.

3. gdb does not know sets.

4. gdb doesn’t know strings. Strings are representegdh as records with a length field and an
array of char contaning the string.

You can also use the following user function to print strings:

define pst

set $pos=&$arg0

set $strlen = {byte}$pos

print {char}&$arg0.st@($strlen+1)
end

document pst
Print out a Pascal string
end

If you insert it in yourgdb.ini file, you can look at a string with this function. There is a sample
gdb.ini in appendiXF.

5. Objects are difficult to handle, mainly becawgh is oriented towards C and C++. The
workaround implemented in Free Pascal is that object methods are represented as functions,
with an extra parametehis (all lowercase !) The name of this function is a concatenation
of the object type and the function name, separated by two underscore characters.

For example, the methoPoint.Draw would be converted t6POINT__ DRAWand could
be stopped at with

break TPOINT__DRAW

6. Global overloaded functions confugdb because they have the same name. Thus you cannot
set a breakpoint at an overloaded function, unless you know it's line number, in which case
you can set a breakpoint at the starting linenumber of the function.

45

8.4. SUPPORT FOR GPROFTHE GNU PROFILER

8.4 Support for gprof , the GNU profiler

You can compile your programs with profiling support. for this, you just have to use the compiler
switch-pg . The compiler wil insert the necessary stuff for profiling.

When you have done this, you can run your program as you normally would run it.
yourexe

Whereyourexe is the name of your executable.

When your program finishes a file called gmon.out is generated. Then you can start the profiler to
see the output. You can better redirect the output to a file, becuase it could be quite a lot:

gprof yourexe > profile.log

Hint: you can use the —flat option to reduce the amount of output of gprof. It will then only output
the information about the timings

For more information on theNu profilergprof , see its manual.

46

Chapter 9

CGl programming in Free Pascal

In these days of heavy WWW traffic on the Internet, CGI scripts have become an important topic in
computer programming. While CGI programming can be done with almost any tool you wish, most
languages aren’t designed for it. Perl may be a notable exception, but perl is an interpreted language,
the executable is quite big, and hence puts a big load on the server machine.

Because of its simple, almost intuitive, string handling and its easy syntax, Pascal is very well suited
for CGI programming. Pascal allows you to quickly produce some results, while giving you all the
tools you need for more complex programming. The basic RTL routines in principle are enough to
get the job done, but you can create, with relatively little effort, some units which can be used as a
base for more complex CGI programming.

That's why, in this chapter, we will discuss the basics of CGl in Free Pascal. In the subsequent, we
will assume that the server for which the programs are created, are based upon thehftiiZiSA
WWW server, as the examples will be based upon the NCSA method of CGI prografinmihey

have been tested with tlzgpache server onLiNux, and thexitami server on WNDOWS NT.

The two example programs in this chapter have been tested on the command line and worked, under
the condition that no spaces were present in the name and value pairs provided to them.

There is however, a faster and generally baitergi unit available, you can find it on the contributed
units page of the Free Pascal web site. It uses techniques discussed here, but in a generally more
efficient way, and it also provides some extra functionality, not discussed here.

9.1 Getting your data

Your CGI program must react on data the user has filled in on the form which your web-server gave
him. The Web server takes the response on the form, and feeds it to the CGlI script.

There are essentially two ways of feeding the data to the CGI script. We will discuss both.

Data coming through standard input.

The first method of getting your data is through standard input. This method is invoked when the
form uses a form submission methodR®ST The web browser sets three environment variables
REQUEST _METHQDONTENT_TYPENd CONTENT_LENGTHit feeds then the results of the
different fields through standard input to the CGlI script. All the Pascal program hasto do is :

e Check the value of thREQUEST _METHQ@Dvironment variable. Thgetenv function will

1... and it's the only WWW-server | have to my disposition at the moment.

47

9.1. GETTING YOUR DATA

retrieve this value this for you.
e Check the value of thEONTENT_TYPEnvironment variable.

e ReadCONTENT_LENGTEharacters from standard inpuead (c) with ¢ of typechar
will take care of that.

if you know that the request method will alwaysBOST and theCONTENT_TYPH®ill be correct,
then you can skip the first two steps. The third step can be done easier: read characters until you
reach the end-of-file marker of standard input.

The following example shows how this can be achieved:
program cgi_post;
uses dos;
const max_data = 1000;
type datarec = record

name,value : string;

end;
var data : array[l..max_data] of datarec;

i,nrdata : longint;

¢ : char;
literal,aname : boolean;

begin

writeln ('Content-type: text/html’);

writeln;

if getenv(REQUEST_METHOD')<>'POST’ then
begin

writeln ('This script should be referenced with a METHOD of POST);
write (If you don”t understand this, see this ’);
write ('< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
writeln ('/Docs/fill-out-forms/overview.html">forms overview.’);
halt(1);
end;
if getenv('CONTENT_TYPE’)<>"application/x-www-form-urlencoded’ then
begin
writeln ('This script can only be used to decode form results’);
halt(1)
end;
nrdata:=1;
aname:=true;
while not eof(input) do
begin
literal:=false;
read(c);
if c='\'" then
begin
literal:=true;
read(c);
end;

48

9.1. GETTING YOUR DATA

if literal or ((c<>'=") and (c<>'&")) then
with data[nrdata] do
if aname then name:=name+c else value:=value+c
else
begin
if c="& then
begin
inc (nrdata);
aname:=true;
end
else
aname:=false;
end
end;
writeln (<H1>Form Results :</H1>");
writeln (You submitted the following name/value pairs :’);
writeln ('");

for i:=1 to nrdata do writeln (' ’,datafi].name,” = ’,data[i].value);
writeln ('");
end.

While this program isn’'t shorter than the C program provided as an example at NCSA, it doesn't
need any other units. everythig is done using standard Pascal profedures

Note that this program has a limitation: the length of names and values is limited to 255 characters.
This is due to the fact that strings in Pascal have a maximal length of 255. It is of course easy to
redefine thelatarec record in such a way that longer values are allowed. In case you have to read
the contents of ZEXTAREAorm element, this may be needed.

Data passed through an environment variable

If your form uses th&ETmethod of passing it's data, the CGI script needs to reaQthERY_STRING
environment variable to get it's data. Since this variable can, and probably will, be more than 255
characters long, you will not be able to use normal string methods, present in pascal. Free Pas-
cal implements the@char type, which is a pointer to a null-terminated array of characters. And,
fortunately, Free Pascal ha$ a strings unit, which eases the usepaithie type.

The following example illustrates what to do in case of a methd@BT
program cgi_get;

uses strings,linux;

const max_data = 1000;

type datarec = record
name,value : string;
end;

var data : array[l..max_data] of datarec;
i,nrdata : longint;
p : PChar;

2actually, this program will give faulty results, since spaces in the input are converted to plus signs by the web browser.
The program doesn'’t check for this, but that is easy to change. The main concern here is to give the working principle.

49

file:../strings/strings.html

9.1. GETTING YOUR DATA

literal,aname : boolean;

begin
Writeln ('Content-type: text/html’);
Writeln;
if StrComp(GetEnv(REQUEST_METHOD’),’POST")<>0 then
begin
Writeln (This script should be referenced with a METHOD of GET);
write (If you don”t understand this, see this);
write ('< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
Writeln ('/Docs/fill-out-forms/overview.html">forms overview.");
halt(1);
end;
p:=GetEnv(QUERY_STRING);
nrdata:=1;
aname:=true;
while pr<>#0 do
begin
literal:=false;
if pA="\' then
begin
literal:=true;
inc(longint(p));
end;
if ((p"<>'=") and (p"<>'&") or literal then
with data[nrdata] do
if aname then name:=name+p” else value:=value+p”
else
begin
if pA='& then
begin
inc (nrdata);
aname:=true;
end
else
aname:=false;
end;
inc(longint(p));
end;
Writeln (‘<H1>Form Results :</H1>');
Writeln ("You submitted the following name/value pairs :’);
Writeln ('");

for i:=1 to nrdata do writeln (' ’,datafi].name,” = ’,data[i].value);
Writeln ('');
end.

Although it may not be written in the most elegant way, this program does the same thing as the
previous one. It also suffers from the same drawback, namely the limited length\altle field
of thedatarec

This drawback can be remedied by redefinilegarec as follows:
type datarec = record,;

name,value : pchar;
end;

50

9.2. PRODUCING OUTPUT

and assigning at run time enough space to keep the contents of the value field. This can be done with
a

getmem (data[nrdata].value,needed _number_of bytes);
call. After that you can do a
stricopy (data[nrdata].value,p,needed_number_of bytes);

to copy the data into place.
You may have noticed the following unorthodox call :

inc(longint(p));

Free Pascal doesn't give you pointer arithmetic as in C. Howbkwggints andpointers have
the same length (namely 4 bytes). Doing a type-castitmgint allows you to do arithmetic on
thepointer

Note however, that this is a non-portable call. This may work on the 1386 processor, but not on a
ALPHA processor (where a pointer is 8 bytes long). This will be remedied in future releases of Free
Pascal.

9.2 Producing output

The previous section concentrated mostly on getting input from the web server. To send the reply to
the server, you don’t need to do anything special.You just print your data on standard output, and the
Web-server will intercept this, and send your output to the WWW-client waiting for it.

You can print anything you want, the only thing you must take care of is that you supuigtants-
type line, followed by an empty line, as follows:

Writeln ('Content-type: text/html’);
Writeln;
{ ...start output of the form... }

And that's all there is to it !

9.3 I'm under Windows, what now ?

Under Windows the system of writing CGI scripts can be totally different. If you use Free Pascal
under Windows then you also should be able to do CGI programming, but the above instructions may
not work. They are known to work for thétami server, however.

