
Free Pascal :
Users’ manual

Users’ manual for Free Pascal, version 0.99.14
1.6

January 2000

Michaël Van Canneyt
Florian Klämpfl

Contents

1 Introduction 4

1.1 About this document . 4

1.2 About the compiler . 4

1.3 Getting more information. 5

2 Installing the compiler 6

2.1 Before Installation : Requirements . 6

System requirements . 6

Software requirements . 6

2.2 Installing the compiler. 6

Installing under DOS . 7

Installing under Linux . 7

2.3 Optional configuration steps . 9

2.4 Testing the compiler . 10

3 Compiler usage 12

3.1 File searching . 12

Command line files . 12

Unit files . 12

3.2 Include files . 13

3.3 Object files . 14

Configuration file . 14

3.4 Compiling a program . 14

3.5 Compiling a unit . 15

3.6 Units, libraries and smartlinking . 15

3.7 Creating an executable for GO32V1 and PMODE/DJ targets 16

GO32V1 . 16

PMODE/DJ . 16

3.8 Reducing the size of your program . 17

4 Compiling problems 18

4.1 General problems . 18

1

CONTENTS

4.2 Problems you may encounter under DOS . 18

5 Compiler configuration 19

5.1 Using the command-line options . 19

General options . 19

Options for getting feedback . 20

Options concerning files and directories . 20

Options controlling the kind of output. 21

Options concerning the sources (language options) 23

5.2 Using the configuration file . 24

#IFDEF . 25

#IFNDEF . 25

#ELSE . 26

#ENDIF . 26

#DEFINE . 26

#UNDEF . 26

#WRITE . 26

#INCLUDE . 27

#SECTION . 27

5.3 Variable substitution in paths . 28

6 Porting Turbo Pascal Code 29

6.1 Things that will not work . 29

6.2 Things which are extra . 30

6.3 Turbo Pascal compatibility mode . 32

6.4 A note on long file names underDOS . 33

7 Utilities and units that come with Free Pascal 34

7.1 Supplied programs . 34

ppudump program . 34

Demo programs . 34

Documentation Example programs . 35

ppumove program . 35

ptop - Pascal source beautifier . 36

rstconv program . 39

fpcmake . 40

7.2 Supplied units . 40

Units common to all platforms . 40

Under DOS . 41

Under Linux . 41

2

CONTENTS

8 Debugging your Programs 43

8.1 Compiling your program with debugger support . 43

8.2 Usinggdb to debug your program . 44

8.3 Caveats when debugging withgdb . 45

8.4 Support forgprof , theGNU profiler . 46

9 CGI programming in Free Pascal 47

9.1 Getting your data . 47

Data coming through standard input. 47

Data passed through an environment variable . 49

9.2 Producing output . 51

9.3 I’m under Windows, what now ? . 51

A Alphabetical listing of command-line options 52

B Alphabetical list of reserved words 55

C Compiler messages 56

C.1 General compiler messages . 56

C.2 Scanner messages. 57

C.3 Parser messages . 59

C.4 Type checking errors . 68

C.5 Symbol handling . 70

C.6 Code generator messages . 72

C.7 Unit loading messages. 74

C.8 Command-line handling errors . 76

C.9 Assembler reader errors. 77

General assembler errors . 77

I386 specific errors . 79

m68k specific errors. 81

D Run time errors 82

E The Floating Point Coprocessor emulator 85

F A samplegdb.ini file 87

3

Chapter 1

Introduction

1.1 About this document

This is the user’s manual for Free Pascal. It describes the installation and use of the Free Pascal
compiler on the different supported platforms. It does not attempt to give an exhaustive list of all
supported commands, nor a definition of the Pascal language. Look at the Reference guide for
these things. For a description of the possibilities and the inner workings of the compiler, see the
Programmers’ guide. In the appendices of this document you will find lists of reserved words and
compiler error messages (with descriptions).

This document describes the compiler as it is/functions at the time of writing. Since the compiler is
under continuous development, some of the things described here may be outdated. In case of doubt,
consult theREADME files, distributed with the compiler. TheREADME files are, in case of conflict
with this manual, authoritative.

1.2 About the compiler

Free Pascal is a 32-bit compiler for the i386 and m68k processors1. Currently, it supports 6 operating
systems:

• DOS

• LINUX

• ATARI (version 0.99.5 only)

• AMIGA (version 0.99.5 only)

• WINDOWS NT

• OS/2 (using the EMX package, so it also works on DOS/Windows)

and work is in progress to port it to other platforms (notably, FREEBSD).

Free Pascal is designed to be, as much as possible, source compatible with Turbo Pascal 7.0 and
Delphi 4 (although this goal is not yet attained), but it also enhances these languages with elements
like function overloading. And, unlike these ancestors, it supports multiple platforms.

It also differs from them in the sense that you cannot use compiled units from one system for the
other.

1Work is being done on a port to ALPHA Architecture

4

file:../ref/ref.html
file:../prog/prog.html

1.3. GETTING MORE INFORMATION.

Also, at the time of writing, there is no Integrated Development Environment (IDE) available for
Free Pascal. This gap will, hopefully, be filled in the future.

Free Pascal consists of three parts :

1. The compiler program itself.

2. The Run-Time Library (RTL).

3. Utility programs and units.

Of these you only need the first two, in order to be able to use the compiler. In this document, we
describe the use of the compiler. The RTL is described in the Reference guide.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the following addresses:

• http://tfdec1.fys.kuleuven.ac.be/˜michael/fpc/fpc.html is the main site. It contains also useful
mail addresses and links to other places. It also contains the instructions for inscribing to the
mailing-list.

• http://www.brain.uni-freiburg.de/˜klaus/fpc/fpc.html is a mirror of the main Free Pascal infor-
mation site.

Both places can be used to download the Free Pascal distribution, although you can probably find
them on other places also.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me at michael@tfdec1.fys.kuleuven.ac.be .

Let’s get on with something useful.

5

file:../ref/ref.html
http://tfdec1.fys.kuleuven.ac.be/~{}michael/fpc/fpc.html
http://www.brain.uni-freiburg.de/~{}klaus/fpc/fpc.html
mailto:michael@tfdec1.fys.kuleuven.ac.be

Chapter 2

Installing the compiler

2.1 Before Installation : Requirements

System requirements
The compiler needs at least the following hardware:

1. An I386 or higher processor. A coprocessor is not required, although it will slow down your
program’s performance if you do floating point calculations.

2. 2 Mb of free memory. UnderDOS, if you use DPMI memory management, such as under
Windows, you will need at least 16 Mb.

3. At least 500 Kb. free disk space.

Software requirements
Under DOS

TheDOSdistribution contains all the files you need to run the compiler and compile pascal programs.

Under Linux

UnderLINUX you need to have the following programs installed :

1. GNU as, theGNU assembler.

2. GNU ld, theGNU linker.

3. Optionally (but highly recommended) :GNU make. For easy recompiling of the compiler and
Run-Time Library, this is needed.

Other than that, Free Pascal should run on almost any I386LINUX system.

2.2 Installing the compiler.

The installation of Free Pascal is easy, but is platform-dependent. We discuss the process for each
platform separately.

6

2.2. INSTALLING THE COMPILER.

Installing under DOS
Mandatory installation steps.

First, you must get the latest distribution files of Free Pascal. They come as zip files, which you must
unzip first, or you can download the compiler as a series of separate files. This is especially useful if
you have a slow connection, but it is also nice if you want to install only some pats of the compiler
distribution. The distribution zip file contains an installation programINSTALL.EXE. You must run
this program to install the compiler.

The screen of the installation program looks like figure 2.1.

The program allows you to select:

• What components you wish to install. e.g do you want the sources or not, do you want docs or
not. Items that you didn’t download when downloading as separate files, will not be enabled,
i.e. you can’t select them.

• Where you want to install (the default location isC:\PP).

In order to run Free Pascal from any directory on your system, you must extend your path variable to
contain theC:\PP\BIN directory. Usually this is done in theAUTOEXEC.BAT file. It should look
something like this :

SET PATH=%PATH%;C:\PP\BIN

(Again, assuming that you installed in the default location).

If you want to use the graphic drivers you must modify the environment variableGO32. Instructions
for doing this can be found in the documentation of the Graph unit, at theInitGraph procedure.

Optional Installation: The coprocessor emulation

For people who have an older CPU type, without math coprocessor (i387) it is necessary to install a
coprocessor emulation, since Free Pascal uses the coprocessor to do all floating point operations.

The installation of the coprocessor emulation is handled by the installation program (INSTALL.EXE).
However,

Installing under Linux
Mandatory installation steps.

TheLINUX distribution of Free Pascal comes in three forms:

• a tar.gz version, also available as seperate files.

• a .rpm (Red Hat Package Manager) version, and

• a .deb (debian) version.

All of these packages contain aELF version of the compiler binaries and units. the olderaout
binaries are no longer distributed, although you still can use the comiler on anaout system if you
recompile it.

If you use the.rpm format, installation is limited to

rpm -i fpc-pascal-XXX.rpm

7

2.2. INSTALLING THE COMPILER.

Figure 2.1: TheDOS install program screen.

8

2.3. OPTIONAL CONFIGURATION STEPS

(XXXis the version number of the.rpm file)

If you use debian, installation is limited to

dpkg -i fpc-XXX.deb

Here again,XXXis the version number of the.deb file.

You need root access to install these packages. The.tar file allows you to do an installation if you
don’t have root permissions.

When downloading the.tar file, or the separate files, installation is more interactive.

In case you downloaded the.tar file, you should first untar the file, in some directory where you have
write permission, using the following command:

tar -xvf fpc.tar

We supposed here that you downloaded the filefpc.tar somewhere from the Internet. (The real
filename will have some version number in it, which we omit here for clarity.)

When the file is untarred, you will be left with more archive files, and an install program: an instal-
lation shell script.

If you downloaded the files as separate files, you should at least download theinstall.sh script, and
the libraries (inlibs.tar.gz).

To install Free Pascal, all that you need to do now is give the following command:

./install.sh

And then you must answer some questions. They’re very simple, they’re mainly concerned with 2
things :

1. Places where you can install different things.

2. Deciding if you want to install certain components (such as sources and demo programs).

The script will automatically detect which components are present and can be installed. It will only
offer to install what has been found. because of this feature, you must keep the original names when
downloading, since the script expects this.

If you run the installation script as theroot user, you can just accept all installation defaults. If you
don’t run asroot , you must take care to supply the installation program with directory names where
you have write permission, as it will attempt to create the directories you specify. In principle, you
can install it wherever you want, though.

At the end of installation, the installation program will generate a configuration file for the Free
Pascal compiler which reflects the settings that you chose. It will install this file in the/etc directory,
(if you are not installing asroot , this will fail), and in the directory where you installed the libraries.

If you want the Free Pascal compiler to use this configuration file, it must be present in/etc, or you
can set the environment variablePPC_CONFIG_PATH. Undercsh, you can do this by adding a

setenv PPC_CONFIG_PATH /usr/lib/ppc/0.99.1

line to your.login file in your home directory. (see also the next section)

2.3 Optional configuration steps

On any platform, after installing the compiler you may wish to set some environment variables. The
Free Pascal compiler recognizes the following variables :

9

2.4. TESTING THE COMPILER

• PPC_EXEC_PATHcontains the directory where ’as’ and ’ld’ are. (default/usr/bin)

• PPC_GCCLIB_PATHcontains the directory wherelibgcc.a is (no default). This if forLINUX

only.

• PPC_CONFIG_PATHspecifies an alternate path to findppc386.cfg (default underLINUX is
/etc)

• PPC_ERROR_FILEspecifies the path and name of the error-definition file. (default/usr/lib/fpc/errorE.msg)

These locations are, however, set in the sample configuration file which is built at the end of the
installation process, except for thePPC_CONFIG_PATHvariable, which you must set if you didn’t
install things in the default places.

finally

Also distributed in Free Pascal is a README file. It contains the latest instructions for installing
Free Pascal, and should always be read first.

2.4 Testing the compiler

After the installation is completed and the environment variables are set as described above, your
first program can be compiled.

Included in the Free Pascal distribution are some demonstration programs, showing what the com-
piler can do. You can test if the compiler functions correctly by trying to compile these programs.

The compiler is called

• PPC386.EXE underDOS, and

• ppc386 underLINUX

To compile a program (e.gdemo\hello.pp) simply type :

ppc386 hello

at the command prompt. If you don’t have a configuration file, then you may need to tell the compiler
where it can find the units, for instance as follows:

ppc386 -Upc:\pp\rtl\dos\go32v2 hello

underDOS, and underLINUX you could type

ppc386 -Up/usr/lib/fpc/0.99.7/linuxunits hello

This is, of course, assuming that you installed underC:\PP or /usr/lib/fpc/0.99.7, respectively.

If you got no error messages, the compiler has generated an executable calledhello (no extension)
underLINUX , and a filehello.exe underDOS.

To execute the program, simply type :

hello

If all went well, you should see the following friendly greeting:

10

2.4. TESTING THE COMPILER

Hello world

In the DOS case, this friendly greeting may be preceded by some ugly message from theGO32
extender program. This unfriendly behavior can be switched off by setting theGO32 environment
variable.

11

Chapter 3

Compiler usage

Here we describe the essentials to compile a program and a unit. We also describe how to make a
stand-alone executable of the compiled program underDOS. For more advanced uses of the compiler,
see the section on configuring the compiler, and the Programmers’ guide.

The examples in this section suppose that you have appc386.cfg which is set up correctly, and
which contains at least the path setting for the RTL units. In principle this file is generated by the
installation program. You may have to check that it is in the correct place (see section 5.2 for more
information on this).

3.1 File searching

Before you start compiling a program or a series of units, it is important to know where the compiler
looks for its source files and other files. In this section we discuss this, and we indicate how to
influence this.

Remark: The use of slashes (/) and backslashes (\) as directory separators is irrelevant, the compiler will
convert to whatever character is used on the current operating system. Examples will be given using
slashes, since this avoids problems onLINUX .

Command line files
The file that you specify on the command line, such as in

ppc386 foo.pp

will be looked for ONLY in the current directory. If you specify a directory in the filename, then the
compiler will look in that directory:

ppc386 subdir/foo.pp

will look for foo.pp in the subdirectorysubdir of the current directory.

UnderLINUX , the name of this file is case sensitive, under other operating systems (DOS, WINDOWS

NT, OS/2) this is not the case.

Unit files
When you compile a unit or program that needs other units, the compiler will look for compiled
versions of these units in the following way:

12

file:../prog/prog.html

3.2. INCLUDE FILES

1. It will look in the current directory.

2. It will look in the directory where the compiler binary is. (not underLINUX)

3. It will look in all the directories specified in the unit search path.

You can add a directory to the unit search path with the-Fu option (See 5.1). Every occurrence of
one of this options willinserta directory to the unit search path.