If some kind soul is willing to write a section on CGI programming under Windows for other servers,
I'd be willing to include it here.

51

Appendix A

Alphabetical listing of command-line
options

The following is alphabetical listing of all command-line options, as generated by the compiler:

ppc386 [options] <inputfile> [options]
put + after a boolean switch option to enable it, - to disable it

-a the compiler doesn’t delete the generated assembler file
-al list sourcecode lines in assembler file
-ar list register allocation/release info in assem-
bler file
-at list temp allocation/release info in assembler file
-b generate browser info
-bl generate local symbol info
-B build all modules
-C<x> code generation options:
-CD create dynamic library
-Ch<n> <n> bytes heap (between 1023 and 67107840)
-Ci I0-checking
-Cn omit linking stage
-Co check overflow of integer operations
-Cr range checking
-Cs<n> set stack size to <n>
-Ct stack checking
-CD create also dynamic library (* doesn’t work yet *)
-CX create also smartlinked library

-d<x> defines the symbol <x>
-e<x> set path to executable

-E same as -Cn

-F<x> set file names and paths:
-FD<x> sets the directory where to search for compiler utilities
-Fe<x> redirect error output to <x>
-FE<x> set exe/unit output path to <x>
-Fi<x> adds <x> to include path
-Fl<x> adds <x> to library path
-FL<x> uses <x> as dynamic linker
-Fo<x> adds <x> to object path
-Fr<x> load error message file <x>
-Fu<x> adds <x> to unit path

52

-FU<x> set unit output path to <x>, overrides -FE
-g<x> generate debugger information:

-gg use gsym

-gd use dbx

-gh use heap trace unit

-gc generate checks for pointers
-i information

-iD return compiler date

-iv return compiler version

-iSO return compiler OS

-iSP return compiler processor

-iTO return target OS

-iTP return target processor

-l<x> adds <x> to include path

-k<x> Pass <x> to the linker

-l write logo

-n don't read the default config file

-o<x> change the name of the executable produced to <x>
-pg generate profile code for gprof (defines FPC_PROFILE)

-P use pipes instead of creating temporary assembler files
-S<x> syntax options:
-S2 switch some Delphi 2 extensions on
-Sc supports operators like C (*=,+=,/= and -=)
-Sd tries to be Delphi compatible
-Se<x> compiler stops after the <x> errors (default is 1)
-Sg allow LABEL and GOTO
-Sh Use ansistrings
-Si support C++ styled INLINE
-Sm support macros like C (global)
-So tries to be TP/BP 7.0 compatible
-Sp tries to be gpc compatible
-Ss constructor name must be init (destructor must be done)
-St allow static keyword in objects
-S don't call assembler and linker (only with -a)
-u<x> undefines the symbol <x>
-U unit options:
-Un don’t check the unit name
-Us compile a system unit
-v<x> Be verbose. <x> is a combination of the following letters:
e : Show errors (default) d : Show debug info
w : Show warnings u : Show unit info
n : Show notes t : Show tried/used files
h : Show hints m : Show defined macros
i : Show general info p : Show compiled procedures
| : Show linenumbers ¢ : Show conditionals
a : Show everything 0 : Show nothing (except errors)
b : Show all procedure r . Rhide/GCC compatibil-
ity mode
declarations if an error x : Executable info (Win32 only)
occurs
-X executable options:
-Xc link with the c library
-Xs strip all symbols from executable
-XD try to link dynamic (defines FPC_LINK_DYNAMIC)

53

-XS try to link static (default) (defines FPC_LINK_STATIC)
-XX try to link smart (defines FPC_LINK_SMART)

Processor specific options:
-A<x> output format:
-Aas assemble using GNU AS
-Aasaout assemble using GNU AS for aout (Go32v1l)
-Anasmcoff coff (Go32v2) file using Nasm
-Anasmelf elf32 (Linux) file using Nasm
-Anasmobj obj file using Nasm

-Amasm obj file using Masm (Microsoft)
-Atasm obj file using Tasm (Borland)
-Acoff coff (Go32v2) using internal writer

-Apecoff pecoff (Win32) using internal writer
-R<x> assembler reading style:

-Ratt read AT&T style assembler

-Rintel read Intel style assembler

-Rdirect copy assembler text directly to assembler file
-O<x> optimizations:

-Og generate smaller code

-0G generate faster code (default)

-Or keep certain variables in registers (still BUGGY!!)
-Ou enable uncertain optimizations (see docs)

-01 level 1 optimizations (quick optimizations)

-02 level 2 optimizations (-O1 + slower optimizations)
-03 level 3 optimizations (same as -O2u)

-Op<x> target processor:

-Opl set target processor to 386/486
-Op2 set target processor to Pentium/PentiumMMX (tm)
-Op3 set target processor to PPro/Pll/c6x86/K6 (tm)
-T<x> Target operating system:
-TGO32v1 version 1 of DJ Delorie DOS extender
-TGO32Vv2 version 2 of DJ Delorie DOS extender
-TLINUX Linux
-TOS2 0S/2 2.x
-TWin32 Windows 32 Bit
-WB<x> Set Image base to Hexadecimal <x> value

-WC Specify console type application

-WD Use DEFFILE to export functions of DLL or EXE

-WG Specify graphic type application

-WN Do not generate relocation code (necessary for debugging)
-WR Generate relocation code

-? shows this help

-h shows this help without waiting

54

Appendix B

Alphabetical list of reserved words

absolute
abstract
and

array

as

asm
assembler
begin
break
case
cdecl
class
const
constructor
continue
destructor
dispose
div

do
downto
else

end
except
exit
export
exports
external
fail

false

far

file

finally

for
forward
function
goto

if
implementation
in

index
inherited
initialization
inline
interface
interrupt
is

label
library
mod
name
near

new

nil

not

object

of

on
operator
or
otherwise

55

packed
popstack
private
procedure
program
property
protected
public
raise
record
repeat
self

set

shl

shr
stdcall
string
then

to

true

try

type

unit

until
uses
var
virtual
while
with

xor

Appendix C

Compiler messages

This appendix is meant to list all the compiler messages. The list of messages is generated from he

compiler source itself, and should be faitly complete. At this point, only assembler errors are not in
the list.

C.1 General compiler messages

This section gives the compiler messages which are not fatal, but which display useful information.
The number of such messages can be controlled with the various verbosityleswitches.

Compiler: argl When the-vt switch is used, this line tells you what compiler is used.

Compiler OS: argl When the-vd switch is used, this line tells you what the source operating
system is.

Info: Target OS: argl When the-vd switch is used, this line tells you what the target operating
system is.

Using executable path: arglWhen the-vt switch is used, this line tells you where the compiler
looks for it's binaries.

Using unit path: argl When the-vt switch is used, this line tells you where the compiler looks
for compiled units. You can set this path with #ieu

Using include path: argl When thevt switch is used, this line tells you where the compiler looks
for it's include files (files used if$l xxx} statements). You can set this path with the
option.

Using library path: argl When thevt switch is used, this line tells you where the compiler looks
for the libraries. You can set this path with tHe option.

Using object path: argl When the-vt switch is used, this line tells you where the compiler looks
for object files you link in (files used ifL xxx} statements). You can set this path with the
-Fo option.

Info: argl Lines compiled, arg2 secWhenthevi switchis used, the compiler reports the number
of lines compiled, and the time it took to compile them (real time, not program time).

Fatal: No memory left The compiler doesn’t have enough memory to compile your program. There
are several remedies for this:

56

C.2. SCANNER MESSAGES.

¢ If you're using the build option of the compiler, try compiling the different units manu-
ally.

e If you're compiling a huge program, split it up in units, and compile these separately.

o If the previous two don’t work, recompile the compiler with a bigger heap (you can use
the-Ch option for this, Se€5.1)

C.2 Scanner messages.

This section lists the messages that the scanner emits. The scanner takes care of the lexical structure
of the pascal file, i.e. it tries to find reserved words, strings, etc. It also takes care of directives and
conditional compiling handling.

Fatal: Unexpected end of file this typically happens in one of the following cases :

e The source file ends before the firald. statement. This happens mostly when the
begin andend statements aren't balanced;

e Aninclude file ends in the middle of a statement.

e A comment wasn't closed.

Fatal: String exceeds line You forgot probably to include the closing ’ in a string, so it occupies
multiple lines.

Fatal: illegal character An illegal character was encountered in the input file.

Fatal: Syntax error, argl expected but arg2 found This indicates that the compiler expected a dif-
ferent token than the one you typed. It can occur almost everywhere where you make a mistake
against the pascal language.

Start reading includefile argl When you provide thevt switch, the compiler tells you when it
starts reading an included file.

Warning: Comment level argl found When the-vw switch is used, then the compiler warns you
if it finds nested comments. Nested comments are not allowed in Turbo Pascal and can be a
possible source of errors.

Note: directive (FAR) ignored TheFARdirective is a 16-bit construction which is recorgnised but
ignored by the compiler, since it produces 32 bit code.

Note: Stack check is global under Linux Stack checking with theCs switch is ignored under
LINUX, sinceLINUX does this for you. Only displayed whevn is used.

Note: Ignored compiler switch argl With -vn on, the compiler warns if it ignores a switch

Warning: lllegal compiler switch argl You included a compiler switch (i.e{$... }) which
the compiler doesn’t know.

Warning: This compiler switch has a global effect When-vw is used, the compiler warns if a
switch is global.

Error: lllegal char constant This happens when you specify a character with its ASCII code, as in
#96, but the number is either illegal, or out of range. The range is 1-255.

Fatal: Can't open file argl Free Pascal cannot find the program or unit source file you specified on
the command line.