On LINUX , the compiler will first convert the filename of a unit to all-lowercase. This is necessary,
since Pascal is case-independent, and the statementsUses Unit1; or uses unit1; should
have the same effect. Also, unit names that are longer than 8 characters will first be looked for with
their full length. If the unit is not found with this name, the name will be truncated to 8 characters,
and the compiler will look again in the same directories, but with the truncated name.

For instance, suppose that the filefoo.pp needs the unitbar. Then the command

ppc386 -Up.. -Upunits foo.pp

will tell the compiler to look for the unitbar in the following places:

1. In the current directory.

2. In the directory where the compile binary is (not underLINUX).

3. In the parent directory of the current directory.

4. In the subdirectoryunits of the current directory

If the compiler finds the unit it needs, it will look for the source file of this unit in the same directory
where it found the unit. If it finds the source of the unit, then it will compare the file times. If the
source file was modified more recent than the unit file, the compiler will attempt to recompile the
unit with this source file.

If the compiler doesn’t find a compiled version of the unit, or when the-B option is specified, then
the compiler will look in the same manner for the unit source file, and attempt to recompile it.

It is recommended to set the unit search path in the configuration fileppc386.cfg. If you do this,
you don’t need to specify the unit search path on the command-line every time you want to compile
something.

3.2 Include files

If you include files in your source with the{$I filename} directive, the compiler will look for
it in the following places:

1. It will look in the path specified in the incude file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the include file search path.

You can add files to the include file search path with the-I (See 5.1) option.

As an example, consider the following include statement in a fileunits/foo.pp:

{$i ../bar.inc}

13

3.3. OBJECT FILES

Then the following command :

ppc386 -Iincfiles units/foo.pp

will cause the compiler to look in the following directories forbar.inc:

1. the parent directory of the current directory

2. theunits subdirectory of the current directory

3. theincfiles directory of the current directory.

3.3 Object files

When you link to object files (using the{$L file.o} directive, the compiler will look for this file
in the same way as it looks for include files:

1. It will look in the path specified in the object file name.

2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the object file search path.

You can add files to the object file search path with the-Fo (See 5.1) option.

Configuration file
Unless you specify the-n (See 5.1) option, the compiler will look for a configuration fileppc386.cfg
in the following places:

• UnderLINUX

1. The current directory.

2. In your home directory, it looks for.ppc386.cfg.

3. The directory specified in the environment variablePPC_CONFIG_PATH, and if it’s not
set under/etc.

• Under all other OSes:

1. The current directory.

2. If it is set, the directory specified in the environment variable.PPC_CONFIG_PATH.

3. The directory where the compiler is.

3.4 Compiling a program

Compiling a program is very simple. Assuming that you have a program source in the fileprog.pp,
you can compile this with the following command:

ppc386 [options] prog.pp

14

3.5. COMPILING A UNIT

The square brackets[] indicate that what is between them is optional.

If your program file has the.pp or .pas extension, you can omit this on the command line, e.g. in
the previous example you could have typed:

ppc386 [options] prog

If all went well, the compiler will produce an executable, or, for version 1 of theDOS extender, a file
which can be converted to an executable.

Unless you are usingDOS and version 1 of theDOS extender, the file you obtained is the executable.
You can execute it straight away, you don’t need to do anything else. Under version 1 of theDOS

extender, additional processing is required. See section 3.7 on how to create an executable in this
case.

You will notice that there is also another file in your directory, with extensions.o. This contains the
object file for your program. If you compiled a program, you can delete the object file (.o), but not
if you compiled a unit. Then the object file contains the code of the unit, and will be linked in any
program that uses the unit you compiled, so you shouldn’t remove it.

3.5 Compiling a unit

Compiling a unit is not essentially different from compiling a program. The difference is mainly that
the linker isn’t called in this case.

To compile a unit in the filefoo.pp, just type :

ppc386 foo

Recall the remark about file extensions in the previous section.

When all went well, you will be left with 2 (two) unit files:

1. foo.ppu This is the file describing the unit you just compiled.

2. foo.o This file contains the actual code of the unit. This file will eventually end up in the
executables.

Both files are needed if you plan to use the unit for some programs. So don’t delete them. If you
want to distribute the unit, you must provide both the.ppu and .o file. One is useless without the
other.

Remark: UnderLINUX , a unit source filemusthave a lowercase filename. Since Pascal is case independent,
you can specify the names of units in theuses clause in either case. To get a unique filename, the
Free Pascal compiler changes the name of the unit to all lowercase when looking for unit files.

The compiler produces lowercase files, so your unit will be found, even if your source file has up-
percase letters in it. Only when the compiler tries to recompile the unit, it will not find your source
because of the uppercase letters.

3.6 Units, libraries and smartlinking

The Free Pascal compiler supports smartlinking and the creation of libraries. However, the default
behaviour is to compile each unit into 1 big object file, which will be linked as a whole into your
program.

15

3.7. CREATING AN EXECUTABLE FOR GO32V1 AND PMODE/DJ TARGETS

Not only is it possible to compile a shared library under WINDOWS andLINUX , but also it is possible
to take existing units and put them together in 1 static or shared library.

begin

3.7 Creating an executable for GO32V1 and PMODE/DJ targets

The GO32V1 platform is officially no longer supported, so this section is of interest only to people
who wish to make go32V1 binaries anyway.

GO32V1
When compiling underDOS, GO32V2 is the default target. However, if you use go32V1 (using the
-TGO32V1 switch), the compilation process leaves you with a file which you cannot execute right
away. There are 2 things you can do when compiling has finished.

The first thing is to use theDOS extender from D.J. Delorie to execute your program :

go32 prog

This is fine for testing, but if you want to use a program regularly, it would be easier if you could just
type the program name, i.e.

prog

This can be accomplished by making aDOS executable of your compiled program.

There two ways to create aDOS executable (underDOS only):

1. if the GO32.EXE is already installed on the computers where the program should run, you
must only copy a program calledSTUB.EXE at the begin of the AOUT file. This is accom-
plished with theAOUT2EXE.EXE program. which comes with the compiler:

AOUT2EXE PROG

and you get aDOS executable which loads theGO32.EXE automatically. theGO32.EXE
executable must be in current directory or be in a directory in thePATHvariable.

2. The second way to create aDOSexecutable is to putGO32.EXE at the beginning of theAOUT
file. To do this, at the command prompt, type :

COPY /B GO32.EXE+PROG PROG.EXE

(assuming Free Pascal created a file calledPROG, of course.) This becomes then a stand-
alone executable forDOS, which doesn’t need theGO32.EXE on the machine where it should
run.

PMODE/DJ
You can also use the PMODE/DJ extender to run your Free Pascal applications. To make an exe-
cutable which works with the PMODE extender, you can simply create an GO32V2 executable (the
default), and then convert it to a PMODE executable with the following two extra commands:

1. First, strip the GO32V2 header of the executable:

16

3.8. REDUCING THE SIZE OF YOUR PROGRAM

EXE2COFF PROG.EXE

(we suppose thatPROG.EXE is the program generated by the compilation process.

2. Secondly, add the PMODE stub:

COPY /B PMODSTUB.EXE+PROG PROG.EXE

If the PMODSTUB.EXE file isn’t in your local directory, you need to supply the whole path
to it.

That’s it. No additional steps are needed to create a PMODE extender executable.

Be aware, though, that the PMODE extender doesn’t support virtual memory, so if you’re short on
memory, you may run unto trouble. Also, officially there is not support for the PMODE/DJ extender.
It just happens that the compiler and some of the programs it generates, run under this extender too.

3.8 Reducing the size of your program

When you created your program, it is possible to reduce its size. This is possible, because the
compiler leaves a lot of information in the program which, strictly speaking, isn’t required for the
execution of it. The surplus of information can be removed with a small program calledstrip. It
comes with theGO32development environment underDOS, and is standard onLINUX machines
where you can do development. The usage is simple. Just type

strip prog

On the command line, and thestrip program will remove all unnecessary information from your
program. This can lead to size reductions of up to 30 %.

Remark: In the WIN32 version,strip is calledstripw.

You can use the-Xs switch to let the compiler do this stripping automatically at program compile
time (the switch has no effect when compiling units).

Another technique to reduce the size of a program is to use smartlinking. Normally, units (including
the system unit) are linked in as a whole. It is however possible to compile units such that the can be
smartlinked. This means that only the functions and procedures are linked in your program, leaving
out any unnecessary code. This technique is described in full in the programmers guide.

17

Chapter 4

Compiling problems

4.1 General problems

• IO-error -2 at ... : Under LINUX you can get this message at compiler startup. It means
typically that the compiler doesn’t find the error definitions file. You can correct this mistake
with the-Fr option underLINUX . (See 5.1)

• Error : File not found : xxx or Error: couldn’t compile unit xxx : This typically happens
when your unit path isn’t set correctly. Remember that the compiler looks for units only in
the current directory, and in the directory where the compiler itself is. If you want it to look
somewhere else too, you must explicitly tell it to do so using the-Fu option (See 5.1). Or you
must set op a configuration file.

4.2 Problems you may encounter under DOS

• No space in environment.
An error message like this can occur, if you callSET_PP.BAT in theAUTOEXEC.BAT.
To solve this problem, you must extend your environment memory. To do this, search a line in
theCONFIG.SYS like

SHELL=C:\DOS\COMMAND.COM

and change it to the following:

SHELL=C:\DOS\COMMAND.COM /E:1024

You may just need to specify a higher value, if this parameter is already set.

• Coprocessor missing
If the compiler writes a message that there is no coprocessor, install the coprocessor emulation.

• Not enough DPMI memory
If you want to use the compiler withDPMIyou must have at least 7-8 MB freeDPMImemory,
but 16 Mb is a more realistic amount.

18

Chapter 5

Compiler configuration

The output of the compiler can be controlled in many ways. This can be done essentially in two
distinct ways:

• Using command-line options.

• Using the configuration file:ppc386.cfg.

The compiler first reads the configuration file. Only then the command line options are checked. This
creates the possibility to set some basic options in the configuration file, and at the same time you
can still set some specific options when compiling some unit or program. First we list the command
line options, and then we explain how to specify the command line options in the configuration file.
When reading this, keep in mind that the options are case sensitive. While this is customary for
LINUX , it isn’t underDOS.

5.1 Using the command-line options

The available options for version 0.99.10 of the compiler are listed by category (see appendix A for
a listing as generated by the compiler):

General options
-h if you specify this option, the compiler outputs a list of all options, and exits after that.

-? idem as-h , waiting after every screenfull for the enter key.

-i This option tells the compiler to print the copyright information. You can give it an option, as
-ixxx where xxx can be one of the following:

D : Returns the compiler date.

V : Returns the compiler version.

SO : Returns the compiler OS.

SP : Returns the compiler processor.

TO : Returns the target OS.

TP : Returns the target Processor.

-l This option tells the compiler to print the Free Pascal logo on standard output. It also gives you
the Free Pascal version number.

19

5.1. USING THE COMMAND-LINE OPTIONS

-n Tells the compiler not to read default the configuration file. You can still pass a configuration file
with the@option.

Options for getting feedback
-vxxx Be verbose.xxx is a combination of the following :

• e : Tells the compiler to show only errors. This option is on by default.

• i : Tells the compiler to show some general information.

• w : Tells the compiler to issue warnings.

• n : Tells the compiler to issue notes.

• h : Tells the compiler to issue hints.

• l : Tells the compiler to show the line numbers as it processes a file. Numbers are shown
per 100.

• u : Tells the compiler to print information on the units it loads.

• t : Tells the compiler to print the names of the files it tries to open.

• p : Tells the compiler to print the names of procedures and functions as it is processing
them.

• c : Tells the compiler to warn you when it processes a conditional.

• m: Tells the compiler to write which macros are defined.

• d : Tells the compiler to write other debugging info.

• a : Tells the compiler to write all possible info. (this is the same as specifying all options)

• 0 : Tells the compiler to write no messages. This is useful when you want to override the
default setting in the configuration file.

• b : Tells the compiler to show all procedure declarations if an overloaded function error
occurs.

• x : Tells the compiler to output some executable info (for Win32 platform only).

• r : Rhide/GCC compatibility mode: formats the errors differently, so they are understood
by RHIDE.

Options concerning files and directories
-exxx xxx specifies the directory where the compiler can find the executablesas (the assembler) and

ld (the linker).

-FD same as-e .

-Fexxx This option tells the compiler to write errors, etc. to the file namedxxx.

-FExxx tells the compiler to write the executable and units in directoryxxx instead of th current
directory.

-FIxxx Addsxxx to the include file search path.

-Flxxx Addsxxx to the library searching path, and is passed to the linker.

-FLxxx (LINUX only) Tells the compiler to usexxx as the dynamic linker. Default this is/lib/ld-
linux.so.2, or /Hlib/ld-linux.so.1, depending on which one is found first.

-Foxxx Addsxxx to the object file search path. This path is used when looking for files that need to
be linked in.

20

5.1. USING THE COMMAND-LINE OPTIONS

-Frxxx xxx specifies the file which contain the compiler messages. Default the compiler has built-in
messages. Specifying this option will override the default messages.

-Fuxxx Add xxx to the unit search path. Units are first searched in the current directory. If they are
not found there then the compiler searches them in the unit path. You mustalwayssupply the
path to the system unit.

-FUxxx Tells the compiler to write units in directoryxxx instead of the current directory. It over-
rides the-FE option.

-Ixxx Add xxx to the include file search path. This option has the same effect as-Fi .

-P uses pipes instead of files when assembling. This may speed up the compiler onOS/2 andLINUX .
Only with assemblers (such asGNU as) that support piping...

Options controlling the kind of output.
for more information on these options, see also Programmers’ guide

-a Tells the compiler not to delete the assembler files it generates (not when using the internal as-
sembler). This also counts for the (possibly) generated batch script.

-al Tells the compiler to include the sourcecode lines in the assembler file as comments.

-ar tells the compiler to list register allocation and release info in the assembler file. This is primarily
intended for debugging the code generated bythe compiler.

-at tells the compiler to list information about temporary allocations and deallocations in the assem-
bler file.

-Axxx specifies what kind of assembler should be generated . Herexxx is one of the following :

as assemble usingGNU as.

asaout assemble usingGNU as for aout (Go32v1).

nasmcoff coff (Go32v2) file using Nasm.

nasmelf elf32 (Linux) file using Nasm.

nasmobj object file using Nasm.

masm object file using Masm (Microsoft).

tasm object file using Tasm (Borland).

coff coff object file (Go32v2) using the internal binary object writer.

pecoff pecoff object file (Win32) using the internal binary object writer.

-B tells the compiler to re-compile all used units, even if the unit sources didn’t change since the last
compilation.

-b tells the compiler to generate browser info. This information can be used by an Integrated Devel-
opment Environment (IDE) to provide information on classes, objects, procedures, types and
variables in a unit.

-bl is the same as-b but also generates information about local variables, types and procedures.

-CD Create a dynamic library. This is used to transform units into dynamically linkable libraries on
LINUX .

-Chxxx Reservesxxx bytes heap.xxx should be between 1024 and 67107840.

21

file:../prog/prog.html

5.1. USING THE COMMAND-LINE OPTIONS

-Ci Generate Input/Output checking code. In case some input/output code of your program returns
an error status, the program will exit with a run-time error. Which error is generated depends
on the I/O error.

-Cn Omit the linking stage.

-Co Generate Integer overflow checking code. In case of integer errors, a run-time error will be
generated by your program.

-Cr Generate Range checking code. In case your program acesses an array element with an in-
valid index, or if it increases an enumerated type beyond it’s scope, a run-time error will be
generated.

-Csxxx Set stack size toxxx .

-Ct generate stack checking code. In case your program performs a faulty stack operation, a run-
rime error will be generated.

-CX Create a smartlinked unit when writing a unit. smartlinking will only link in the code parts that
are actually needed by the program. All unused code is left out. This can lead to substantially
smaller binaries.

-dxxx Define the symbol namexxx . This can be used to conditionally compile parts of your code.

-E Same as-Cn .

-g Generate debugging information for debugging withgdb

-gg idem as-g .

-gd generate debugging info fordbx.

-gh use the heaptrc unit (see Unit reference).

-gc generate checks for pointers.

-Oxxx optimize the compiler’s output;xxx can have one of the following values :

g optimize for size, try to generate smaller code.

G optimize for time, try to generate faster code (default).

r keep certain variables in registers (experimental, use with caution).

u Uncertain optimizations

1 Level 1 optimizations (quick optimizations).

2 Level 2 optimizations (-O1 plus some slower optimizations).

3 Level 3 optimizations (-O2 plus-Ou).

Pn (Intel only) Specify processor:n can be one of

1 optimize for 386/486

2 optimize for Pentium/PentiumMMX (tm)

3 optimizations for PentiumPro/PII/Cyrix 6x86/K6 (tm)

The exact effect of these effects can be found in the Programmers’ guide.

-oxxx Tells the compiler to usexxx as the name of the output file (executable). Only with programs.

-pg Generate profiler code forgprof.

22

file:../units/units.html
file:../prog/prog.html

5.1. USING THE COMMAND-LINE OPTIONS

-s Tells the compiler not to call the assembler and linker. Instead, the compiler writes a script,
PPAS.BAT underDOS, or ppas.sh underLINUX , which can then be executed to produce an
executable. This can be used to speed up the compiling process or to debug the compiler’s
output.

-Txxx Specifies the target operating system.xxx can be one of the following:

• GO32V1 : DOS and version 1 of the DJ DELORIE extender (no longer maintained).

• GO32V2 : DOS and version 2 of the DJ DELORIE extender.

• LINUX : LINUX .

• OS2: OS/2 (2.x) using theEMXextender.

• WIN32 : WINDOWS 32 bit.

-uxxx undefine the symbolxxx . This is the opposite of the-d option.

-uxxx Undefine symbolxxx .

-Xx executable options. This tells the compiler what kind of executable should be generated. the
parameterx can be one of the following:

• c : (LINUX only) Link with the C library. You should only use this when you start to port
Free Pascal to another operating system.

• D : Link with dynamic libraries (defines theFPC_LINK_DYNAMICsymbol)

• s : Strip the symbols from the executable.

• S : Link with static units (defines theFPC_LINK_STATIC symbol)

• X : Link with smartlinked units (defines theFPC_LINK_SMARTsymbol)

Options concerning the sources (language options)
for more information on these options, see also Programmers’ guide

-Rxxx Specifies what kind of assembler you use in yourasm assembler code blocks. Herexxx is
one of the following:

att asm blocks contain AT&T-style assembler. This is the default style.

intel asm blocks contain Intel-style assembler.

direct asm blocks should be copied as-is in the assembler, only replacing certain variables.
file.

-S2 Switch on Delphi 2 extensions. This is different from-Sd because some Free Pascal constructs
are still available to you.

-Sc Support C-style operators, i.e.*=, +=, /= and -= .

-Sd Tells the compiler to be Delphi compatible. This is more strict than the-S2 option, since some
fpc extensions are switched off.

-SeN The compiler stops after the N-th error. Normally, the compiler tries to continue compiling
after an error, until 50 errors are reached, or a fatal error is reached, and then it stops. With this
switch, the compiler will stop after the N-th error (if N is omitted, a default of 1 is assumed).

-Sg Support thelabel andgoto commands. By default these are not supported. You must also
specify this option if you use labels in assembler statements. (if you use theAT&T style
assember)

23

file:../prog/prog.html

5.2. USING THE CONFIGURATION FILE

-Sh Use ansistrings by default for strings. If this keyword is specified, the compiler will interpret
thestring keyword as a ansistring. Otherwise it is supposed to be a short strings (TP style).

-Si SupportC++ style INLINE.

-Sm Support C-style macros.

-So Try to be Borland TP 7.0 compatible (no function overloading etc.).

-Sp Try to begpc (GNU pascal compiler) compatible.

-Ss The name of constructors must beinit , and the name of destructors should bedone .

-St Allow the static keyword in objects.

-Un Do not check the unit name. Normally, the unit name is the same as the filename. This option
allows both to be different.

-Us Compile a system unit. This option causes the compiler to define only some very basic types.

5.2 Using the configuration file

Using the configuration fileppc386.cfg is an alternative to command line options. When a configu-
ration file is found, it is read, and the lines in it are treated like you typed them on the command line.
They are treated before the options that you type on the command line.

You can specify comments in the configuration file with the# sign. Everything from the# on will
be ignored.

The compiler looks for theppc386.cfg file in the following places :

• UnderLINUX

1. The current directory.

2. In your home directory, it looks for.ppc386.cfg.

3. The directory specified in the environment variablePPC_CONFIG_PATH, and if it’s not
set under/etc.

• Under all other OSes:

1. The current directory.

2. If it is set, the directory specified in the environment variable.PPC_CONFIG_PATH.

3. The directory where the compiler is.

When the compiler has finished reading the configuration file, it continues to treat the command line
options.

One of the command-line options allows you to specify a second configuration file: Specifying@foo
on the command line will open filefoo, and read further options from there. When the compiler has
finished reading this file, it continues to process the command line.

The configuration file allows some kind of preprocessing. It understands the following directives,
which you should place on the first column of a line :

#IFDEF

#IFNDEF

24

5.2. USING THE CONFIGURATION FILE

#ELSE

#ENDIF

#DEFINE

#UNDEF

#WRITE

#INCLUDE

#SECTION

They work the same way as their {$...} counterparts in Pascal.

What follows is a description of the different directives.

#IFDEF
Syntax:

#IFDEF name

Lines following#IFDEF are skipped read if the keywordname following it is not defined.

They are read until the keywords#ELSEor #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFDEF VER0_99_5
-Up/usr/lib/fpc/0.99.5/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.5/linuxunits will be added to the path if you’re compiling
with version 0.99.5 of the compiler.

#IFNDEF
Syntax:

#IFNDEF name

Lines following#IFDEF are skipped read if the keywordname following it is defined.

They are read until the keywords#ELSEor #ENDIF are encountered, after which normal processing
is resumed.

Example :

#IFNDEF VER0_99_5
-Up/usr/lib/fpc/0.99.6/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.6/linuxunits will be added to the path if you’re NOT com-
piling with version 0.99.5 of the compiler.

25

5.2. USING THE CONFIGURATION FILE

#ELSE
Syntax:

#ELSE

#ELSE can be specified after a#IFDEF or #IFNDEF directive as an alternative. Lines following
#ELSEare skipped read if the preceding#IFDEF #IFNDEF was accepted.

They are skipped until the keyword#ENDIF is encountered, after which normal processing is re-
sumed.

Example :

#IFDEF VER0_99_5
-Up/usr/lib/fpc/0.99.6/linuxunits
#ELSE
-Up/usr/lib/fpc/0.99.5/linuxunits
#ENDIF

In the above example,/usr/lib/fpc/0.99.5/linuxunits will be added to the path if you’re compiling
with version 0.99.5 of the compiler, otherwise/usr/lib/fpc/0.99.6/linuxunits will be added to the
path.

#ENDIF
Syntax:

#ENDIF

#ENDIF marks the end of a block that started with#IF(N)DEF , possibly with an#ELSE between
it.

#DEFINE
Syntax:

#DEFINE name

#DEFINE defines a new keyword. This has the same effect as a-dname command-line option.

#UNDEF
Syntax:

#UNDEF name

#UNDEFun-defines a keyword if it existed. This has the same effect as a-uname command-line
option.

#WRITE
Syntax:

26

5.2. USING THE CONFIGURATION FILE

#WRITE Message Text

#WRITE writes Message Text to the screen. This can be useful to display warnings if certain
options are set.

Example:

#IFDEF DEBUG
#WRITE Setting debugging ON...
-g
#ENDIF

if DEBUGis defined, this will produce a line

Setting debugging ON...

and will then switch on debugging information in the compiler.

#INCLUDE
Syntax:

#INCLUDE filename

#INCLUDE instructs the compiler to read the contents offilename before continuing to process
options in the current file.

This can be useful if you want to have a particular configuration file for a project (or, underLINUX ,
in your home directory), but still want to have the global options that are set in a global configuration
file.

Example:

#IFDEF LINUX
#INCLUDE /etc/ppc386.cfg

#ELSE
#IFDEF GO32V2

#INCLUDE c:\pp\bin\ppc386.cfg
#ENDIF

#ENDIF

This will include/etc/ppc386.cfg if you’re on a linux machine, and will includec:\pp\bin\ppc386.cfg
on a dos machine.

#SECTION
Syntax:

#SECTION name

The#SECTIONdirective acts as a#IFDEF directive, only it doesn’t require an#ENDIF directive.
the special nameCOMMONalways exists, i.e. lines following#SECTION COMMONare always read.

27

5.3. VARIABLE SUBSTITUTION IN PATHS

5.3 Variable substitution in paths

To avoid having to edit your configuration files too often, the compiler allows you to specify the
following variables in the paths that you feed to the compiler:

FPCVER is replaced by the compiler’s full version string.

FPCDATE is replaced by the compiler’s date.

FPCTARGET is replaced by the compiler’s target CPU (deprecated).

FPCCPU is also replaced by the compiler’s target CPU.

TARGET is replaced by the compiler’s target OS.(deprecated)

FPCOS is replaced by the compiler’s target OS.

To have these variables subsituted, just insert them with a$ prepended, as follows:

-Fu/usr/lib/fpc/$FPCVER/rtl/$FPCOS

This is equivalent to

-Fu/usr/lib/fpc/0.99.12a/rtl/linux

If the compiler version is0.99.12a and the target os islinux .

These replacemens are valid on the command-line and also in the configuration file.

On the linux command-line, you must be careful to escape the$ since otherwise the shell will expand
the variable for you, which may have undesired effects.

28

Chapter 6

Porting Turbo Pascal Code

Free Pascal was designed to resemble Turbo Pascal as closely as possible. There are, of course,
restrictions. Some of these are due to the fact that Free Pascal is a 32-bit compiler. Other restrictions
result from the fact that Free Pascal works on more than one operating system.

In general we can say that if you keep your program code close to ANSI Pascal, you will have no
problems porting from Turbo Pascal, or even Delphi, to Free Pascal. To a large extent, the constructs
defined by Turbo Pascal are supported. This is even more so if you use the-So or -S2 switches.

In the following sections we will list the Turbo Pascal constructs which are not supported in Free
Pascal, and we will list in what ways Free Pascal extends the Turbo Pascal language.

6.1 Things that will not work

Here we give a list of things which are defined/allowed in Turbo Pascal, but which are not supported
by Free Pascal. Where possible, we indicate the reason.

1. Duplicate case labels are not allowed. This is a bug in Turbo Pascal and will not be changed.

2. Parameter lists of previously defined functions and procedures must match exactly. The reason
for this is the function overloading mechanism of Free Pascal. (however, the-So switch solves
this. See 5.1)

3. (* ... *) as comment delimiters are not allowed in versions older than 0.9.1. This can
easily be remedied with a grown-up editor.

4. The MEM, MEMW, MEMLand PORTvariables for memory and port access are not avail-
able in the system unit. This is due to the operating system. UnderDOS, the extender unit
(GO32.PPU) implements the mem constuct. underLINUX , theports unit implements such a
construct.

5. PROTECTED, PUBLIC, PUBLISHED, TRY, FINALLY, EXCEPT, RAISE are reserved
words. This means you cannot create procedures or variables with the same name. While they
are not reserved words in Turbo Pascal, they are in Delphi. Using the-So switch will solve
this problem if you want to compile Turbo Pascal code that uses these words.

6. The reserved wordsFAR, NEARare ignored. This is because Free Pascal is a 32 bit compiler,
so they’re obsolete.

7. INTERRUPTonly will work on a DOS machine.

29

6.2. THINGS WHICH ARE EXTRA

8. Boolean expressions are only evaluated until their result is completely determined. The rest of
the expression will be ignored.

9. By default the compiler usesAT&Tassembler syntax. This is mainly because Free Pascal uses
GNU as . However other assembler forms are available, Programmers’ guide.

10. Turbo Vision is not completely available. There is FreeVision, but the degree of compatibility
with Turbo Vision is unclear at this time.

11. The ’overlay’ unit is not available. It also isn’t necessary, since Free Pascal is a 32 bit compiler,
so program size shouldn’t be a point.

12. There are more reserved words. (see appendix B for a list of all reserved words.)

13. The command-line parameters of the compiler are different.

14. Compiler switches and directives are mostly the same, but some extra exist.

15. Units are not binary compatible.

6.2 Things which are extra

Here we give a list of things which are possible in Free Pascal, but which didn’t exist in Turbo Pascal
or Delphi.