57

C.2. SCANNER MESSAGES.

Fatal: Can’'t open include file argl Free Pascal cannot find the source file you specified$ma
clude ..} statement.

Error: Too many argENDIFs or argELSEs Your{$IFDEF .} and{$ENDIF}statements aren't
balanced.

Warning: Records fields can be aligned to 1,2,4 or 16 bytes onlyfou are specifying thEsPACK-
RECORDS n} with an illegal value fon. Only 1,2,4 or 16 are valid in this case.

Warning: Enumerated can be saved in 1,2 or 4 bytes onlyyou are specifying thePACKENUM
n} with an illegal value fon. Only 1,2 or 4 are valid in this case.

Error: argl expected for arg2 defined in line arg3 Your conditional compilation statements are
unbalanced.

Error: Syntax error while parsing a conditional compiling expression There is an error in the
expression following th¢$if ..} compiler directive.

Error: Evaluating a conditional compiling expression There is an error in the expression follow-
ing the{$if ..} compiler directive.

Warning: Macro contents is cut after char 255 to evalute expressionThe contents of macros canno
be longer than 255 characters. This is a safety in the compiler, to prevent buffer overflows. This
is shown as a warning, i.e. when thav switch is used.

Error: ENDIF without IF(N)DEF Your{$IFDEF ..} and{$ENDIF}statements aren’t balanced.
Fatal: User defined: argl A user defined fatal error occurred. see alsa the Programmers| guide
Error: User defined: argl A user defined error occurred. see also[the Programmers’ guide
Warning: User defined: argl A user defined warning occurred. see also the Programmers] guide
Note: User defined: argl A user defined note was encountered. see alsp the Programmers’ guide
Hint: User defined: argl A user defined hint was encountered. see als@ the Programmers’ guide

Info: User defined: argl User defined information was encountered. see also the Programmers’
guide

Error: Keyword redefined as macro has no effect You cannot redefine keywords with macros.

Fatal: Macro buffer overflow while reading or expanding a macro Your macro or it's result was
too long for the compiler.

Warning: Extension of macros exceeds a deep of 18/hen expanding a macro macros have been
nested to a level of 16. The compiler will expand no further, since this may be a sign that
recursion is used.

Error: compiler switches aren't allowed in (* ... *) styled comments Compiler switches should al-
ways be betweef } comment delimiters.

Handling switch "argl" When you set debugging info orvfl) the compiler tells you when it is
evaluating conditional compile statements.

ENDIF argl found When you turn on conditional messages(), the compiler tells you where it
encounters conditional statements.

IFDEF arg1 found, arg2 When you turn on conditional messages(), the compiler tells you
where it encounters conditional statements.

58

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

C.3. PARSER MESSAGES

IFOPT argl found, arg2 When you turn on conditional messages(), the compiler tells you
where it encounters conditional statements.

IF argl found, arg2 When you turn on conditional messages(), the compiler tells you where it
encounters conditional statements.

IFNDEF argl found, arg2 When you turn on conditional messages(), the compiler tells you
where it encounters conditional statements.

ELSE argl found, arg2 When you turn on conditional messag®s(), the compiler tells you where
it encounters conditional statements.

Skipping until... When you turn on conditional messag®s(), the compiler tells you where it
encounters conditional statements, and whether it is skipping or compiling parts.

Info: Press <return> to continue When the-vi switch is used, the compiler stops compilation
and waits for théenter key to be pressed when it encountef$8TOP} directive.

Warning: Unsupported switch argl When warings are turned orv{v) the compiler warns you
about unsupported switches. This means that the switch is used in Delphi or Turbo Pascal, but
not in Free Pascal

Warning: lllegal compiler directive argl When warings are turned orv{v) the compiler warns
you about unrecognised switches. For a list of recognised switches, Programmers’ guide

Back in argl When you use-¢t) the compiler tells you when it has finished reading an include
file.

Warning: Unsupported application type: argl You get this warning, ff you specify an unknown
application type with the directidSAPPTYPE}

Warning: APPTYPE isn’t support by the target OS The{$APPTYPE} directive is supported by
win32 applications only.

Warning: Unsupported assembler style specified arg?When you specify an assembler mode with
the{$ASMMODE xxx}the compiler didn’t recognize the mode you specified.

Warning: ASM reader switch is not possible inside asm statement, arg1 will be effective only for next
It is not possible to switch from one assembler reader to another inside an assmebler block.
The new reader will be used for next assembler statement only.

Error: Wrong switch toggle, use ON/OFF or +/- You need to use ON or OFF or a + or - to toggle
the switch

Error: Resource files are not supported for this target The target you are compiling for doesn't
support Resource files. The only target which can use resource files is Win32

C.3 Parser messages

This section lists all parser messages. The parser takes care of the semantics of you language, i.e. it
determines if your pascal constructs are correct.

Error: Parser - Syntax Error An error against the Turbo Pascal language was encountered. This
happens typically when an illegal character is found in the sources file.

Warning: Procedure type FAR ignored This is a warningFARIs a construct for 8 or 16 bit pro-
grams. Since the compile generates 32 bit programs, it ignores this directive.

59

file:../prog/prog.html

C.3. PARSER MESSAGES

Warning: Procedure type NEAR ignored This is a warning.NEARIs a construct for 8 or 16 bit
programs. Since the compile generates 32 bit programs, it ignores this directive.

Warning: Procedure type REGISTER ignored This is a warningREGISTERIs ignored by FPC
programs for now. This is introduced first for Delphi compatibility.

Error: No DLL File specified No longer in use.

Error: Duplicate exported function name argl Exported function names inside a specific DLL
must all be different

Error: Duplicate exported function index argl Exported function names inside a specific DLL
must all be different

Error: Invalid index for exported function DLL function index must be in the rande.$FFFF

Error: Constructor name must be INIT You are declaring a constructor with a name which isn't
init , and the-Ss switch is in effect. See th&ss switch (Sed511).

Error: Destructor name must be DONE You are declaring a constructor with a name which isn’t
done, and the-Ss switch is in effect. See th&Ss switch (Sed5]1).

Error: lllegal open parameter You are trying to use the wrong type for an open parameter.

Error: Procedure type INLINE not supported You tried to compile a program with C++ style
inlining, and forgot to specify theSi option (Sed5]1). The compiler doesn'’t support C++
styled inlining by default.

Warning: Private methods shouldn’t be VIRTUAL You declared a method in the private part of
a object (class) asmirtual . This is not allowed. Private methods cannot be overridden

anyway.

Warning: Constructor should be public Constructors must be in the ’public’ part of an object
(class) declaration.

Warning: Destructor should be public Destructors must be in the 'public’ part of an object (class)
declaration.

Note: Class should have one destructor onlyYou can declare only one destructor for a class.

Error: Local class definitions are not allowed Classes must be defined globally. They cannot be
defined inside a procedure or function

Fatal: Anonym class definitions are not allowedAn invalid object (class) declaration was encoun-
tered, i.e. an object or class without methods that isn’t derived from another object or class.
For example:

Type o = object
a : longint;
end;

will trigger this error.
Error: The object argl has no VMT

Error: lllegal parameter list You are calling a function with parameters that are of a different type
than the declared parameters of the function.

Error: Wrong parameter type specified for arg no. argl There is an error in the parameter list of
the function or procedure. The compiler cannot determine the error more accurate than this.

60

C.3. PARSER MESSAGES

Error: Wrong amount of parameters specified There is an error in the parameter list of the func-
tion or procedure, the number of parameters is not correct.

Error: overloaded identifier argl isn't a function The compiler encountered a symbol with the
same name as an overloaded function, but it isn’t a function it can overload.

Error: overloaded functions have the same parameter listYou're declaring overloaded functions,
but with the same parameter list. Overloaded function must have at least 1 different parameter
in their declaration.

Error: function header doesn’t match the forward declaration argl You declared a function with
same parameters but different result type or function specifiers.

Error: function header argl doesn’t match forward : var name changes arg2 => arg3You de-
clared the function in thaterface part, or with theforward directive, but define it with
a different parameter list.

Note: Values in enumeration types have to be ascendingree Pascal allows enumeration construc-
tions as in C. Given the following declaration two declarations:

(A_AA B,A E:=6,A_UAS:=200);
(A_AA _B,A E:=6,A_UAS:=4);

type a
type a

The second declaration would produce an erfdr.UASneeds to have a value higher than
A _E i.e. atleast?7.

Note: Interface and implementation names are different argl => arg2This note warns you if the
implementation and interface names of a functions are different, but they have the same man-
gled name. This is important when using overloaded functions (but should produce no error).

Error: With can not be used for variables in a different segment With stores a variable locally
on the stack, but this is not possible if the variable belongs to another segment.

Error: function nesting > 31 You can nest function definitions only 31 times.
Error: range check error while evaluating constants The constants are out of their allowed range.

Warning: range check error while evaluating constants The constants are out of their allowed
range.

Error: duplicate case label You are specifying the same label 2 times icase statement.

Error: Upper bound of case range is less than lower boundThe upper bound of ease label is
less than the lower bound and this is useless

Error: typed constants of classes are not allowedYou cannot declare a constant of type class or
object.

Error: functions variables of overloaded functions are not allowed You are trying to assign an
overloaded function to a procedural variable. This isn't allowed.

Error: string length must be a value from 1 to 255 The length of a string in Pascal is limited to
255 characters. You are trying to declare a string with length lower than 1 or greater than 255
(This is not true folongstrings ~ andAnsiStrings

Warning: use extended syntax of NEW and DISPOSE for instances of objectdf you have a pointer
a to a class type, then the statemastv(a) will not initialize the class (i.e. the constructor
isn’t called), although space will be allocated. you should issuadida,init) statement.
This will allocate space, and call the constructor of the class.

61

C.3. PARSER MESSAGES

Warning: use of NEW or DISPOSE for untyped pointers is meaningless

Error: use of NEW or DISPOSE is not possible for untyped pointers You cannot usenew(p)
ordispose(p) if p is an untyped pointer because no size is associated to an untyped pointer.
Accepted for compatibility ifp anddelphi modes.

Error: class identifier expected This happens when the compiler scans a procedure declaration that
contains a dot, i.e., a object or class method, but the type in front of the dot is not a known

type.
Error: type identifier not allowed here You cannot use a type inside an expression.

Error: method identifier expected This identifier is not a method. This happens when the com-
piler scans a procedure declaration that contains a dot, i.e., a object or class method, but the
procedure name is not a procedure of this type.

Error: function header doesn’t match any method of this class This identifier is not a method.
This happens when the compiler scans a procedure declaration that contains a dot, i.e., a object
or class method, but the procedure name is not a procedure of this type.

procedure/function argl When using thevp switch, the compiler tells you when it starts process-
ing a procedure or function implementation.

Error: lllegal floating point constant The compiler expects a floating point expression, and gets
something else.

Error: FAIL can be used in constructors only You are using th&AIL instruction outside a con-
structor method.

Error: Destructors can’'t have parameters You are declaring a destructor with a parameter list.
Destructor methods cannot have parameters.

Error: Only class methods can be referred with class referenced his error occurs in a situation
like the following:

Type :
Tclass = Class of Tobject;

Var C : TClass;
begin

C.free

Free is not a class method and hence cannot be called with a class reference.

Error: Only class methods can be accessed in class methodis is related to the previous error.
You cannot call a method of an object from a inside a class method. The following code would
produce this error:

class procedure tobject.x;
begin
free

Because free is a normal method of a class it cannot be called from a class method.

62

C.3. PARSER MESSAGES

Error: Constant and CASE types do not match One of the labels is not of the same type as the
case variable.

Error: The symbol can't be exported from a library You can only export procedures and func-
tions when you write a library. You cannot export variables or constants.

Warning: An inherited method is hidden by argl A method that is declaredrtual in a par-
ent class, should be overridden in the descendent class withvédrede directive. If you
don’t specify theoverride directive, you will hide the parent method; you will not override
it.

Error: There is no method in an ancestor class to be overridden:; arglYou try tooverride a
virtual method of a parent class that doesn't exist.

Error: No member is provided to access property You specified naead directive for a prop-
erty.

Warning: Stored prorperty directive is not yet implemented Thestored directive is not yetim-
plemented

Error: lllegal symbol for property access There is an error in theead or write directives for
an array property. When you declare an array property, you can only access it with procedures
and functions. The following code woud cause such an error.

tmyobject = class
i : integer;
property x [i : integer]: integer read | write i

Error: Cannot access a protected field of an object hereFields that are declared irpaotected
section of an object or class declaration cannot be accessed outside the module wher the object
is defined, or outside descendent object methods.

Error: Cannot access a private field of an object hereFields that are declared irpgivate sec-
tion of an object or class declaration cannot be accessed outside the module where the class is
defined.

Warning: overloaded method of virtual method should be virtual: arg1l If you declare overloaded
methods in a class, then they should either all be virtual, or none. You shouldn’t mix them.

Warning: overloaded method of non-virtual method should be non-virtual: argl If you declare
overloaded methods in a class, then they should either all be virtual, or none. You shouldn’t
mix them.

Error: overloaded methods which are virtual must have the same return type: arglIf you de-
clare virtual overloaded methods in a class definition, they must have the same return type.

Error: EXPORT declared functions can’t be nested You cannot declare a function or procedure
within a function or procedure that was declared as an export procedure.

Error: methods can't be EXPORTed You cannot declare a procedure that is a method for an ob-
ject asexport ed. That is, your methods cannot be called from a C program.

Error: call by var parameters have to match exactly When calling a function declared withar
parameters, the variables in the function call must be of exactly the same type. There is no
automatic type conversion.

Error: Class isn't a parent class of the current class When calling inherited methods, you are try-
ing to call a method of a strange class. You can only call an inherited method of a parent class.

63

C.3. PARSER MESSAGES

Error: SELF is only allowed in methods You are trying to use theelf parameter outside an ob-
ject’s method. Only methods get passedsbé parameters.

Error: methods can be only in other methods called direct with type identifier of the classA con-
struction likesometype.somemethod is only allowed in a method.

Error: lllegal use of ' You are using the format (colon) 2 times on an expression that is not a
real expression.

Error: range check error in set constructor or duplicate set element The declaration of a set con-
tains an error. Either one of the elements is outside the range of the set type, either two of the
elements are in fact the same.

Error: Pointer to object expected You specified an illegal type in Mewstatement. The extended
synax ofNewneeds an object as a parameter.

Error: Expression must be constructor call When using the extended syntax reéw, you must
specify the constructor method of the object you are trying to create. The procedure you
specified is not a constructor.

Error: Expression must be destructor call When using the extended syntax dispose , you
must specify the destructor method of the object you are trying to dispose of. The procedure
you specified is not a destructor.

Error: lllegal order of record elements When declaring a constant record, you specified the fields
in the wrong order.

Error: Expression type must be class or record type A with statement needs an argument that
is of the typerecord orclass . You are usingvith on an expression that is not of this

type.

Error: Procedures can’t return a value In Free Pascal, you can specify a return value for a func-
tion when using thexit statement. This error occurs when you try to do this with a proce-
dure. Procedures cannot return a value.

Error: constructors and destructors must be methods You're declaring a procedure as destructor
or constructor, when the procedure isn’t a class method.

Error: Operator is not overloaded You're trying to use an overloaded operator when it isn’'t over-
loaded for this type.

Error: Re-raise isn't possible there You are trying to raise an exception where it isn't allowed.
You can only raise exceptions in arcept block.

Error: The extended syntax of new or dispose isn’t allowed for a classyou cannot generate an
instance of a class with the extended syntamenf. The constructor must be used for that. For
the same reason, you cannot d@ikpose to de-allocate an instance of a class, the destructor
must be used for that.

Error: Assembler incompatible with function return type You're trying to implement assem-
bler function, but the return type of the function doesn't allow that.

Error: Procedure overloading is switched off When using theSo switch, procedure overloading
is switched off. Turbo Pascal does not support function overloading.

Error: It is not possible to overload this operator (overload = instead) You are trying to overload
an operator which cannot be overloaded. The following operators can be overloaded :

+1] *1 /1 = >1 <, <:1 >:1 ISI as, |n1 **1 =

64

C.3. PARSER MESSAGES

Error: Comparative operator must return a boolean value When overloading the operator, the
function must return a boolean value.

Error: Only virtual methods can be abstract You are declaring a method as abstract, when itisn't
declared to be virtual.

Fatal: Use of unsupported feature! You're trying to force the compiler into doing something it
cannot do yet.

Error: The mix of CLASSES and OBJECTS isn’t allowed You cannotderivebjects andclasses
intertwined . That is, a class cannot have an object as parent and vice versa.

Warning: Unknown procedure directive had to be ignored: argl The procedure direcive you se-
cified is unknown. Recognised procedure directivesatecl , stdcall , popstack |,
pascal register , export

Error: absolute can only be associated to ONE variableYou cannot specify more than one vari-
able before thabsolute directive. Thus, the following construct will provide this error:

Var Z : Longint;
X,Y : Longint absolute Z;

absolute can only be associated a var or consfThe address of absolute directive can only
point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute Xx;

Error: absolute can only be associated a var or consfThe address of absolute directive can
only point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: Only ONE variable can be initialized You cannot specify more than one variable with a
initial value in Delphi syntax.

Error: Abstract methods shouldn’t have any definition (with function body) Abstract methods can
only be declared, you cannot implement them. They should be overridden by a descendant
class.

Error: This overloaded function can’t be local (must be exported) You are defining a overloaded
function in the implementation part of a unit, but there is no corresponding declaration in the
interface part of the unit.

Warning: Virtual methods are used without a constructor in argl If you declare objects or classes
that contain virtual methods, you need to have a constructor and destructor to initialize them.
The compiler encountered an object or class with virtual methods that doesn't have a construc-
tor/destructor pair.

Macro defined: argl When-vm is used, the compiler tells you when it defines macros.

Macro undefined: argl When-vm is used, the compiler tells you when it undefines macros.

65

C.3. PARSER MESSAGES

Macro argl set to arg2 When-vm is used, the compiler tells you what values macros get.

Info: Compiling argl When you turn on information message (), the compiler tells you what
units it is recompiling.

Compiling arg1l for the second time When you request debug messagesl () the compiler tells
you what units it recompiles for the second time.

Error: Array properties aren’t allowed at this point You cannot use array properties at that point.a

Error: No property found to override You want to overrride a property of a parent class, when
there is, in fact, no such property in the parent class.

Error: Only one default property is allowed, found inherited default property in class argl You
specified a property d3efault , but a parent class already has a default property, and a class
can have only one default property.

Error: The default property must be an array property Only array properties of classes can be
madedefault properties.

Error: Virtual constructors are only supported in class object model You cannot have virtual con-
structors in objects. You can only have them in classes.

Error: No default property available You try to access a default property of a class, but this class
(or one of it's ancestors) doesn't have a default property.

Error: The class can't have a published section, use the argM+ switchf you want apublished
section in a class definition, you must use{8®l+} switch, whch turns on generation of type
information.

Error: Forward declaration of class argl must be resolved here to use the class as ancestdo
be able to use an object as an ancestor object, it must be defined first. This error occurs in the
following situation:

Class;
Class(ParentClass)

Type ParentClas
ChildClass

end;

WhereParentClass is declared but not defined.