1. There are more reserved words. (see appendix B for a list of all reserved words.)

2. Functions can also return complex types, such as records and arrays.

3. You can handle function results in the function itself, as a variable. Example

function a : longint;

begin
a:=12;
while a>4 do

begin
{...}

end;
end;

The example above would work with TP, but the compiler would assume that thea>4 is a
recursive call. To do a recursive call in this you must append() behind the function name:

function a : longint;

begin
a:=12;
{ this is the recursive call }
if a()>4 then

begin
{...}

end;
end;

30

file:../prog/prog.html

6.2. THINGS WHICH ARE EXTRA

4. There is partial support of Delphi constructs. (see the Programmers’ guide for more informa-
tion on this).

5. Theexit call accepts a return value for functions.

function a : longint;

begin
a:=12;
if a>4 then

begin
exit(a*67); {function result upon exit is a*67 }

end;
end;

6. Free Pascal supports function overloading. That is, you can define many functions with the
same name, but with different arguments. For example:

procedure DoSomething (a : longint);
begin
{...}
end;

procedure DoSomething (a : real);
begin
{...}
end;

You can then call procedureDoSomething with an argument of typeLongint or Real .
This feature has the consequence that a previously declared function must always be defined
with the header completely the same:

procedure x (v : longint); forward;

{...}

procedure x;{ This will overload the previously declared x}
begin
{...}
end;

This construction will generate a compiler error, because the compiler didn’t find a definition
of procedure x (v : longint); . Instead you should define your procedure x as:

procedure x (v : longint);
{ This correctly defines the previously declared x}
begin
{...}
end;

(The See 5.1 switch disables overloading. When you use it, the above will compile, as in Turbo
Pascal.

7. Operator overloading. Free Pascal allows to overload operators, i.e. you can define e.g. the ’+’
operator for matrices.

8. On FAT16 and FAT32 systems, long file names are supported.

31

file:../prog/prog.html

6.3. TURBO PASCAL COMPATIBILITY MODE

6.3 Turbo Pascal compatibility mode

When you compile a program with the-So switch, the compiler will attempt to mimic the Turbo
Pascal compiler in the following ways:

• Assigning a procedural variable doesn’t require a @ operator. One of the differences between
Turbo Pascal and Free Pascal is that the latter requires you to specify an address operator when
assigning a value to a procedural variable. In Turbo Pascal compatibility mode, this is not
required.

• Procedure overloading is disabled. This means that function header and implementation can
be different (i.e. the function iplementation doesn’t need to repeat the function header).

• Forward defined procedures don’t need the full parameter list when they are defined. Due to
the procedure overloading feature of Free Pascal, you must always specify the parameter list
of a function when you define it, even when it was declared earlier withForward . In Turbo
Pascal compatibility mode, there is no function overloading, hence you can omit the parameter
list:

Procedure a (L : Longint); Forward;

...

Procedure a ; { No need to repeat the (L : Longint) }

begin
...

end;

• recursive function calls are handled dfferently. Consider the following example :

Function expr : Longint;

begin
...
Expr:=L:
Writeln (Expr);
...

end;

In Turbo Pascal compatibility mode, the function will be called recursively when thewriteln
statement is processed. In Free Pascal, the function result will be printed. In order to call the
function recusively under Free Pascal, you need to implement it as follows :

Function expr : Longint;

begin
...
Expr:=L:
Writeln (Expr());
...

end;

• Any text after the finalEnd. statement is ignored. Normally, this text is processed too.

32

6.4. A NOTE ON LONG FILE NAMES UNDER DOS

• You cannot assign procedural variables to untyped pointers; so the following is invalid:

a: Procedure;
b: Pointer;

begin
b := a; // Error will be generated.

• The @ operator is typed when applied on procedures.

• You cannot nest comments.

6.4 A note on long file names underDOS

Under WINDOWS 95 and higher, long filenames are supported. Compiling for the win32 target
ensures that long filenames are supported in all functions that do fie or disk access in any way.

Moreover, Free Pascal supports the use of long filenames in the system unit and the dos unit also
for go32v2 executables. The system unit contains the boolean variableLFNsupport . If it is set
to True then all system unit functions and DOS unit functions will use long file names if they are
available. This should be so on all versions of Windows, with the possible exception of WINDOWS

2000. The system unit will check this by callingDOS function71A0h and checking whether long
filenames are supported on theC: drive.

It is possible to disable the long filename support by setting theLFNSupport variable toFalse

33

Chapter 7

Utilities and units that come with
Free Pascal

Besides the compiler and the Run-Time Library, Free Pascal comes with some utility programs and
units. Here we list these programs and units.

7.1 Supplied programs

ppudump program
ppudump is a program which shows the contents of a Free Pascal unit. It is distributed with the
compiler. You can just issue the following command

ppudump [options] foo.ppu

to display the contents of thefoo.ppu unit. You can specify multiple files on the command line.

The options can be used to change the verbosity of the display. By default, all available information
is displayed. You can set the verbosity level using the-Vxxx option. Here,xxx is a combination of
the following letters:

h: show header info.

i: show interface information.

m: show implementation information.

d: show only (interface) definitions.

s: show only (interface) symbols.

b: show browser info.

a: show everything (default if no -V option is present).

Demo programs
Also distributed with Free Pascal comes a series of demonstration programs. These programs have
no other purpose than demonstrating the capabilities of Free Pascal. They are located in thedemo
directory of the sources.

34

7.1. SUPPLIED PROGRAMS

Documentation Example programs
All example programs of the documentation are available. Check out the directories that end onex
in the documentation sources. There you will find all example sources.

ppumove program
ppumove is a program to make shared or static libraries from multiple units. It can be compared
with thetpumove program that comes with Turbo Pascal.

It should be distributed in binary form along with the compiler.

It’s usage is very simple:

ppumove [options] unit1.ppu unit2.ppu ... unitn.ppu

Whereoptions is a combination of

-b: If specified, ppumve will generate a batch file that will contain the external linking and archiving
commands that must be executed. The name of this batch file ispmove.sh on LINUX , and
pmove.bat otherwise.

-d xxx: If specified, the output files will put in the directoryxxx

-e xxx: Sets the extension of the moved unit files toxxx. By default, this is.ppl. You don’t have to
specify the dot.

-o xxx: sets the name of the output file, i.e. the name of the file containing all the units. This
parameter is mandatory when you use multiple files. OnLINUX , ppumove will prepend this
name withlib if it isn’t already there, and will add an extension appropriate to the type of
library.

-q: Causesppumove to operate silently.

-s: Tells ppumove to make a static library instead of a dynamic one; By default a dynamic library
is made onLINUX .

-w: Tells ppumove that it is working under WINDOWS NT. This will change the names of te linker
and archiving program toldw andarw, respectively.

-h or -?: will display a short help.

The action of the ppumve program is as follows: It takes each of the unit files, and modifies it so that
the compile will know that it should look for the unit code in the library. The new unit files will have
an extension.ppu, this can be changed with the-e option. It will then put together all the object
files of the units into one library, static or dynamic, depending on the presence of the-s option.

The name of this library must be set with the-o option. If needed, the prefixlib will be prepended
underLINUX .. The extension will be set to.a for static libraries, for shared libraries the extensions
are.so on linux, and.dll under WINDOWS NT andOS/2.

As an example, the following command

./ppumove -o both -e ppl ppu.ppu timer.ppu

under linux, will generate the following output:

35

7.1. SUPPLIED PROGRAMS

PPU-Mover Version 0.99.7
Copyright (c) 1998 by the Free Pascal Development Team

Processing ppu.ppu... Done.
Processing timer.ppu... Done.
Linking timer.o ppu.o
Done.

And it will produce the following files:

1. libboth.so : The shared library containing the code fromppu.o andtimer.o. Under WINDOWS

NT, this file would be calledboth.dll.

2. timer.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

3. ppu.ppl : The unit file that tells the Free Pascal compiler to look for the timer code in the
library.

You could then use or distribute the fileslibboth.so, timer.ppl andppu.ppl.

ptop - Pascal source beautifier
ptop program

ptop is a source beautifier written by Peter Grogono based on the ancient pretty-printer by Ledgard,
Hueras, and Singer, modernized by the Free Pascal team (objects, streams, configurability etc)

This configurability, and the thorough bottom-up design are the advantages of this program over the
diverse TurboPascal sourcebeautifiers on e.g. SIMTEL.

The program is quite simple to operate:

ptop "[-v] [-i indent] [-b bufsize][-coptsfile] infile outfile"

The Infile parameter is the pascal file to be processed, and will be written tooutfile, overwriting an
existingoutfile if it exists.

Some options modify the behaviour of ptop:

-h Writes an overview of the possible parameters and commandline syntax.

-c ptop.cfg Read some configuration data from configuration file instead of using the internal de-
faults then. A config file is not required, the program can operate without one. See also -g.

-i ident Sets the number of indent spaces used for BEGIN END; and other blocks.

-b bufsize Sets the streaming buffersize to bufsize. Default 255, 0 is considered non-valid and ig-
nored.

-v be verbose. Currently only outputs the number of lines read/written and some error messages.

-g ptop.cfg Writes a default configuration file to be edited to the file "ptop.cfg"

The ptop configuration file

Creating and distributing a configuration file for ptop is not necesarry, unless you want to modify the
standard behaviour ofptop. The configuration file is never preloaded, so if you want to use it you
should always specify it with a-c ptop.cfg parameter.

36

7.1. SUPPLIED PROGRAMS

Table 7.1: keywords for operators

Name of codeword operator
casevar : in a case label (unequal ’colon’)
becomes :=
delphicomment //
opencomment { or (*
closecomment } or *)
semicolon ;
colon :
equals =
openparen [
closeparen]
period .

The structure of a ptop configuration file is a simple buildingblock repeated several (20-30) times,
for each pascal keyword known to theptop program. (see the default configuration file orptopu.pp
source to find out which keywords are known)

The basic building block of the configuration file consists out of one or two lines, describing how
ptop should react on a certain keyword. First a line without square brackets with the following
format:

keyword=option1,option2,option3,...

If one of the options is "dindonkey" (see further below), a second line (with square brackets) is
needed like this:

[keyword]=otherkeyword1,otherkeyword2,otherkeyword3,...

As you can see the block contains two types of identifiers, keywords(keyword and otherkeyword1..3
in above example) and options, (option1..3 above).

Keywords are the built-in valid Pascal structure-identifiers like BEGIN, END, CASE, IF, THEN,
ELSE, IMPLEMENTATION. The default configuration file lists most of these.

Besides the real Pascal keywords, some other codewords are used for operators and comment expres-
sions. table (7.1)

TheOptions codewords define actions to be taken when the keyword before the equal sign is found,
table (7.2)

The option "dindonkey" requires some extra parameters, which are set by a second line for that
option (the one with the square brackets), which is therefore is only needed if the options contain
"dinkdonkey" (contraction of de-indent on assiociated keyword).

"dinkdonkey" deindents if any of the keywords specified by the extra options of the square-bracket
line is found.

Example: The lines

else=crbefore,dindonkey,inbytab,upper
[else]=if,then,else

mean the following:

• The keyword this block is about iselsebecause it’s on the LEFT side of both equal signs.

• The optioncrbefore signals not to allow other code (so just spaces) before the ELSE key-
word on the same line.

37

7.1. SUPPLIED PROGRAMS

Table 7.2: Possible options

Option does what
crsupp suppress CR before the keyword.
crbefore force CR before keyword

(doesn’t go with crsupp :))
blinbefore blank line before keyword.
dindonkey de-indent on associated keywords

(see below)
dindent deindent (always)
spbef space before
spaft space after
gobsym Print symbols which follow a

keyword but which do not
affect layout. prints until
terminators occur.
(terminators are hard-coded in pptop,
still needs changing)

inbytab indent by tab.
crafter force CR after keyword.
upper prints keyword all uppercase
lower prints keyword all lowercase
capital capitalizes keyword: 1st letter

uppercase, rest lowercase.

• The optiondindonkey de-indents if the parser finds any of the keywords in the square brack-
ets line (if,then,else)

• The optioninbytab means indent by a tab.

• The optionupper uppercase the keyword (else or Else becomes ELSE)

Try to play with the configfile step by step until you find the effect you desire. The configurability
and possibilities of ptop are quite large. E.g. I like all keywords uppercased instead of capitalized,
so I replaced all capital keywords in the default file by upper.

ptop is still development software, so it is wise to visually check the generated source and try to
compile it, to see ifptop hasn’t made any errors.

ptopu unit

The source of thePtoP program is conveniently split in two files: One is a unit containing an object
that does the actual beautifying of the source, the other is a shell built around this object so it can be
used from the command line. This design makes it possible to include the object in some program
(e.g. an IDE) and use it’s features to format code.

The object resided in thePtoPU unit, and is declared as follows

TPrettyPrinter=Object(TObject)
Indent : Integer; { How many characters to indent ? }
InS : PStream;
OutS : PStream;
DiagS : PStream;

38

7.1. SUPPLIED PROGRAMS

CfgS : PStream;
Constructor Create;
Function PrettyPrint : Boolean;

end;

Using this object is very simple. The procedure is as follows:

1. Create the object, using it’s constructor.

2. Set theIns stream. This is an open stream, from which pascal source will be read. This is a
mandatory step.

3. Set theOutS stream. This is an open stream, to which the beautified pascal source will be
written. This is a mandatory step.

4. Set theDiagS stream. Any diagnostics will be written to this stream. This step is optional. If
you don’t set this, no diagnostics are written.

5. Set theCfgs stream. A configuration is read from this stream. (see the previous section for
more information about configuration). This step is optional. If you don’t set this, a default
configuration is used.

6. Set theIndent variable. This is the number of spaces to use when indenting. Tab characters
are not used in the program. This step is optional. The indent variable is initialized to 2.

7. Call PrettyPrint . This will pretty-print the source inIns and write the result toOutS .
The function returnsTrue if no errors occurred,False otherwise.

So, a minimal procedure would be:

Procedure CleanUpCode;

var
Ins,OutS : PBufStream;
PPRinter : TPrettyPrinter;

begin
Ins:=New(PBufStream,Init(’ugly.pp’,StopenRead,TheBufSize));
OutS:=New(PBufStream,Init(’beauty.pp’,StCreate,TheBufSize));
PPrinter.Create;
PPrinter.Ins:=Ins;
PPrinter.outS:=OutS;
PPrinter.PrettyPrint;

end;

Using memory streams allows very fast formatting of code, and is perfectly suitable for editors.

rstconv program
The rstconv program converts the resource string files generates by the compiler (when you use
resource string sections) to.po files that can be understood by the GNUmsgfmt program.

Its usage is very easy; it accepts the following options:

-i file Use the specified file instead of stdin as input file. This option is optional.

-o file write output to the specified file. This option is required.

39

7.2. SUPPLIED UNITS

-f format Specifies the output format. At the moment, only one output format is supported:po for
GNU gettext.po format. It is the default format.

As an example:

rstconv -i resdemo.rst -o resdemo.po

will convert theresdemo.rst file to resdemo.po.