Error: Local operators not supported You cannot overload locally, i.e. inside procedures or func-
tion definitions.

Error: Procedure directive argl not allowed in interface section This procedure directive is not
allowed in theinterface section of a unit. You can only use it in tiraplementation
section.

Error: Procedure directive argl not allowed in implementation section This procedure directive
is not defined in thémplementation section of a unit. You can only use it in tirger-
face section.

Error: Procedure directive argl not allowed in procvar declaration This procedure directive can-
not be part of a procedural of function type declaration.

Error: Function is already declared Public/Forward argl You will get this error if a function is
defined agorward twice. Or it is once in thinterface section, and once afarward
declaration in thémplmentation section.

66

C.3. PARSER MESSAGES

Error: Can’t use both EXPORT and EXTERNAL These two procedure directives are mutually
exclusive

Error: NAME keyword expected The definition of an external variable needsane clause.

Warning: argl not yet supported inside inline procedure/function Inline procedures don't sup-
port this declaration.

Warning: Inlining disabled Inlining of procedures is disabled.

Info: Writing Browser log argl When information messages are on, the compiler warns you when
it writes the browser log (generated with &+ } switch).

Hint: may be pointer dereference is missingThe compiler thinks that a pointer may need a deref-
erence.

Fatal: Selected assembler reader not supported’he selected assembler reader ({#ASMMODE
xxx} is not supported. The compiler can be compiled with or without support for a particular
assembler reader.

Error: Procedure directive argl has conflicts with other directives You specified a procedure di-
rective that conflicts with other directives. for instareecl andpascal are mutually
exclusive.

Error: Calling convention doesn’t match forward This error happens when you declare a func-
tion or procedure with e.gcdecl; but omit this directive in the implementation, or vice
versa. The calling convention is part of the function declaration, and must be repeated in the
function definition.

Error: Register calling (fastcall) not supported Theregister calling convention, i.e., arguments
are passed in registers instead of on the stack is not supported. Arguments are always passed
on the stack.

Error: Property can’t have a default value Set properties or indexed properties cannot have a de-
fault value.

Error: The default value of a property must be constant The value of alefault declared prop-
erty must be knwon at compile time. The value you specified is only known at run time. This
happens .e.qg. if you specify a variable name as a default value.

Error: Symbol can't be published, can be only a classOnly class type variables can be ipab-
lished section of a class if they are not declared as a property.

Error: That kind of property can't be published Properties in ublished section cannot be
array properties. they must be moved to public sections. Propertigsublished section
must be an ordinal type, a real type, strings or sets.

Warning: Empty import name specified Both index and name for the import are 0 or empty

Warning: Empty import name specified Some targets need a name for the imported procedure or
a cdecl specifier

Error: Function internal name changed after use of function
Error: Division by zero There is a divsion by zero encounted

Error: Invalid floating point operation An operation on two real type values produced an over-
flow or a division by zero.

Error: Upper bound of range is less than lower bound The upper bound of ease label is less
than the lower bound and this is not possible

67

C.4. TYPE CHECKING ERRORS

Error: string length is larger than array of char length The size of the constant string is larger
than the size you specified in the array[x..y] of char definition

Error: lllegal expression after message directiveFree Pascal supports only integer or string val-
ues as message constants

Error: Message handlers can take only one call by ref. parameterA method declared with the
message -directive as message handler can take only one parameter which must be declared
as call by reference Parameters are declared as call by reference usiag tbeective

Error: Duplicate message label: arg1 A label for a message is used twice in one object/class

Error: Self can be only an explicit parameter in message handlersThe self parameter can be passed

Error: Threadvars can be only static or global Threadvars must be static or global, you can’t de-
clare a thread local to a procedure. Local variables are always local to a thread, because every
thread has it's own stack and local variables are stored on the stack

Fatal: Direct assembler not supported for binary output format You can'’t use direct assembler
when using a binary writer, choose an other outputformat or use an other assembler reader

Warning: Don’t load OBJPAS unit manual, use argmode objfpc or argmode delphi insteadYou're
trying to load the ObjPas unit manual from a uses clause. This is not a good idea to do, you
can better use thmode objfpc} or {$mode delphi} directives which load the unit
automaticly

Error: OVERRIDE can’t be used in objects Override isn’t support for objects, use VIRTUAL in-
stead to override a method of an anchestor object

Error: Data types which requires initialization/finalization can’t be used in variant records Some
data type (e.gansistring) needs initialization/finalization code which is implicitly gener-
ated by the compiler. Such data types can't be used in the variant part of a record.

C.4 Type checking errors

This section lists all errors that can occur when type checking is performed.

Error: Type mismatch This can happen in many cases:

e The variable you're assigning to is of a different type than the expression in the assign-
ment.

e You are calling a function or procedure with parameters that are incompatible with the
parameters in the function or procedure definition.

Error: Incompatible types: got "argl" expected "arg2" There is no conversion possible between
the two types Another possiblity is that they are declared in different declarations:

Var
Al : Array[1..10] Of Integer;
A2 : Array[1..10] Of Integer;

Begin
Al:=A2; { This statement gives also this error, it
is due the strict type checking of pascal }
End.

68

C.4. TYPE CHECKING ERRORS

Error: Type mismatch between argl and arg2 The types are not equal

Error: Integer expression expected The compiler expects an expression of type integer, but gets a
different type.

Error: Ordinal expression expected The expression must be of ordinal type, i.e., maximum a
Longint . This happens, for instance, when you specify a second argumértd tor Dec
that doesn't evaluate to an ordinal value.

Error: Type identifier expected The identifier is not a type, or you forgot to supply a type identifier.

Error: Variable identifier expected This happens when you pass a constant ftaca var or Dec
procedure. You can only pass variables as arguments to these functions.

Error: pointer type expected The variable or expression isn't of the typeinter . This happens
when you pass a variable that isn’t a pointeNgwor Dispose .

Error: class type expected The variable of expression isn't of the typkass . This happens typi-
cally when

1. The parent class in a class declaration isn’t a class.
2. An exception handledn) contains a type identifier that isn’'t a class.

Error: Variable or type indentifier expected The argument to theligh or Low function is not a
variable nor a type identifier.

Error: Can’t evaluate constant expression No longer in use.

Error: Set elements are not compatible You are trying to make an operation on two sets, when the
set element types are not the same. The base type of a set must be the same when taking the
union

Error: Operation not implemented for sets several binary operations are not defined for sets like
div mod ** (also >= <= for now)

Warning: Automatic type conversion from floating type to COMP which is an integer type An
implicit type conversion from a real type toc@mp is encountered. Sincgompis a 64 bit
integer type, this may indicate an error.

Hint: use DIV instead to get an integer result When hints are on, then an integer division with the
"I operator will procuce this message, because the result will then be of type real

Error: string types doesn’t match, because of argV+ modeWhen compiling if$V+} mode, the
string you pass as a parameter should be of the exact same type as the declared parameter of
the procedure.

Error: succ or pred on enums with assignments not possibléNhen you declared an enumeration
type which has assignments in it, as in C, like in the following:

Tenum = (a,b,e:=5);

you cannot use th8ucc or Pred functions on them.

Error: Can’t read or write variables of this type You are trying toread or write a variable
from or to a file of type text, which doesn’t support that. Only integer types, booleans, reals,
pchars and strings can be read from/written to a text file.

Error: Type conflict between set elementsThere is at least one set element which is of the wrong
type, i.e. not of the set type.

69

C.5. SYMBOL HANDLING

Warning: lo/hi(dword/qword) returns the upper/lower word/dword Free Pascal supports an over-
loaded version db/hi for longint/dword/int64/gword which returns the lower/upper
word/dword of the argument. TP always uses a 16t ~ which returns always bits 0..7 for
lo and the bits 8..15 fohi . If you want the TP behavior you have to type cast the argument
to word/integer

Error: Integer or real expression expected The first argument tetr must a real or integer type.

Error: Wrong type in array constructor You are trying to use a type in an array constructor which
is not allowed.

Error: Incompatible type for arg no. argl: Got arg2, expected arg3 You are trying to pass an
invalid type for the specified parameter.

Error: Method (variable) and Procedure (variable) are not compatible You can’t assign a method
to a procedure variable or a procedure to a method pointer.

Error: lllegal constant passed to internal math function The constant argument passed to a In or
sgrt function is out of the definition range of these functions.

Error: Can’t get the address of constants It's not possible to get the address of a constant, because
they aren’t stored in memory, you can try making it a typed constant.

C.5 Symbol handling

This section lists all the messages that concern the handling of symbols. This means all things that
have to do with procedure and variable names.

Error: Identifier not found argl The compiler doesn’t know this symbol. Usually happens when
you misspel the name of a variable or procedure, or when you forgot to declare a variable.

Fatal: Internal Error in SymTableStack() An internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description of
the circumstances in which the error occurs.

Error: Duplicate identifier argl The identifier was already declared in the current scope.

Hint: Identifier already defined in argl at line arg2 The identifier was already declared in a pre-
vious scope.

Error: Unknown identifier argl The identifier encountered hasn’t been declared, or is used out-
side the scope where it's defined.

Error: Forward declaration not solved argl This can happen in two cases:

e This happens when you declare a function (inititerface part, or with aforward
directive, but do not implement it.

e You reference a type which isn’t declared in the curtgpe block.
Fatal: Identifier type already defined as type You are trying to redefine a type.
Error: Error in type definition There is an error in your definition of a new array type:

One of the range delimiters in an array declaration is erroneous. For examalg, [1..1.25]
will trigger this error.

Error: Type identifier not defined The type identifier has not been defined yet.

70

C.5. SYMBOL HANDLING

Error: Forward type not resolved argl The compiler encountered an unknown type.

Error: Only static variables can be used in static methods or outside method#A static method
of an object can only access static variables.

Error: Invalid call to tvarsym.mangledname() An internal error occurred in the compiler; If you
encounter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: record or class type expectedThe variable or expression isn’t of the tyfgeord orclass .

Error: Instances of classes or objects with an abstract method are not allowedrou are trying to
generate an instance of a class which has an abstract method that wasn'’t overridden.

Warning: Label not defined argl A label was declared, but not defined.
Error: lllegal label declaration

Error: GOTO and LABEL are not supported (use switch -Sg) You must compile a program which
haslabel s andgoto statements with theSg switch. By defaultlabel andgoto aren't
supported.

Error: Label not found A goto label was encountered, but the label isn’t declared.
Error: identifier isn’t a label The identifier specified after trgoto isn’t of type label.
Error: label already defined You are defining a label twice. You can define a label only once.

Error: illegal type declaration of set elements The declaration of a set contains an invalid type
definition.

Error: Forward class definition not resolved argl You declared a class, but you didn’'timplement
it.

Hint: Parameter not used argl This is a warning. The identifier was declared (locally or globally)
but wasn't used (locally or globally).

Note: Local variable not used argl You have declared, but not used a variable in a procedure or
function implementation.

Error: Set type expected The variable or expression isn't of tymet . This happens in am
statement.

Warning: Function result does not seem to be setvou can get this warning if the compiler thinks
that a function return value is not set. This will not be displayed for assembler procedures, or
procedures that contain assembler blocks.

Error: Unknown record field identifier argl The field doesn't exist in the record definition.
Warning: Local variable argl does not seem to be initialized

Warning: Variable argl does not seem to be initialized These messages are displayed if the com-
piler thinks that a variable will be used (i.e. appears in the right-hand-side of an expression)
when it wasn't initialized first (i.e. appeared in the left-hand side of an assigment)

Error: identifier idents no member argl When using the extended syntaxmaw, you must spec-
ify the constructor method of the class you are trying to create. The procedure you specified
does not exist.

Found declaration: argl You get this when you use thgb switch. In case an overloaded pro-
cedure is not found, then all candidate overloaded procedures are listed, with their parameter
lists.

71

C.6. CODE GENERATOR MESSAGES

C.6 Code generator messages

This section lists all messages that can be displayed if the code generator encounters an error condi-
tion.

Error: BREAK not allowed You're trying to usebreak outside a loop construction.
Error: CONTINUE not allowed You're trying to usecontinue outside a loop construction.

Error: Expression too complicated - FPU stack overflow Your expression is too long for the com-
piler. You should try dividing the construct over multiple assignments.

Error: lllegal expression This can occur under many circumstances. Mostly when trying to evalu-
ate constant expressions.

Error: Invalid integer expression You made an expression which isn’t an integer, and the compiler
expects the result to be an integer.

Error: lllegal qualifier One of the following is happening :

e You're trying to access a field of a variable that is not a record.
e You're indexing a variable that is not an array.
e You're dereferencing a variable that is not a pointer.

Error: High range limit < low range limit You are declaring a subrange, and the lower limit is
higher than the high limit of the range.

Error: lllegal counter variable The type of afor loop variable must be an ordinal type. Loop
variables cannot be reals or strings.

Error: Can’t determine which overloaded function to call You're calling overloaded functions with
a parameter that doesn’t correspond to any of the declared function parameter lists. e.g. when
you have declared a function with parametesd andlongint , and then you call it with
a parameter which is of typgateger

Error: Parameter list size exceeds 65535 byteJhe 1386 processor limits the parameter list to 65535
bytes (theRETinstruction causes this)

Error: lllegal type conversion When doing a type-cast, you must take care that the sizes of the
variable and the destination type are the same.

Conversion between ordinals and pointers is not portable across platformsf you typecast a pointer
to a longint, this code will not compile on a machine using 64bit for pointer storage.

Error: File types must be var parameters You cannot specify files as value parameters, i.e. they
must always be declaradr parameters.

Error: The use of a far pointer isn’t allowed there Free Pascal doesn’t support far pointers, so
you cannot take the address of an expression which has a far reference as a resuéenThe
construct has a far reference as a result, so the following code will produce this error:

var p : pointer;
p:=@mem[a000:000];

Error: illegal call by reference parameters You are trying to pass a constant or an expression to a
procedure that requiresvar parameter. Only variables can be passedss aparameter.

72

C.6. CODE GENERATOR MESSAGES

Error: EXPORT declared functions can't be called No longer in use.

Warning: Possible illegal call of constructor or destructor (doesn’t match to this context) No longer
in use.

Note: Inefficient code You construction seems dubious to the compiler.

Warning: unreachable code You specified a loop which will never be executed. Example:

while false do
begin
{.. code ..}
end;

Error: procedure call with stackframe ESP/SP The compiler encountered a procedure or func-
tion call inside a procedure that useB&P/SP stackframe. Normally, when a call is done the
procedure needsEBPstackframe.

Error: Abstract methods can't be called directly You cannot call an abstract method directy, in-
stead you must call a overriding child method, because an abstract method isn't implemented.

Fatal: Internal Error in getfloatreg(), allocation failure An internal error occurred in the com-
piler; If you encounter such an error, please contact the developers and try to provide an exact
description of the circumstances in which the error occurs.

Fatal: Unknown float type The compiler cannot determine the kind of float that occurs in an ex-
pression.

Fatal: SecondVecn() base defined twicén internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: Extended cg68k not supported The varextended type is not supported on the m68k plat-
form.

Fatal: 32-bit unsigned not supported in MC68000 modeThe cardinal is not supported on the m68k
platform.

Fatal: Internal Error in secondinline() Aninternal error occurred in the compiler; If you encounter
such an error, please contact the developers and try to provide an exact description of the cir-
cumstances in which the error occurs.

Register argl weight arg2 arg3 Debugging message. Shown when the compiler considers a vari-
able for keeping in the registers.

Error: Stack limit excedeed in local routine Your code requires a too big stack. Some operating
systems pose limits on the stack size. You should use less variables or try ro put large variables
on the heap.

Stack frame is omitted Some procedure/functions do not need a complete stack-frame, so it is
omitted. This message will be displayed when the -vd switch is used.

Error: Object or class methods can’t be inline. You cannot have inlined object methods.
Error: Procvar calls can’t be inline. A procedure with a procedural variable call cannot be inlined.

Error: No code for inline procedure stored The compiler couldn’t store code for the inline proce-
dure.

73

C.7. UNIT LOADING MESSAGES.

Error: Element zero of an ansi/wide- or longstring can’t be accessed, use (set)length insteathu
should usesetlength to set the length of an ansi/wide/longstring dadgth to get the
length of such kinf of string

Error: Include and exclude not implemented in this caseinclude andexclude are only par-
tially implemented foii386 processors and not at all for68k processors.

Error: Constructors or destructors can not be called inside a 'with’ clause Inside awith clause
you cannot call a constructor or destructor for the object you have withe clause.

Error: Cannot call message handler method directly A message method handler method can't be
called directly if it contains an explicit self argument

C.7 Unit loading messages.

This section lists all messages that can occur when the compiler is loading a unit from disk into
memory. Many of these mesages are informational messages.

Unitsearch: argl When you use thevt , the compiler tells you where it tries to find unit files.
PPU Loading argl When the-vt switch is used, the compiler tells you what units it loads.
PPU Name: argl When you use thevu flag, the unit name is shown.

PPU Flags: argl When you use thevu flag, the unit flags are shown.

PPU Crc: argl When you use thevu flag, the unit CRC check is shown.

PPU Time: argl When you use thevu flag, the unit time is shown.

PPU File too short When you use thevu flag, the unit time is shown.

PPU Invalid Header (no PPU at the begin) A unit file contains as the first three bytes the ascii
codes ofPPU

PPU Invalid Version argl This unit file was compiled with a different version of the compiler, and
cannot be read.

PPU is compiled for an other processorThis unit file was compiled for a different processor type,
and cannot be read

PPU is compiled for an other target This unit file was compiled for a different processor type, and
cannot be read

PPU Source: argl When you use thevu flag, the unit CRC check is shown.

Writing argl When you specify thevu switch, the compiler will tell you where it writes the unit
file.

Fatal: Can’t Write PPU-File An err
Fatal: reading PPU-File Unexpected end of file

Fatal: unexpected end of PPU-FileThis means that the unit file was corrupted, and contains in-
valid information. Recompilation will be necessary.

Fatal: Invalid PPU-File entry: argl The unit the compiler is trying to read is corrupted, or gener-
ated with a newer version of the compiler.

74

C.7. UNIT LOADING MESSAGES.

Fatal: PPU Dbx count problem There is an inconsistency in the debugging information of the unit.
Error: lllegal unit name: argl The name of the unit doesn’t match the file name.

Fatal: Too much units Free Pascal has a limit of 1024 units in a program. You can change this
behavior by changing thmaxunits constant in thdiles.pas file of the compiler, and re-
compiling the compiler.

Fatal: Circular unit reference between argl and arg2 Two units are using each other in the inter-
face part. This is only allowed in theplementation part. At least one unit must contain
the other one in thenplementation section.

Fatal: Can’t compile unit argl, no sources available A unit was found that needs to be recom-
piled, but no sources are available.

Warning: Compiling the system unit requires the -Us switch When recompiling the system unit
(it needs special treatment), tHds must be specified.

Fatal: There were argl errors compiling module, stopping When the compiler encounters a fatal
error or too many errors in a module then it stops with this message.