More information on therstconv utility can be found in the Programmers’ guide, under the chapter
about resource strings.

fpcmake
fpcmake is the Free Pascal makefile constructor program.

It reads aMakefile.fpc configuration file and converts it to aMakefile suitable for reading by GNU
make to compile your projects. It is similar in functionality to GNUautoconf or Imake for making
X projects.

fpcmake accepts filenames of makefile description files as it’s command-line arguments. For each
of these files it will create aMakefile in the same directory where the file is located, overwriting any
other existing file.

If no options are given, it just attempts to read the fileMakefile.fpc in the current directory and tries
to construct a makefile from it. any previously existingMakefile will be erased.

The format of thefpcmake configuration file is described in great detail in the appendices of the
Programmers’ guide.

7.2 Supplied units

Here we list the units that come with the Free Pascal distribution. Since there is a difference in the
supplied units per operating system, we list them separately per system. They are documented in the
Unit reference.

Units common to all platforms
The following units are common to all platform; i.e. their workings are guaranteed to be the same on
all platforms.

getopts This unit gives you theGNU getopts command-line arguments handling mechanism. It also
supports long options.

mmx This unit provides support formmxextensions in your code.

objects This unit provides basic routines for handling objects.

objpas is used for Delphi compatibility; you should never load this unit explicitly; it is automatically
loaded if you request Delphi mode.

strings This unit provides basic string handling routines for thepchar type, comparable to similar
routines in standardC libraries.

sysutils is an alternative implementation of the sysutils unit of Delphi.

typinfo Provides functions to acces Run-Time Type Information, just like Delphi.

40

file:../prog/prog.html
file:../prog/prog.html
file:../units/units.html

7.2. SUPPLIED UNITS

Under DOS
crt This unit provides basic screen handling routines. It provides the same functionality as the

Turbo PascalCRTunit.

dos This unit provides basic routines for accessing the operating systemDOS. It provides almost
the same functionality as the Turbo Pascal unit.

emu387 This unit provides support for the coprocessor emulator.

graph This unit provides basic graphics handling, with routines to draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

go32 This unit provides access to possibilities of theGO32DOS extender.

ports This unit provides access to the ports[] construct of Turbo Pascal.

printer This unit provides all you need for rudimentary access to the printer.

dos This unit provides basic routines for accessing the operating systemDOS. It emulates this
functionality by issuing calls to the Windows operating system.

crt and wincrt These units provides basic screen handling routines. They provide the same functionality as
the Turbo PascalCRTunit.

graph This unit provides basic graphics handling, with routines to draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

Windows This unit provides access to al Win32 API calls. Effort has been taken to make sure that it is
compatible to the Delphi version of this unit, so code for Delphi is easily ported to Free Pascal.

opengl provides access to the low-level opengl functions in WINDOWS.

winmouse provides access to the mouse in WINDOWS.

ole2 provides access to the OLE capabilities of WINDOWS.

winsock provides acces to the WINDOWS sockets API Winsock.

sockets is a wrapper around winsock that is compatible with theLINUX sockets layer. Using this unit
ensures that your code will run both on WINDOWS andLINUX .

Under Linux
crt This unit provides basic screen handling routines. It provides the same functionality Turbo

PascalCRTunit. It should work on any terminal which supports thevt100 escape sequences.

dos This unit provides an emulation of the same unit underDOS. It is intended primarily for
easy porting of Pascal programs fromDOS to LINUX . For good performance, however, it is
recommended to use thelinux unit.

linux This unit provides access to theLINUX operating system. It provides most file and I/O handling
routines that you may need. It implements most of the standardC library constructs that you
will find on a Unix system. If you do a lot of disk/file operations, the use of this unit is
recommended over the one you use under Dos.

printer This unit provides an interface to the standard Unix printing mechanism. It supports printing
to file and to any command you would like.

sockets This unit gives you access to sockets and TCP/IP programming.

41

7.2. SUPPLIED UNITS

graph Is an implementation of Borlandsgraph unit, which works on the Linux console. It’s imple-
mentation is as complete as on the other platforms (it shares the same code). It uses the libvga
and libvgagl graphics libraries, so you need these installed for this unit to work. Also, pro-
grams using this library need to be run as root, or setuid root, and hence are a potential security
risk.

ports This implements the variousport[] constructs. These are provided for compatibility only,
and it is not recommended to use them extensively. Programs using this construct must be run
as ruit or setuid root, and are a serious security risk on your system.

42

Chapter 8

Debugging your Programs

Free Pascal supports debug information for theGNU debuggergdb . This chapter describes shortly
how to use this feature. It doesn’t attempt to describe completely theGNU debugger, however. For
more information on the workings of theGNU debugger, see thegdb users’ guide.

Free Pascal also suportsgprof , theGNU profiler, see section 8.4 for more information on profiling.

8.1 Compiling your program with debugger support

First of all, you must be sure that the compiler is compiled with debugging support. Unfortunately,
there is no way to check this at run time, except by trying to compile a program with debugging
support.

To compile a program with debugging support, just specify the-g option on the command-line, as
follows:

ppc386 -g hello.pp

This will generate debugging information in the executable from your program. You will notice that
the size of the executable increases substantially because of this1.

Note that the above will only generate debug informationf or the code that has been generated when
compiling hello.pp. This means that if you used some units (the system unit, for instance) which
were not compiled with debugging support, no debugging support will be available for the code in
these units.

There are 2 solutions for this problem.

1. Recompile all units manually with the-g option.

2. Specify the ’build’ option (-B) when compiling with debugging support. This will recompile
all units, and insert debugging information in each of the units.

The second option may have undesirable side effects. It may be that some units aren’t found, or
compile incorrectly due to missing conditionals, etc..

If all went well, the executable now contains the necessary information with which you can debug it
usingGNU gdb .

1A good reason not to include debug information in an executable you plan to distribute.

43

8.2. USING GDBTO DEBUG YOUR PROGRAM

8.2 Usinggdb to debug your program

To use gdb to debug your program, you can start the debugger, and give it as an option thefull name
of your program:

gdb hello

Or, underDOS:

gdb hello.exe

This starts the debugger, and the debugger immediately loads your program into memory, but it
does not run the program yet. Instead, you are presented with the following (more or less) message,
followed by thegdb prompt’(gdb)’ :

GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.15.1 (i486-slackware-linux),
Copyright 1995 Free Software Foundation, Inc...
(gdb)

To start the program you can use therun command. You can optionally specify command-line
parameters, which will then be fed to your program, for example:

(gdb) run -option -anotheroption needed_argument

If your program runs without problems,gdb will inform you of this, and return the exit code of your
program. If the exit code was zero, then the message’Program exited normally’ .

If something went wrong (a segmentation fault or so),gdb will stop the execution of your program,
and inform you of this with an appropriate message. You can then use the othergdb commands to
see what happened. Alternatively, you can instructgdb to stop at a certain point in your program,
with thebreak command.

Here is a short list ofgdb commands, which you are likely to need when debugging your program:

quit Exits the debugger.

kill Stops a running program.

help Gives help on allgdb commands.

file Loads a new program into the debugger.

directory Add a new directory to the search path for source files.

Remark: My copy of gdb needs ’.’ to be added explicitly to the search path, otherwise it doesn’t find
the sources.

list Lists the program sources per 10 lines. As an option you can specify a line number or function
name.

break Sets a breakpoint at a specified line or function

awatch Sets a watch-point for an expression. A watch-point stops execution of your program when-
ever the value of an expression is either read or written.

44

8.3. CAVEATS WHEN DEBUGGING WITH GDB

for more information, see thegdb users’ guide, or use the’help’ function ingdb .

The appendix F contains a sample init file forgdb , which produces good results when debugging
Free Pascal programs.

It is also possible to useRHIDE, a text-based IDE that uses gdb. There is a version of RHIDE
available that can work together with FPC.

8.3 Caveats when debugging withgdb

There are some peculiarities of Free Pascal which you should be aware of when usinggdb . We list
the main ones here:

1. Free Pascal generates information for GDB in uppercare letters. This is a consequence of the
fact that pascal is a case insensitive language. So, when referring to a variable or function, you
need to make it’s name all uppercase.

As an example, of you want to watch the value of a loop variablecount , you should type

watch COUNT

Or if you want stop when a certain function (e.gMyFunction) is called, type

break MYFUNCTION

2. Line numbers may be off by a little. This is a bug in Free Pascal and will be fixed as soon as
possible.

3. gdb does not know sets.

4. gdb doesn’t know strings. Strings are represented ingdb as records with a length field and an
array of char contaning the string.

You can also use the following user function to print strings:

define pst
set $pos=&$arg0
set $strlen = {byte}$pos
print {char}&$arg0.st@($strlen+1)
end

document pst
Print out a Pascal string

end

If you insert it in yourgdb.ini file, you can look at a string with this function. There is a sample
gdb.ini in appendix F.

5. Objects are difficult to handle, mainly becausegdb is oriented towards C and C++. The
workaround implemented in Free Pascal is that object methods are represented as functions,
with an extra parameterthis (all lowercase !) The name of this function is a concatenation
of the object type and the function name, separated by two underscore characters.

For example, the methodTPoint.Draw would be converted toTPOINT__DRAW, and could
be stopped at with

break TPOINT__DRAW

6. Global overloaded functions confusegdb because they have the same name. Thus you cannot
set a breakpoint at an overloaded function, unless you know it’s line number, in which case
you can set a breakpoint at the starting linenumber of the function.

45

8.4. SUPPORT FOR GPROF, THE GNU PROFILER

8.4 Support for gprof , the GNU profiler

You can compile your programs with profiling support. for this, you just have to use the compiler
switch-pg . The compiler wil insert the necessary stuff for profiling.

When you have done this, you can run your program as you normally would run it.

yourexe

Whereyourexe is the name of your executable.

When your program finishes a file called gmon.out is generated. Then you can start the profiler to
see the output. You can better redirect the output to a file, becuase it could be quite a lot:

gprof yourexe > profile.log

Hint: you can use the –flat option to reduce the amount of output of gprof. It will then only output
the information about the timings

For more information on theGNU profilergprof , see its manual.

46

Chapter 9

CGI programming in Free Pascal

In these days of heavy WWW traffic on the Internet, CGI scripts have become an important topic in
computer programming. While CGI programming can be done with almost any tool you wish, most
languages aren’t designed for it. Perl may be a notable exception, but perl is an interpreted language,
the executable is quite big, and hence puts a big load on the server machine.

Because of its simple, almost intuitive, string handling and its easy syntax, Pascal is very well suited
for CGI programming. Pascal allows you to quickly produce some results, while giving you all the
tools you need for more complex programming. The basic RTL routines in principle are enough to
get the job done, but you can create, with relatively little effort, some units which can be used as a
base for more complex CGI programming.

That’s why, in this chapter, we will discuss the basics of CGI in Free Pascal. In the subsequent, we
will assume that the server for which the programs are created, are based upon the NCSAhttpd
WWW server, as the examples will be based upon the NCSA method of CGI programming1. They
have been tested with theapache server onLINUX , and thexitami server on WINDOWS NT.

The two example programs in this chapter have been tested on the command line and worked, under
the condition that no spaces were present in the name and value pairs provided to them.

There is however, a faster and generally betteruncgi unit available, you can find it on the contributed
units page of the Free Pascal web site. It uses techniques discussed here, but in a generally more
efficient way, and it also provides some extra functionality, not discussed here.

9.1 Getting your data

Your CGI program must react on data the user has filled in on the form which your web-server gave
him. The Web server takes the response on the form, and feeds it to the CGI script.

There are essentially two ways of feeding the data to the CGI script. We will discuss both.

Data coming through standard input.
The first method of getting your data is through standard input. This method is invoked when the
form uses a form submission method ofPOST. The web browser sets three environment variables
REQUEST_METHOD, CONTENT_TYPEand CONTENT_LENGTH. It feeds then the results of the
different fields through standard input to the CGI script. All the Pascal program has to do is :

• Check the value of theREQUEST_METHODenvironment variable. Thegetenv function will
1... and it’s the only WWW-server I have to my disposition at the moment.

47

9.1. GETTING YOUR DATA

retrieve this value this for you.

• Check the value of theCONTENT_TYPEenvironment variable.

• ReadCONTENT_LENGTHcharacters from standard input.read (c) with c of typechar
will take care of that.

if you know that the request method will always bePOST, and theCONTENT_TYPEwill be correct,
then you can skip the first two steps. The third step can be done easier: read characters until you
reach the end-of-file marker of standard input.

The following example shows how this can be achieved:

program cgi_post;

uses dos;

const max_data = 1000;

type datarec = record
name,value : string;
end;

var data : array[1..max_data] of datarec;
i,nrdata : longint;
c : char;
literal,aname : boolean;

begin
writeln (’Content-type: text/html’);
writeln;
if getenv(’REQUEST_METHOD’)<>’POST’ then

begin
writeln (’This script should be referenced with a METHOD of POST’);
write (’If you don’’t understand this, see this ’);
write (’< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
writeln (’/Docs/fill-out-forms/overview.html">forms overview.’);
halt(1);
end;

if getenv(’CONTENT_TYPE’)<>’application/x-www-form-urlencoded’ then
begin
writeln (’This script can only be used to decode form results’);
halt(1)
end;

nrdata:=1;
aname:=true;
while not eof(input) do

begin
literal:=false;
read(c);
if c=’\’ then

begin
literal:=true;
read(c);
end;

48

9.1. GETTING YOUR DATA

if literal or ((c<>’=’) and (c<>’&’)) then
with data[nrdata] do

if aname then name:=name+c else value:=value+c
else

begin
if c=’&’ then

begin
inc (nrdata);
aname:=true;
end

else
aname:=false;

end
end;

writeln (’<H1>Form Results :</H1>’);
writeln (’You submitted the following name/value pairs :’);
writeln (’’);
for i:=1 to nrdata do writeln (’ ’,data[i].name,’ = ’,data[i].value);
writeln (’’);
end.

While this program isn’t shorter than the C program provided as an example at NCSA, it doesn’t
need any other units. everythig is done using standard Pascal procedures2.

Note that this program has a limitation: the length of names and values is limited to 255 characters.
This is due to the fact that strings in Pascal have a maximal length of 255. It is of course easy to
redefine thedatarec record in such a way that longer values are allowed. In case you have to read
the contents of aTEXTAREAform element, this may be needed.

Data passed through an environment variable
If your form uses theGETmethod of passing it’s data, the CGI script needs to read theQUERY_STRING
environment variable to get it’s data. Since this variable can, and probably will, be more than 255
characters long, you will not be able to use normal string methods, present in pascal. Free Pas-
cal implements thepchar type, which is a pointer to a null-terminated array of characters. And,
fortunately, Free Pascal has a strings unit, which eases the use of thepchar type.