Load from argl (arg2) unit arg3 When you use thevu flag, which unit is loaded from which unit
is shown.

Recompiling argl, checksum changed for arg2

Recompiling argl, source found onlyWhen you use thevu flag, these messages tell you why the
current unit is recompiled.

Recompiling unit, static lib is older than ppufile When you use thevu flag, the compiler warns
if the static library of the unit are older than the unit file itself.

Recompiling unit, shared lib is older than ppufile When you use thevu flag, the compiler warns
if the shared library of the unit are older than the unit file itself.

Recompiling unit, obj and asm are older than ppufile When you use thevu flag, the compiler
warns if the assembler of object file of the unit are older than the unit file itself.

Recompiling unit, obj is older than asm When you use thevu flag, the compiler warns if the
assembler file of the unit is older than the object file of the unit.

Parsing interface of argl When you use thevu flag, the compiler warns that it starts parsing the
interface part of the unit

Parsing implementation of argl When you use thevu flag, the compiler warns that it starts pars-
ing the implementation part of the unit

Second load for unit argl When you use thevu flag, the compiler warns that it starts recompiling
a unit for the second time. This can happend with interdepend units.

PPU Check file argl time arg2 When you use thevu flag, the compiler show the filename and
date and time of the file which a recompile depends on

75

C.8. COMMAND-LINE HANDLING ERRORS

C.8 Command-line handling errors

This section lists errors that occur when the compiler is processing the command line or handling the
configuration files.

Warning: Only one source file supported You can specify only one source file on the command
line. The first one will be compiled, others will be ignored. This may indicate that you forgot
a’-" sign.

Warning: DEF file can be created only for OS/2 This option can only be specified when you're
compiling for OS/2

Error: nested response files are not supportedyou cannot nest response files with t@file
command-line option.

Fatal: No source file name in command lineThe compiler expects a source file name on the com-
mand line.

Error: lllegal parameter: argl You specified an unknown option.

Hint: -? writes help pages When an unknown option is given, this message is diplayed.
Fatal: Too many config files nestedYou can only nest up to 16 config files.

Fatal: Unable to open file argl The option file cannot be found.

Note: Reading further options from argl Displayed when you have notes turned on, and the com-
piler switches to another options file.

Warning: Target is already set to: argl Displayed if more than ondl' option is specified.

Warning: Shared libs not supported on DOS platform, reverting to static If you specify-CD for
the Dos platform, this message is displayed. The compiler supports only static libraries under
DOS

Fatal: too many IF(N)DEFs the#IF(N)DEF statements in the options file are not balanced with
the#ENDIF statements.

Fatal: too many ENDIFs the#IF(N)DEF statements in the options file are not balanced with the
#ENDIF statements.

Fatal: open conditional at the end of the file the #IF(N)DEF statements in the options file are
not balanced with th&ENDIF statements.

Warning: Debug information generation is not supported by this executablelt is possible to have
a compiler executable that doesn’t support the generation of debugging info. If you use such
an executable with the switch, this warning will be displayed.

Hint: Try recompiling with -dGDB It is possible to have a compiler executable that doesn’t sup-
port the generation of debugging info. If you use such an executable witly tisgvitch, this
warning will be displayed.

Error: You are using the obsolete switch arglthis warns you when you use a switch that is not
needed/supported anymore. It is recommended that you remove the switch to overcome prob-
lems in the future, when the switch meaning may change.

Error: You are using the obsolete switch argl, please use argthis warns you when you use a
switch that is not supported anymore. You must now use the second switch instead. It is
recommended that you change the switch to overcome problems in the future, when the switch
meaning may change.

76

C.9. ASSEMBLER READER ERRORS.

Note: Switching assembler to default source writing assemblethis notifies you that the assem-
bler has been changed because you used the -a switch which can’t be used with a binary
assembler writer.

C.9 Assembler reader errors.

This section lists the errors that are generated by the inline assembler reader. They the
messages of the assembiler itself.

General assembler errors

Divide by zero in asm evaluator This fatal error is reported when a constant assembler expressions
does a division by zero.

Evaluator stack overflow, Evaluator stack underflow These fatal errors are reported when a con-
stant assembler expression is too big to evaluate by the constant parser. Try reducing the
number of terms.

Invalid numeric format in asm evaluator This fatal error is reported when a non-numeric value is
detected by the constant parser. Normally this error should never occur.

Invalid Operator in asm evaluator This fatal error is reported when a mathematical operator is
detected by the constant parser. Normally this error should never occur.

Unknown error in asm evaluator This fatal error is reported when an internal error is detected by
the constant parser. Normally this error should never occur.

Invalid numeric value This warning is emitted when a conversion from octal,binary or hexadecimal
to decimal is outside of the supported range.

Escape sequence ignored his error is emitted when a non ANSI C escape sequence is detected in
a C string.

Asm syntax error - Prefix not found This occurs when trying to use a non-valid prefix instruction

Asm syntax error - Trying to add more than one prefix This occurs when you try to add more
than one prefix instruction

Asm syntax error - Opcode not found You have tried to use an unsupported or unknown opcode

Constant value out of boundsThis error is reported when the constant parser determines that the
value you are using is out of bounds, either with the opcode or with the constant declaration
used.

Non-label pattern contains @ This only applied to the m68k and Intel styled assembler, this is
reported when you try to use a non-label identifier with a '@’ prefix.

Internal error in Findtype()

Internal Error in ConcatOpcode()
Internal Errror converting binary
Internal Errror converting hexadecimal
Internal Errror converting octal

Internal Error in BuildScaling()

77

C.9. ASSEMBLER READER ERRORS.

Internal Error in BuildConstant()
internal error in BuildReference()
internal error in HandleExtend()

Internal error in ConcatLabeledInstr() These errors should never occur, if they do then you have
found a new bug in the assembler parsers. Please contact one of the developers.

Opcode not in table, operands not checkedrhis warning only occurs when compiling the system
unit, or related files. No checking is performed on the operands of the opcodes.

@CODE and @DATA not supported This Turbo Pascal construct is not supported.
SEG and OFFSET not supported This Turbo Pascal construct is not supported.
Modulo not supported Modulo constant operation is not supported.

Floating point binary representation ignored

Floating point hexadecimal representation ignored

Floating point octal representation ignored These warnings occur when a floating point constant
are declared in a base other then decimal. No conversion can be done on these formats. You
should use a decimal representation instead.

Identifier supposed external This warning occurs when a symbol is not found in the symolb table,
it is therefore considered external.

Functions with void return value can’t return any value in asm code Only routines with a return
value can have a return value set.

Error in binary constant
Error in octal constant
Error in hexadecimal constant

Error in integer constant These errors are reported when you tried using an invalid constant ex-
pression, or that the value is out of range.

Invalid labeled opcode

Asm syntax error - error in reference

Invalid Opcode

Invalid combination of opcode and operands
Invalid size in reference

Invalid middle sized operand

Invalid three operand opcode

Assembler syntax error

Invalid operand type You tried using an invalid combination of opcode and operands, check the
syntax and if you are sure it is correct, please contact one of the developers.

Unknown identifier The identifier you are trying to access does not exist, or is not within the current
scope.

78

C.9. ASSEMBLER READER ERRORS.

Trying to define an index register more than once
Trying to define a segment register twice

Trying to define a base register twice You are trying to define an index/segment register more then
once.

Invalid field specifier The record or object field you are trying to access does not exist, or is incor-
rect.

Invalid scaling factor
Invalid scaling value
Scaling value only allowed with index Allowed scaling values are 1,2,4 or 8.

Cannot use SELF outside a methodYou are trying to access the SELF identifier for objects out-
side a method.

Invalid combination of prefix and opcode This opcode cannot be prefixed by this instruction
Invalid combination of override and opcode This opcode cannot be overriden by this combination

Too many operands on line At most three operand instructions exist on the m68k, and i386, you
are probably trying to use an invalid syntax for this opcode.

Duplicate local symbol You are trying to redefine a local symbol, such as a local label.
Unknown label identifer
Undefined local symbol

local symbol not found inside asm statementThis label does not seem to have been defined in the
current scope

Assemble node syntax error

Not a directive or local symbol The assembler statement is invalid, or you are not using a recog-
nized directive.

1386 specific errors

repeat prefix and a segment override orx=i386 ... A problem with interrupts and a prefix instruc-
tion may occur and may cause false results on 386 and earlier computers.

Fwait can cause emulation problems with emu387This warning is reported when using the FWAIT
instruction, it can cause emulation problems on systems which use the em387.dxe emulator.

You need GNU as version >= 2.81 to compile this MMX codeMMX assembler code can only be
compiled using GAS v2.8.1 or later.

NEAR ignored

FAR ignored NEARandFARare ignored in the intel assemblers, but are still accepted for compati-
blity with the 16-bit code model.

Invalid size for MOVSX/MOVZX
16-bit base in 32-bit segment

16-bit index in 32-bit segment 16-bit addressing is not supported, you must use 32-bit addressing.

79

C.9. ASSEMBLER READER ERRORS.

Constant reference not allowedlt is not allowed to try to address a constant memory address in
protected mode.

Segment overrides not supportedintel style (eg: rep ds stosb) segment overrides are not support
by the assembler parser.

Expressions of the form [sreg:reg...are currently not supported] To access a memory operand in a
different segment, you should use the sreg:[reg...] snytax instead of [sreg:reg...]

Size suffix and destination register do not matchin intel AT&T syntax, you are using a register
size which does not concord with the operand size specified.