The following example illustrates what to do in case of a method ofGET

program cgi_get;

uses strings,linux;

const max_data = 1000;

type datarec = record
name,value : string;
end;

var data : array[1..max_data] of datarec;
i,nrdata : longint;
p : PChar;

2actually, this program will give faulty results, since spaces in the input are converted to plus signs by the web browser.
The program doesn’t check for this, but that is easy to change. The main concern here is to give the working principle.

49

file:../strings/strings.html

9.1. GETTING YOUR DATA

literal,aname : boolean;

begin
Writeln (’Content-type: text/html’);
Writeln;
if StrComp(GetEnv(’REQUEST_METHOD’),’POST’)<>0 then

begin
Writeln (’This script should be referenced with a METHOD of GET’);
write (’If you don’’t understand this, see this ’);
write (’< A HREF="http://www.ncsa.uiuc.edu/SDG/Softare/Mosaic’);
Writeln (’/Docs/fill-out-forms/overview.html">forms overview.’);
halt(1);
end;

p:=GetEnv(’QUERY_STRING’);
nrdata:=1;
aname:=true;
while p^<>#0 do

begin
literal:=false;
if p^=’\’ then

begin
literal:=true;
inc(longint(p));
end;

if ((p^<>’=’) and (p^<>’&’)) or literal then
with data[nrdata] do

if aname then name:=name+p^ else value:=value+p^
else

begin
if p^=’&’ then

begin
inc (nrdata);
aname:=true;
end

else
aname:=false;

end;
inc(longint(p));
end;

Writeln (’<H1>Form Results :</H1>’);
Writeln (’You submitted the following name/value pairs :’);
Writeln (’’);
for i:=1 to nrdata do writeln (’ ’,data[i].name,’ = ’,data[i].value);
Writeln (’’);
end.

Although it may not be written in the most elegant way, this program does the same thing as the
previous one. It also suffers from the same drawback, namely the limited length of thevalue field
of thedatarec .

This drawback can be remedied by redefiningdatarec as follows:

type datarec = record;
name,value : pchar;

end;

50

9.2. PRODUCING OUTPUT

and assigning at run time enough space to keep the contents of the value field. This can be done with
a

getmem (data[nrdata].value,needed_number_of_bytes);

call. After that you can do a

strlcopy (data[nrdata].value,p,needed_number_of_bytes);

to copy the data into place.

You may have noticed the following unorthodox call :

inc(longint(p));

Free Pascal doesn’t give you pointer arithmetic as in C. However,longints andpointers have
the same length (namely 4 bytes). Doing a type-cast to alongint allows you to do arithmetic on
thepointer .

Note however, that this is a non-portable call. This may work on the I386 processor, but not on a
ALPHA processor (where a pointer is 8 bytes long). This will be remedied in future releases of Free
Pascal.

9.2 Producing output

The previous section concentrated mostly on getting input from the web server. To send the reply to
the server, you don’t need to do anything special.You just print your data on standard output, and the
Web-server will intercept this, and send your output to the WWW-client waiting for it.

You can print anything you want, the only thing you must take care of is that you supply aContents-
type line, followed by an empty line, as follows:

Writeln (’Content-type: text/html’);
Writeln;
{ ...start output of the form... }

And that’s all there is to it !

9.3 I’m under Windows, what now ?

Under Windows the system of writing CGI scripts can be totally different. If you use Free Pascal
under Windows then you also should be able to do CGI programming, but the above instructions may
not work. They are known to work for thexitami server, however.

If some kind soul is willing to write a section on CGI programming under Windows for other servers,
I’d be willing to include it here.

51

Appendix A

Alphabetical listing of command-line
options

The following is alphabetical listing of all command-line options, as generated by the compiler:

ppc386 [options] <inputfile> [options]
put + after a boolean switch option to enable it, - to disable it

-a the compiler doesn’t delete the generated assembler file
-al list sourcecode lines in assembler file
-ar list register allocation/release info in assem-

bler file
-at list temp allocation/release info in assembler file

-b generate browser info
-bl generate local symbol info

-B build all modules
-C<x> code generation options:

-CD create dynamic library
-Ch<n> <n> bytes heap (between 1023 and 67107840)
-Ci IO-checking
-Cn omit linking stage
-Co check overflow of integer operations
-Cr range checking
-Cs<n> set stack size to <n>
-Ct stack checking
-CD create also dynamic library (* doesn’t work yet *)
-CX create also smartlinked library

-d<x> defines the symbol <x>
-e<x> set path to executable
-E same as -Cn
-F<x> set file names and paths:

-FD<x> sets the directory where to search for compiler utilities
-Fe<x> redirect error output to <x>
-FE<x> set exe/unit output path to <x>
-Fi<x> adds <x> to include path
-Fl<x> adds <x> to library path
-FL<x> uses <x> as dynamic linker
-Fo<x> adds <x> to object path
-Fr<x> load error message file <x>
-Fu<x> adds <x> to unit path

52

-FU<x> set unit output path to <x>, overrides -FE
-g<x> generate debugger information:

-gg use gsym
-gd use dbx
-gh use heap trace unit
-gc generate checks for pointers

-i information
-iD return compiler date
-iV return compiler version
-iSO return compiler OS
-iSP return compiler processor
-iTO return target OS
-iTP return target processor

-I<x> adds <x> to include path
-k<x> Pass <x> to the linker
-l write logo
-n don’t read the default config file
-o<x> change the name of the executable produced to <x>
-pg generate profile code for gprof (defines FPC_PROFILE)
-P use pipes instead of creating temporary assembler files
-S<x> syntax options:

-S2 switch some Delphi 2 extensions on
-Sc supports operators like C (*=,+=,/= and -=)
-Sd tries to be Delphi compatible
-Se<x> compiler stops after the <x> errors (default is 1)
-Sg allow LABEL and GOTO
-Sh Use ansistrings
-Si support C++ styled INLINE
-Sm support macros like C (global)
-So tries to be TP/BP 7.0 compatible
-Sp tries to be gpc compatible
-Ss constructor name must be init (destructor must be done)
-St allow static keyword in objects

-s don’t call assembler and linker (only with -a)
-u<x> undefines the symbol <x>
-U unit options:

-Un don’t check the unit name
-Us compile a system unit

-v<x> Be verbose. <x> is a combination of the following letters:
e : Show errors (default) d : Show debug info
w : Show warnings u : Show unit info
n : Show notes t : Show tried/used files
h : Show hints m : Show defined macros
i : Show general info p : Show compiled procedures
l : Show linenumbers c : Show conditionals
a : Show everything 0 : Show nothing (except errors)
b : Show all procedure r : Rhide/GCC compatibil-

ity mode
declarations if an error x : Executable info (Win32 only)
occurs

-X executable options:
-Xc link with the c library
-Xs strip all symbols from executable
-XD try to link dynamic (defines FPC_LINK_DYNAMIC)

53

-XS try to link static (default) (defines FPC_LINK_STATIC)
-XX try to link smart (defines FPC_LINK_SMART)

Processor specific options:
-A<x> output format:

-Aas assemble using GNU AS
-Aasaout assemble using GNU AS for aout (Go32v1)
-Anasmcoff coff (Go32v2) file using Nasm
-Anasmelf elf32 (Linux) file using Nasm
-Anasmobj obj file using Nasm
-Amasm obj file using Masm (Microsoft)
-Atasm obj file using Tasm (Borland)
-Acoff coff (Go32v2) using internal writer
-Apecoff pecoff (Win32) using internal writer

-R<x> assembler reading style:
-Ratt read AT&T style assembler
-Rintel read Intel style assembler
-Rdirect copy assembler text directly to assembler file

-O<x> optimizations:
-Og generate smaller code
-OG generate faster code (default)
-Or keep certain variables in registers (still BUGGY!!!)
-Ou enable uncertain optimizations (see docs)
-O1 level 1 optimizations (quick optimizations)
-O2 level 2 optimizations (-O1 + slower optimizations)
-O3 level 3 optimizations (same as -O2u)
-Op<x> target processor:

-Op1 set target processor to 386/486
-Op2 set target processor to Pentium/PentiumMMX (tm)
-Op3 set target processor to PPro/PII/c6x86/K6 (tm)

-T<x> Target operating system:
-TGO32V1 version 1 of DJ Delorie DOS extender
-TGO32V2 version 2 of DJ Delorie DOS extender
-TLINUX Linux
-TOS2 OS/2 2.x
-TWin32 Windows 32 Bit

-WB<x> Set Image base to Hexadecimal <x> value
-WC Specify console type application
-WD Use DEFFILE to export functions of DLL or EXE
-WG Specify graphic type application
-WN Do not generate relocation code (necessary for debugging)
-WR Generate relocation code

-? shows this help
-h shows this help without waiting

54

Appendix B

Alphabetical list of reserved words

absolute
abstract
and
array
as
asm
assembler
begin
break
case
cdecl
class
const
constructor
continue
destructor
dispose
div
do
downto
else
end
except
exit
export
exports
external
fail
false
far

file
finally
for
forward
function
goto
if
implementation
in
index
inherited
initialization
inline
interface
interrupt
is
label
library
mod
name
near
new
nil
not
object
of
on
operator
or
otherwise

packed
popstack
private
procedure
program
property
protected
public
raise
record
repeat
self
set
shl
shr
stdcall
string
then
to
true
try
type
unit
until
uses
var
virtual
while
with
xor

55

Appendix C

Compiler messages

This appendix is meant to list all the compiler messages. The list of messages is generated from he
compiler source itself, and should be faitly complete. At this point, only assembler errors are not in
the list.

C.1 General compiler messages

This section gives the compiler messages which are not fatal, but which display useful information.
The number of such messages can be controlled with the various verbosity level-v switches.

Compiler: arg1 When the-vt switch is used, this line tells you what compiler is used.

Compiler OS: arg1 When the-vd switch is used, this line tells you what the source operating
system is.

Info: Target OS: arg1 When the-vd switch is used, this line tells you what the target operating
system is.

Using executable path: arg1When the-vt switch is used, this line tells you where the compiler
looks for it’s binaries.

Using unit path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for compiled units. You can set this path with the-Fu

Using include path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for it’s include files (files used in{$I xxx} statements). You can set this path with the-I
option.

Using library path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for the libraries. You can set this path with the-Fl option.

Using object path: arg1 When the-vt switch is used, this line tells you where the compiler looks
for object files you link in (files used in{$L xxx} statements). You can set this path with the
-Fo option.

Info: arg1 Lines compiled, arg2 secWhen the-vi switch is used, the compiler reports the number
of lines compiled, and the time it took to compile them (real time, not program time).

Fatal: No memory left The compiler doesn’t have enough memory to compile your program. There
are several remedies for this:

56

C.2. SCANNER MESSAGES.

• If you’re using the build option of the compiler, try compiling the different units manu-
ally.

• If you’re compiling a huge program, split it up in units, and compile these separately.

• If the previous two don’t work, recompile the compiler with a bigger heap (you can use
the-Ch option for this, See 5.1)

C.2 Scanner messages.

This section lists the messages that the scanner emits. The scanner takes care of the lexical structure
of the pascal file, i.e. it tries to find reserved words, strings, etc. It also takes care of directives and
conditional compiling handling.

Fatal: Unexpected end of file this typically happens in one of the following cases :

• The source file ends before the finalend. statement. This happens mostly when the
begin andend statements aren’t balanced;

• An include file ends in the middle of a statement.

• A comment wasn’t closed.

Fatal: String exceeds lineYou forgot probably to include the closing ’ in a string, so it occupies
multiple lines.

Fatal: illegal character An illegal character was encountered in the input file.

Fatal: Syntax error, arg1 expected but arg2 found This indicates that the compiler expected a dif-
ferent token than the one you typed. It can occur almost everywhere where you make a mistake
against the pascal language.

Start reading includefile arg1 When you provide the-vt switch, the compiler tells you when it
starts reading an included file.

Warning: Comment level arg1 found When the-vw switch is used, then the compiler warns you
if it finds nested comments. Nested comments are not allowed in Turbo Pascal and can be a
possible source of errors.

Note: directive (FAR) ignored TheFARdirective is a 16-bit construction which is recorgnised but
ignored by the compiler, since it produces 32 bit code.

Note: Stack check is global under Linux Stack checking with the-Cs switch is ignored under
LINUX , sinceLINUX does this for you. Only displayed when-vn is used.

Note: Ignored compiler switch arg1 With -vn on, the compiler warns if it ignores a switch

Warning: Illegal compiler switch arg1 You included a compiler switch (i.e.{$... }) which
the compiler doesn’t know.

Warning: This compiler switch has a global effect When -vw is used, the compiler warns if a
switch is global.

Error: Illegal char constant This happens when you specify a character with its ASCII code, as in
#96 , but the number is either illegal, or out of range. The range is 1-255.

Fatal: Can’t open file arg1 Free Pascal cannot find the program or unit source file you specified on
the command line.

57

C.2. SCANNER MESSAGES.

Fatal: Can’t open include file arg1 Free Pascal cannot find the source file you specified in a{$in-
clude ..} statement.

Error: Too many argENDIFs or argELSEs Your {$IFDEF ..} and {$ENDIF} statements aren’t
balanced.

Warning: Records fields can be aligned to 1,2,4 or 16 bytes onlyYou are specifying the{$PACK-
RECORDS n} with an illegal value forn. Only 1,2,4 or 16 are valid in this case.

Warning: Enumerated can be saved in 1,2 or 4 bytes onlyYou are specifying the{$PACKENUM
n} with an illegal value forn. Only 1,2 or 4 are valid in this case.

Error: arg1 expected for arg2 defined in line arg3 Your conditional compilation statements are
unbalanced.

Error: Syntax error while parsing a conditional compiling expression There is an error in the
expression following the{$if ..} compiler directive.

Error: Evaluating a conditional compiling expression There is an error in the expression follow-
ing the{$if ..} compiler directive.

Warning: Macro contents is cut after char 255 to evalute expressionThe contents of macros canno
be longer than 255 characters. This is a safety in the compiler, to prevent buffer overflows. This
is shown as a warning, i.e. when the-vw switch is used.

Error: ENDIF without IF(N)DEF Your {$IFDEF ..} and {$ENDIF} statements aren’t balanced.

Fatal: User defined: arg1 A user defined fatal error occurred. see also the Programmers’ guide

Error: User defined: arg1 A user defined error occurred. see also the Programmers’ guide

Warning: User defined: arg1 A user defined warning occurred. see also the Programmers’ guide

Note: User defined: arg1 A user defined note was encountered. see also the Programmers’ guide

Hint: User defined: arg1 A user defined hint was encountered. see also the Programmers’ guide

Info: User defined: arg1 User defined information was encountered. see also the Programmers’
guide

Error: Keyword redefined as macro has no effect You cannot redefine keywords with macros.

Fatal: Macro buffer overflow while reading or expanding a macro Your macro or it’s result was
too long for the compiler.

Warning: Extension of macros exceeds a deep of 16.When expanding a macro macros have been
nested to a level of 16. The compiler will expand no further, since this may be a sign that
recursion is used.

Error: compiler switches aren’t allowed in (* ... *) styled comments Compiler switches should al-
ways be between{ } comment delimiters.

Handling switch "arg1" When you set debugging info on (-vd) the compiler tells you when it is
evaluating conditional compile statements.

ENDIF arg1 found When you turn on conditional messages(-vc), the compiler tells you where it
encounters conditional statements.

IFDEF arg1 found, arg2 When you turn on conditional messages(-vc), the compiler tells you
where it encounters conditional statements.

58

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

C.3. PARSER MESSAGES

IFOPT arg1 found, arg2 When you turn on conditional messages(-vc), the compiler tells you
where it encounters conditional statements.

IF arg1 found, arg2 When you turn on conditional messages(-vc), the compiler tells you where it
encounters conditional statements.

IFNDEF arg1 found, arg2 When you turn on conditional messages(-vc), the compiler tells you
where it encounters conditional statements.

ELSE arg1 found, arg2 When you turn on conditional messages(-vc), the compiler tells you where
it encounters conditional statements.

Skipping until... When you turn on conditional messages(-vc), the compiler tells you where it
encounters conditional statements, and whether it is skipping or compiling parts.

Info: Press <return> to continue When the-vi switch is used, the compiler stops compilation
and waits for theEnter key to be pressed when it encounters a{$STOP} directive.

Warning: Unsupported switch arg1 When warings are turned on (-vw) the compiler warns you
about unsupported switches. This means that the switch is used in Delphi or Turbo Pascal, but
not in Free Pascal

Warning: Illegal compiler directive arg1 When warings are turned on (-vw) the compiler warns
you about unrecognised switches. For a list of recognised switches, Programmers’ guide

Back in arg1 When you use (-vt) the compiler tells you when it has finished reading an include
file.

Warning: Unsupported application type: arg1 You get this warning, ff you specify an unknown
application type with the directive{$APPTYPE}

Warning: APPTYPE isn’t support by the target OS The{$APPTYPE} directive is supported by
win32 applications only.

Warning: Unsupported assembler style specified arg1When you specify an assembler mode with
the{$ASMMODE xxx} the compiler didn’t recognize the mode you specified.

Warning: ASM reader switch is not possible inside asm statement, arg1 will be effective only for next
It is not possible to switch from one assembler reader to another inside an assmebler block.
The new reader will be used for next assembler statement only.

Error: Wrong switch toggle, use ON/OFF or +/- You need to use ON or OFF or a + or - to toggle
the switch

Error: Resource files are not supported for this target The target you are compiling for doesn’t
support Resource files. The only target which can use resource files is Win32

C.3 Parser messages

This section lists all parser messages. The parser takes care of the semantics of you language, i.e. it
determines if your pascal constructs are correct.

Error: Parser - Syntax Error An error against the Turbo Pascal language was encountered. This
happens typically when an illegal character is found in the sources file.

Warning: Procedure type FAR ignored This is a warning.FAR is a construct for 8 or 16 bit pro-
grams. Since the compile generates 32 bit programs, it ignores this directive.

59

file:../prog/prog.html

C.3. PARSER MESSAGES

Warning: Procedure type NEAR ignored This is a warning.NEARis a construct for 8 or 16 bit
programs. Since the compile generates 32 bit programs, it ignores this directive.

Warning: Procedure type REGISTER ignored This is a warning.REGISTERis ignored by FPC
programs for now. This is introduced first for Delphi compatibility.

Error: No DLL File specified No longer in use.

Error: Duplicate exported function name arg1 Exported function names inside a specific DLL
must all be different

Error: Duplicate exported function index arg1 Exported function names inside a specific DLL
must all be different

Error: Invalid index for exported function DLL function index must be in the range1..$FFFF

Error: Constructor name must be INIT You are declaring a constructor with a name which isn’t
init , and the-Ss switch is in effect. See the-Ss switch (See 5.1).

Error: Destructor name must be DONE You are declaring a constructor with a name which isn’t
done , and the-Ss switch is in effect. See the-Ss switch (See 5.1).

Error: Illegal open parameter You are trying to use the wrong type for an open parameter.

Error: Procedure type INLINE not supported You tried to compile a program with C++ style
inlining, and forgot to specify the-Si option (See 5.1). The compiler doesn’t support C++
styled inlining by default.

Warning: Private methods shouldn’t be VIRTUAL You declared a method in the private part of
a object (class) asvirtual . This is not allowed. Private methods cannot be overridden
anyway.

Warning: Constructor should be public Constructors must be in the ’public’ part of an object
(class) declaration.

Warning: Destructor should be public Destructors must be in the ’public’ part of an object (class)
declaration.

Note: Class should have one destructor onlyYou can declare only one destructor for a class.

Error: Local class definitions are not allowed Classes must be defined globally. They cannot be
defined inside a procedure or function

Fatal: Anonym class definitions are not allowedAn invalid object (class) declaration was encoun-
tered, i.e. an object or class without methods that isn’t derived from another object or class.
For example:

Type o = object
a : longint;
end;

will trigger this error.

Error: The object arg1 has no VMT

Error: Illegal parameter list You are calling a function with parameters that are of a different type
than the declared parameters of the function.

Error: Wrong parameter type specified for arg no. arg1 There is an error in the parameter list of
the function or procedure. The compiler cannot determine the error more accurate than this.

60

C.3. PARSER MESSAGES

Error: Wrong amount of parameters specified There is an error in the parameter list of the func-
tion or procedure, the number of parameters is not correct.

Error: overloaded identifier arg1 isn’t a function The compiler encountered a symbol with the
same name as an overloaded function, but it isn’t a function it can overload.

Error: overloaded functions have the same parameter listYou’re declaring overloaded functions,
but with the same parameter list. Overloaded function must have at least 1 different parameter
in their declaration.

Error: function header doesn’t match the forward declaration arg1 You declared a function with
same parameters but different result type or function specifiers.

Error: function header arg1 doesn’t match forward : var name changes arg2 => arg3You de-
clared the function in theinterface part, or with theforward directive, but define it with
a different parameter list.

Note: Values in enumeration types have to be ascendingFree Pascal allows enumeration construc-
tions as in C. Given the following declaration two declarations:

type a = (A_A,A_B,A_E:=6,A_UAS:=200);
type a = (A_A,A_B,A_E:=6,A_UAS:=4);

The second declaration would produce an error.A_UASneeds to have a value higher than
A_E, i.e. at least 7.

Note: Interface and implementation names are different arg1 => arg2This note warns you if the
implementation and interface names of a functions are different, but they have the same man-
gled name. This is important when using overloaded functions (but should produce no error).

Error: With can not be used for variables in a different segment With stores a variable locally
on the stack, but this is not possible if the variable belongs to another segment.

Error: function nesting > 31 You can nest function definitions only 31 times.

Error: range check error while evaluating constants The constants are out of their allowed range.

Warning: range check error while evaluating constants The constants are out of their allowed
range.

Error: duplicate case label You are specifying the same label 2 times in acase statement.

Error: Upper bound of case range is less than lower boundThe upper bound of acase label is
less than the lower bound and this is useless

Error: typed constants of classes are not allowedYou cannot declare a constant of type class or
object.

Error: functions variables of overloaded functions are not allowed You are trying to assign an
overloaded function to a procedural variable. This isn’t allowed.

Error: string length must be a value from 1 to 255 The length of a string in Pascal is limited to
255 characters. You are trying to declare a string with length lower than 1 or greater than 255
(This is not true forLongstrings andAnsiStrings .

Warning: use extended syntax of NEW and DISPOSE for instances of objectsIf you have a pointer
a to a class type, then the statementnew(a) will not initialize the class (i.e. the constructor
isn’t called), although space will be allocated. you should issue thenew(a,init) statement.
This will allocate space, and call the constructor of the class.

61

C.3. PARSER MESSAGES

Warning: use of NEW or DISPOSE for untyped pointers is meaningless

Error: use of NEW or DISPOSE is not possible for untyped pointers You cannot usenew(p)
or dispose(p) if p is an untyped pointer because no size is associated to an untyped pointer.
Accepted for compatibility intp anddelphi modes.

Error: class identifier expected This happens when the compiler scans a procedure declaration that
contains a dot, i.e., a object or class method, but the type in front of the dot is not a known
type.

Error: type identifier not allowed here You cannot use a type inside an expression.

Error: method identifier expected This identifier is not a method. This happens when the com-
piler scans a procedure declaration that contains a dot, i.e., a object or class method, but the
procedure name is not a procedure of this type.

Error: function header doesn’t match any method of this classThis identifier is not a method.
This happens when the compiler scans a procedure declaration that contains a dot, i.e., a object
or class method, but the procedure name is not a procedure of this type.

procedure/function arg1 When using the-vp switch, the compiler tells you when it starts process-
ing a procedure or function implementation.

Error: Illegal floating point constant The compiler expects a floating point expression, and gets
something else.

Error: FAIL can be used in constructors only You are using theFAIL instruction outside a con-
structor method.

Error: Destructors can’t have parameters You are declaring a destructor with a parameter list.
Destructor methods cannot have parameters.

Error: Only class methods can be referred with class referencesThis error occurs in a situation
like the following:

Type :
Tclass = Class of Tobject;

Var C : TClass;

begin
...
C.free

Free is not a class method and hence cannot be called with a class reference.

Error: Only class methods can be accessed in class methodsThis is related to the previous error.
You cannot call a method of an object from a inside a class method. The following code would
produce this error:

class procedure tobject.x;

begin
free

Because free is a normal method of a class it cannot be called from a class method.

62

C.3. PARSER MESSAGES

Error: Constant and CASE types do not match One of the labels is not of the same type as the
case variable.

Error: The symbol can’t be exported from a library You can only export procedures and func-
tions when you write a library. You cannot export variables or constants.

Warning: An inherited method is hidden by arg1 A method that is declaredvirtual in a par-
ent class, should be overridden in the descendent class with theoverride directive. If you
don’t specify theoverride directive, you will hide the parent method; you will not override
it.

Error: There is no method in an ancestor class to be overridden: arg1You try to override a
virtual method of a parent class that doesn’t exist.

Error: No member is provided to access property You specified noread directive for a prop-
erty.

Warning: Stored prorperty directive is not yet implemented Thestored directive is not yet im-
plemented

Error: Illegal symbol for property access There is an error in theread or write directives for
an array property. When you declare an array property, you can only access it with procedures
and functions. The following code woud cause such an error.

tmyobject = class
i : integer;
property x [i : integer]: integer read I write i;

Error: Cannot access a protected field of an object hereFields that are declared in aprotected
section of an object or class declaration cannot be accessed outside the module wher the object
is defined, or outside descendent object methods.

Error: Cannot access a private field of an object hereFields that are declared in aprivate sec-
tion of an object or class declaration cannot be accessed outside the module where the class is
defined.

Warning: overloaded method of virtual method should be virtual: arg1 If you declare overloaded
methods in a class, then they should either all be virtual, or none. You shouldn’t mix them.

Warning: overloaded method of non-virtual method should be non-virtual: arg1 If you declare
overloaded methods in a class, then they should either all be virtual, or none. You shouldn’t
mix them.

Error: overloaded methods which are virtual must have the same return type: arg1 If you de-
clare virtual overloaded methods in a class definition, they must have the same return type.

Error: EXPORT declared functions can’t be nested You cannot declare a function or procedure
within a function or procedure that was declared as an export procedure.

Error: methods can’t be EXPORTed You cannot declare a procedure that is a method for an ob-
ject asexport ed. That is, your methods cannot be called from a C program.

Error: call by var parameters have to match exactly When calling a function declared withvar
parameters, the variables in the function call must be of exactly the same type. There is no
automatic type conversion.

Error: Class isn’t a parent class of the current class When calling inherited methods, you are try-
ing to call a method of a strange class. You can only call an inherited method of a parent class.

63

C.3. PARSER MESSAGES

Error: SELF is only allowed in methods You are trying to use theself parameter outside an ob-
ject’s method. Only methods get passed theself parameters.

Error: methods can be only in other methods called direct with type identifier of the classA con-
struction likesometype.somemethod is only allowed in a method.

Error: Illegal use of ’:’ You are using the format: (colon) 2 times on an expression that is not a
real expression.

Error: range check error in set constructor or duplicate set element The declaration of a set con-
tains an error. Either one of the elements is outside the range of the set type, either two of the
elements are in fact the same.

Error: Pointer to object expected You specified an illegal type in aNewstatement. The extended
synax ofNewneeds an object as a parameter.

Error: Expression must be constructor call When using the extended syntax ofnew, you must
specify the constructor method of the object you are trying to create. The procedure you
specified is not a constructor.

Error: Expression must be destructor call When using the extended syntax ofdispose , you
must specify the destructor method of the object you are trying to dispose of. The procedure
you specified is not a destructor.

Error: Illegal order of record elements When declaring a constant record, you specified the fields
in the wrong order.

Error: Expression type must be class or record typeA with statement needs an argument that
is of the typerecord or class . You are usingwith on an expression that is not of this
type.

Error: Procedures can’t return a value In Free Pascal, you can specify a return value for a func-
tion when using theexit statement. This error occurs when you try to do this with a proce-
dure. Procedures cannot return a value.

Error: constructors and destructors must be methods You’re declaring a procedure as destructor
or constructor, when the procedure isn’t a class method.

Error: Operator is not overloaded You’re trying to use an overloaded operator when it isn’t over-
loaded for this type.

Error: Re-raise isn’t possible there You are trying to raise an exception where it isn’t allowed.
You can only raise exceptions in anexcept block.

Error: The extended syntax of new or dispose isn’t allowed for a classYou cannot generate an
instance of a class with the extended syntax ofnew. The constructor must be used for that. For
the same reason, you cannot callDispose to de-allocate an instance of a class, the destructor
must be used for that.

Error: Assembler incompatible with function return type You’re trying to implement aassem-
bler function, but the return type of the function doesn’t allow that.

Error: Procedure overloading is switched off When using the-So switch, procedure overloading
is switched off. Turbo Pascal does not support function overloading.

Error: It is not possible to overload this operator (overload = instead) You are trying to overload
an operator which cannot be overloaded. The following operators can be overloaded :

+, -, *, /, =, >, <, <=, >=, is, as, in, **, :=

64

C.3. PARSER MESSAGES

Error: Comparative operator must return a boolean value When overloading the= operator, the
function must return a boolean value.