Invalid assembler syntax. No ref with brackets
Trying to use a negative index register
Local symbols not allowed as references
Invalid operand in bracket expression
Invalid symbol name:

Invalid Reference syntax

Invalid string as opcode operand:

Null label references are not allowed
Using a defined name as a local label
Invalid constant symbol

Invalid constant expression

/ at beginning of line not allowed

NOR not supported

Invalid floating point register name
Invalid floating point constant:

Asm syntax error - Should start with bracket
Asm syntax error - register:

Asm syntax error - in opcode operand
Invalid String expression

Constant expression out of bounds
Invalid or missing opcode

Invalid real constant expression
Parenthesis are not allowed

Invalid Reference

Cannot use __ SELF outside a method

Cannot use __ OLDEBP outside a nested procedure

80

C.9. ASSEMBLER READER ERRORS.

Invalid segment override expression
Strings not allowed as constants
Switching sections is not allowed in an assembler block
Invalid global definition

Line separator expected

Invalid local common definition
Invalid global common definition
assembler code not returned to text
invalid opcode size

Invalid character: <

Invalid character: >

Unsupported opcode

Invalid suffix for intel assembler
Extended not supported in this mode
Comp not supported in this mode
Invalid Operand:

Override operator not supported

m68k specific errors.

Increment and Decrement mode not allowed togetherYou are trying to use dec/inc mode together.

Invalid Register list in movem/fmovem The register list is invalid, normally a range of registers
should be separated by - and individual registers should be separated by a slash.

Invalid Register list for opcode

68020+ mode required to assemble

81

Appendix D

Run time errors

The Free Pascal Run-time library generates the following errors at rurfitime

1 Invalid function number You tried to call abos function which doesn't exist.

2 File not found You can get this error when you tried to do an operation on a file which doesn't
exist.

3 Path not found You can get this error when you tried to do an operation on a file which doesn't
exist, or when you try to change to, or remove a directory that doesn't exist, or try to make a
subdirectory of a subdirectory that doesn't exist.

4 Too many open filesWhen attempting to open a file for reading or writing, you can get this error
when your program has too many open files.

5 File access deniedrou don't have access to the specified file.

6 Invalid file handle If this happens, the file variable you are using is trashed; it indicates that your
memory is corrupted.

12 Invalid file access codeThis will happen if you do a reset or rewrite of a file wheieMode
is invalid.

15 Invalid drive number The number given to the Getdir function specifies a non-existent disk.
16 Cannot remove current directory You get this if you try to remove the current diirectory.

17 Cannot rename across drivesyou cannot rename a file such that it would end up on another
disk or partition.

100 Disk read error bosonly. An error occurred when reading from disk. Typically when you try
to read past the end of a file.

101 Disk write error Dosonly. Reported when the disk is full, and you're trying to write to it.

102 File not assignedThis is reported by Reset, Rewrite, Append, Rename and Erase, if you call
them with an unassigne function as a parameter.

103 File not open Reported by the following functions : Close , Read, Write, Seek, EOf, FilePos,
FileSize, Flush, BlockRead, and BlockWrite if the file isn’'t open.

104 File not open for input Reported by Read, BlockRead, Eof, Eoln, SeekEof or SeekEoln if the
file isn't opened with Reset.

1TheLINux port will generate only a subset of these.

82

105 File not open for output Reported by write if a text file isn't opened with Rewrite.

106 Invalid numeric format Reported when a non-numerice value is read from a text file, when a
numeric value was expected.

150 Disk is write-protected (Critical error,pDos only.)

151 Bad drive request struct length (Critical error,Dosonly.)
152 Drive not ready (Critical error,pDos only.)

154 CRC error in data (Critical error,posonly.)

156 Disk seek error (Critical error,Dos only.)

157 Unknown media type (Critical error,Dos only.)

158 Sector Not Found (Critical error,pos only.)

159 Printer out of paper (Critical error,Dosonly.)

160 Device write fault (Critical error,Dos only.)

161 Device read fault (Critical error,pos only.)

162 Hardware failure (Critical error,posonly.)

200 Division by zero You are dividing a number by zero.

201 Range check errorIf you compiled your program with range checking on, then you can get
this error in the following cases:

1. An array was accessed with an index outside its declared range.

2. You're trying to assign a value to a variable outside its range (for instance a enumerated
type).

202 Stack overflow error The stack has grown beyond itss maximum size. This error can easily
occur if you have recursive functions.

203 Heap overflow error The heap has grown beyond its boundaries, ad you are rying to get more
memory. Please note that Free Pascal provides a growing heap, i.e. the heap will try to allocate
more memory if needed. However, if the heap has reached the maximum size allowed by the
operating system or hardware, then you will get this error.

204 Invalid pointer operation This you will get if you call dispose or Freemem with an invalid
pointer (notablyNil)

205 Floating point overflow You are trying to use or produce too large real numbers.
206 Floating point underflow You are trying to use or produce too small real numbers.

207 Invalid floating point operation Can occur if you try to calculate the square root or logarithm
of a negative number.

210 Object not initialized When compiled with range checking on, a program will report this error
if you call a virtal method without having initialized the VMT.

211 Call to abstract method Your program tried to execute an abstract virtual method. Abstract
methods should be overridden, and the overriding method should be called.

212 Stream registration error This occurs when an invalid type is registered in the objects unit.

83

213 Collection index out of range You are trying to access a collection item with an invalid index.
(objects unit)

214 Collection overflow error The collection has reached its maximal size, and you are trying to
add another element. (objects unit)

216 General Protection fault You are trying to access memory outside your appointed memory.

217 Unhandled exception occurredAn exception occurred, and there was no exception handler
present. Thaysutils unit installs a default exception handler which catches all excpetions and
exits gracefully.

227 Assertion failed error An assertion failed, and no AssertErrorProc procedural variable was in-
stalled.

84

Appendix E

The Floating Point Coprocessor
emulator

In this appendix we note some caveats when using the floating point emulator on GO32V2 systems.
Under GO32V1 systems, all is as described in the installation section.

Q: I don’t have an 80387. How do | compile and run floating point programs under GO32V2?
Q: What shall I install on a target machine which lacks hardware floating-point support?

A : Programs which use floating point computations and could be run on machines without an 80387
should be allowed to dynamically load tkenu387.dxe file at run-time if needed. To do this you
must link theemu387 unit to your exectuable program, for example:

Program MyFloat;
Uses emu387,;

var
r: real;
Begin
r:=1.0;
WriteLn(r);
end.

Emu387 takes care of loading the dynamic emulation point library.
You should always add emulation when you distribute floating-point programs.

A few users reported that the emulation won'’t work for them unless they explicitlp &P Pthere
is nox87 hardware, like this:

set 387=N
set emu387=c:/djgpp/bin/emu387.dxe

There is an alternative FP emulator called WMEMU. It mimics a real coprocessor more closely.

WARNING:We strongly suggest that you use WMEMU as FPU emulator, nug387.dxe does
not emulate all the instructions which are used by the Run-Time Libary sUeWagT.

Q: I have an 80387 emulator installed in my AUTOEXEC.BAT, but DJGPP-compiled floating point
programs still doesn’t work. Why?

85

A : DJGPP switches the CPU to protected mode, and the information needed to emulate the 80387
is different. Not to mention that the exceptions never get to the real-mode handler. You must use
emulators which are designed for DIJGPP. Apart of emu387 and WMEMU, the only other emulator
known to work with DIJGPP is Q87 from QuickWare. Q87 is shareware and is available from the
QuickWare Web site.

Q: I run DJGPP in anos/2 DOS box, and I'm told thabs/2 will install its own emulator library if

the CPU has no FPU, and will transparently execute FPU instructions. So why won't DJGPP run
floating-point code undeps/2 on my machine?

A: 092 installs an emulator for natives/2 images, but does not provide FPU emulation for DOS
sessions.

86

Appendix F

A samplegdb.ini file

Here you have a sampiglb.ini file listing, which gives better results when usigdp . UnderLiNUX
you should put this in agdbinit file in your home directory or the current directory..

set print demangle off
set gnutarget auto
set verbose on

set complaints 1000
dir ./rtl/dosv2

set language c++
set print vtbl on
set print object on
set print sym on
set print pretty on
disp /i $eip

define pst

set $pos=&$arg0

set $strlen = {byte}$pos

print {char}&$arg0.st@($strlen+1)
end

document pst

Print out a pascal string
end

87

	List of Manuals
	Introduction
	About this document
	About the compiler
	Getting more information.

	Installing the compiler
	Before Installation : Requirements
	Installing the compiler.
	Optional configuration steps
	Testing the compiler

	Compiler usage
	File searching
	Include files
	Object files
	Compiling a program
	Compiling a unit
	Units, libraries and smartlinking
	Creating an executable for GO32V1 and PMODE/DJ targets
	Reducing the size of your program

	Compiling problems
	General problems
	Problems you may encounter under DOS

	Compiler configuration
	Using the command-line options
	Using the configuration file
	Variable substitution in paths

	Porting Turbo Pascal Code
	Things that will not work
	Things which are extra
	Turbo Pascal compatibility mode
	A note on long file names under dos

	Utilities and units that come with Free Pascal
	Supplied programs
	Supplied units

	Debugging your Programs
	Compiling your program with debugger support
	Using gdb to debug your program
	Caveats when debugging with gdb
	Support for gprof, the gnu profiler

	CGI programming in Free Pascal
	Getting your data
	Producing output
	I'm under Windows, what now ?

	Alphabetical listing of command-line options
	Alphabetical list of reserved words
	Compiler messages
	General compiler messages
	Scanner messages.
	Parser messages
	Type checking errors
	Symbol handling
	Code generator messages
	Unit loading messages.
	Command-line handling errors
	Assembler reader errors.

	Run time errors
	The Floating Point Coprocessor emulator
	A sample gdb.ini file