Error: Only virtual methods can be abstract You are declaring a method as abstract, when it isn’t
declared to be virtual.

Fatal: Use of unsupported feature! You’re trying to force the compiler into doing something it
cannot do yet.

Error: The mix of CLASSES and OBJECTS isn’t allowed You cannot deriveobjects andclasses
intertwined . That is, a class cannot have an object as parent and vice versa.

Warning: Unknown procedure directive had to be ignored: arg1 The procedure direcive you se-
cified is unknown. Recognised procedure directives arecdecl , stdcall , popstack ,
pascal register , export .

Error: absolute can only be associated to ONE variableYou cannot specify more than one vari-
able before theabsolute directive. Thus, the following construct will provide this error:

Var Z : Longint;
X,Y : Longint absolute Z;

absolute can only be associated a var or constThe address of aabsolute directive can only
point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: absolute can only be associated a var or constThe address of aabsolute directive can
only point to a variable or constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: Only ONE variable can be initialized You cannot specify more than one variable with a
initial value in Delphi syntax.

Error: Abstract methods shouldn’t have any definition (with function body) Abstract methods can
only be declared, you cannot implement them. They should be overridden by a descendant
class.

Error: This overloaded function can’t be local (must be exported) You are defining a overloaded
function in the implementation part of a unit, but there is no corresponding declaration in the
interface part of the unit.

Warning: Virtual methods are used without a constructor in arg1 If you declare objects or classes
that contain virtual methods, you need to have a constructor and destructor to initialize them.
The compiler encountered an object or class with virtual methods that doesn’t have a construc-
tor/destructor pair.

Macro defined: arg1 When-vm is used, the compiler tells you when it defines macros.

Macro undefined: arg1 When-vm is used, the compiler tells you when it undefines macros.

65

C.3. PARSER MESSAGES

Macro arg1 set to arg2 When-vm is used, the compiler tells you what values macros get.

Info: Compiling arg1 When you turn on information messages (-vi), the compiler tells you what
units it is recompiling.

Compiling arg1 for the second time When you request debug messages (-vd) the compiler tells
you what units it recompiles for the second time.

Error: Array properties aren’t allowed at this point You cannot use array properties at that point.a

Error: No property found to override You want to overrride a property of a parent class, when
there is, in fact, no such property in the parent class.

Error: Only one default property is allowed, found inherited default property in class arg1 You
specified a property asDefault , but a parent class already has a default property, and a class
can have only one default property.

Error: The default property must be an array property Only array properties of classes can be
madedefault properties.

Error: Virtual constructors are only supported in class object model You cannot have virtual con-
structors in objects. You can only have them in classes.

Error: No default property available You try to access a default property of a class, but this class
(or one of it’s ancestors) doesn’t have a default property.

Error: The class can’t have a published section, use the argM+ switchIf you want apublished
section in a class definition, you must use the{$M+} switch, whch turns on generation of type
information.

Error: Forward declaration of class arg1 must be resolved here to use the class as ancestorTo
be able to use an object as an ancestor object, it must be defined first. This error occurs in the
following situation:

Type ParentClas = Class;
ChildClass = Class(ParentClass)

...
end;

WhereParentClass is declared but not defined.

Error: Local operators not supported You cannot overload locally, i.e. inside procedures or func-
tion definitions.

Error: Procedure directive arg1 not allowed in interface section This procedure directive is not
allowed in theinterface section of a unit. You can only use it in theimplementation
section.

Error: Procedure directive arg1 not allowed in implementation section This procedure directive
is not defined in theimplementation section of a unit. You can only use it in theinter-
face section.

Error: Procedure directive arg1 not allowed in procvar declaration This procedure directive can-
not be part of a procedural of function type declaration.

Error: Function is already declared Public/Forward arg1 You will get this error if a function is
defined asforward twice. Or it is once in theinterface section, and once as aforward
declaration in theimplmentation section.

66

C.3. PARSER MESSAGES

Error: Can’t use both EXPORT and EXTERNAL These two procedure directives are mutually
exclusive

Error: NAME keyword expected The definition of an external variable needs aname clause.

Warning: arg1 not yet supported inside inline procedure/function Inline procedures don’t sup-
port this declaration.

Warning: Inlining disabled Inlining of procedures is disabled.

Info: Writing Browser log arg1 When information messages are on, the compiler warns you when
it writes the browser log (generated with the{$Y+ } switch).

Hint: may be pointer dereference is missingThe compiler thinks that a pointer may need a deref-
erence.

Fatal: Selected assembler reader not supportedThe selected assembler reader (with{$ASMMODE
xxx} is not supported. The compiler can be compiled with or without support for a particular
assembler reader.

Error: Procedure directive arg1 has conflicts with other directives You specified a procedure di-
rective that conflicts with other directives. for instancecdecl and pascal are mutually
exclusive.

Error: Calling convention doesn’t match forward This error happens when you declare a func-
tion or procedure with e.g.cdecl; but omit this directive in the implementation, or vice
versa. The calling convention is part of the function declaration, and must be repeated in the
function definition.

Error: Register calling (fastcall) not supported Theregister calling convention, i.e., arguments
are passed in registers instead of on the stack is not supported. Arguments are always passed
on the stack.

Error: Property can’t have a default value Set properties or indexed properties cannot have a de-
fault value.

Error: The default value of a property must be constant The value of adefault declared prop-
erty must be knwon at compile time. The value you specified is only known at run time. This
happens .e.g. if you specify a variable name as a default value.

Error: Symbol can’t be published, can be only a classOnly class type variables can be in apub-
lished section of a class if they are not declared as a property.

Error: That kind of property can’t be published Properties in apublished section cannot be
array properties. they must be moved to public sections. Properties in apublished section
must be an ordinal type, a real type, strings or sets.

Warning: Empty import name specified Both index and name for the import are 0 or empty

Warning: Empty import name specified Some targets need a name for the imported procedure or
a cdecl specifier

Error: Function internal name changed after use of function

Error: Division by zero There is a divsion by zero encounted

Error: Invalid floating point operation An operation on two real type values produced an over-
flow or a division by zero.

Error: Upper bound of range is less than lower bound The upper bound of acase label is less
than the lower bound and this is not possible

67

C.4. TYPE CHECKING ERRORS

Error: string length is larger than array of char length The size of the constant string is larger
than the size you specified in the array[x..y] of char definition

Error: Illegal expression after message directiveFree Pascal supports only integer or string val-
ues as message constants

Error: Message handlers can take only one call by ref. parameterA method declared with the
message -directive as message handler can take only one parameter which must be declared
as call by reference Parameters are declared as call by reference using thevar -directive

Error: Duplicate message label: arg1 A label for a message is used twice in one object/class

Error: Self can be only an explicit parameter in message handlersThe self parameter can be passed
only explicit if it is a method which is declared as message method handler

Error: Threadvars can be only static or global Threadvars must be static or global, you can’t de-
clare a thread local to a procedure. Local variables are always local to a thread, because every
thread has it’s own stack and local variables are stored on the stack

Fatal: Direct assembler not supported for binary output format You can’t use direct assembler
when using a binary writer, choose an other outputformat or use an other assembler reader

Warning: Don’t load OBJPAS unit manual, use argmode objfpc or argmode delphi insteadYou’re
trying to load the ObjPas unit manual from a uses clause. This is not a good idea to do, you
can better use the{$mode objfpc} or {$mode delphi} directives which load the unit
automaticly

Error: OVERRIDE can’t be used in objects Override isn’t support for objects, use VIRTUAL in-
stead to override a method of an anchestor object

Error: Data types which requires initialization/finalization can’t be used in variant records Some
data type (e.g.ansistring) needs initialization/finalization code which is implicitly gener-
ated by the compiler. Such data types can’t be used in the variant part of a record.

C.4 Type checking errors

This section lists all errors that can occur when type checking is performed.

Error: Type mismatch This can happen in many cases:

• The variable you’re assigning to is of a different type than the expression in the assign-
ment.

• You are calling a function or procedure with parameters that are incompatible with the
parameters in the function or procedure definition.

Error: Incompatible types: got "arg1" expected "arg2" There is no conversion possible between
the two types Another possiblity is that they are declared in different declarations:

Var
A1 : Array[1..10] Of Integer;
A2 : Array[1..10] Of Integer;

Begin
A1:=A2; { This statement gives also this error, it

is due the strict type checking of pascal }
End.

68

C.4. TYPE CHECKING ERRORS

Error: Type mismatch between arg1 and arg2 The types are not equal

Error: Integer expression expected The compiler expects an expression of type integer, but gets a
different type.

Error: Ordinal expression expected The expression must be of ordinal type, i.e., maximum a
Longint . This happens, for instance, when you specify a second argument toInc or Dec
that doesn’t evaluate to an ordinal value.

Error: Type identifier expected The identifier is not a type, or you forgot to supply a type identifier.

Error: Variable identifier expected This happens when you pass a constant to aInc var orDec
procedure. You can only pass variables as arguments to these functions.

Error: pointer type expected The variable or expression isn’t of the typepointer . This happens
when you pass a variable that isn’t a pointer toNewor Dispose .

Error: class type expected The variable of expression isn’t of the typeclass . This happens typi-
cally when

1. The parent class in a class declaration isn’t a class.

2. An exception handler (On) contains a type identifier that isn’t a class.

Error: Variable or type indentifier expected The argument to theHigh or Low function is not a
variable nor a type identifier.

Error: Can’t evaluate constant expression No longer in use.

Error: Set elements are not compatible You are trying to make an operation on two sets, when the
set element types are not the same. The base type of a set must be the same when taking the
union

Error: Operation not implemented for sets several binary operations are not defined for sets like
div mod ** (also >= <= for now)

Warning: Automatic type conversion from floating type to COMP which is an integer type An
implicit type conversion from a real type to acomp is encountered. SinceCompis a 64 bit
integer type, this may indicate an error.

Hint: use DIV instead to get an integer result When hints are on, then an integer division with the
’/’ operator will procuce this message, because the result will then be of type real

Error: string types doesn’t match, because of argV+ modeWhen compiling in{$V+} mode, the
string you pass as a parameter should be of the exact same type as the declared parameter of
the procedure.

Error: succ or pred on enums with assignments not possibleWhen you declared an enumeration
type which has assignments in it, as in C, like in the following:

Tenum = (a,b,e:=5);

you cannot use theSucc or Pred functions on them.

Error: Can’t read or write variables of this type You are trying toread or write a variable
from or to a file of type text, which doesn’t support that. Only integer types, booleans, reals,
pchars and strings can be read from/written to a text file.

Error: Type conflict between set elementsThere is at least one set element which is of the wrong
type, i.e. not of the set type.

69

C.5. SYMBOL HANDLING

Warning: lo/hi(dword/qword) returns the upper/lower word/dword Free Pascal supports an over-
loaded version oflo/hi for longint/dword/int64/qword which returns the lower/upper
word/dword of the argument. TP always uses a 16 bitlo/hi which returns always bits 0..7 for
lo and the bits 8..15 forhi . If you want the TP behavior you have to type cast the argument
to word/integer

Error: Integer or real expression expected The first argument tostr must a real or integer type.

Error: Wrong type in array constructor You are trying to use a type in an array constructor which
is not allowed.

Error: Incompatible type for arg no. arg1: Got arg2, expected arg3 You are trying to pass an
invalid type for the specified parameter.

Error: Method (variable) and Procedure (variable) are not compatible You can’t assign a method
to a procedure variable or a procedure to a method pointer.

Error: Illegal constant passed to internal math function The constant argument passed to a ln or
sqrt function is out of the definition range of these functions.

Error: Can’t get the address of constants It’s not possible to get the address of a constant, because
they aren’t stored in memory, you can try making it a typed constant.

C.5 Symbol handling

This section lists all the messages that concern the handling of symbols. This means all things that
have to do with procedure and variable names.

Error: Identifier not found arg1 The compiler doesn’t know this symbol. Usually happens when
you misspel the name of a variable or procedure, or when you forgot to declare a variable.

Fatal: Internal Error in SymTableStack() An internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description of
the circumstances in which the error occurs.

Error: Duplicate identifier arg1 The identifier was already declared in the current scope.

Hint: Identifier already defined in arg1 at line arg2 The identifier was already declared in a pre-
vious scope.

Error: Unknown identifier arg1 The identifier encountered hasn’t been declared, or is used out-
side the scope where it’s defined.

Error: Forward declaration not solved arg1 This can happen in two cases:

• This happens when you declare a function (in theinterface part, or with aforward
directive, but do not implement it.

• You reference a type which isn’t declared in the currenttype block.

Fatal: Identifier type already defined as type You are trying to redefine a type.

Error: Error in type definition There is an error in your definition of a new array type:

One of the range delimiters in an array declaration is erroneous. For example,Array [1..1.25]
will trigger this error.

Error: Type identifier not defined The type identifier has not been defined yet.

70

C.5. SYMBOL HANDLING

Error: Forward type not resolved arg1 The compiler encountered an unknown type.

Error: Only static variables can be used in static methods or outside methodsA static method
of an object can only access static variables.

Error: Invalid call to tvarsym.mangledname() An internal error occurred in the compiler; If you
encounter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: record or class type expectedThe variable or expression isn’t of the typerecord orclass .

Error: Instances of classes or objects with an abstract method are not allowedYou are trying to
generate an instance of a class which has an abstract method that wasn’t overridden.

Warning: Label not defined arg1 A label was declared, but not defined.

Error: Illegal label declaration

Error: GOTO and LABEL are not supported (use switch -Sg) You must compile a program which
haslabel s andgoto statements with the-Sg switch. By default,label andgoto aren’t
supported.

Error: Label not found A goto label was encountered, but the label isn’t declared.

Error: identifier isn’t a label The identifier specified after thegoto isn’t of type label.

Error: label already defined You are defining a label twice. You can define a label only once.

Error: illegal type declaration of set elements The declaration of a set contains an invalid type
definition.

Error: Forward class definition not resolved arg1 You declared a class, but you didn’t implement
it.

Hint: Parameter not used arg1 This is a warning. The identifier was declared (locally or globally)
but wasn’t used (locally or globally).

Note: Local variable not used arg1 You have declared, but not used a variable in a procedure or
function implementation.

Error: Set type expected The variable or expression isn’t of typeset . This happens in anin
statement.

Warning: Function result does not seem to be setYou can get this warning if the compiler thinks
that a function return value is not set. This will not be displayed for assembler procedures, or
procedures that contain assembler blocks.

Error: Unknown record field identifier arg1 The field doesn’t exist in the record definition.

Warning: Local variable arg1 does not seem to be initialized

Warning: Variable arg1 does not seem to be initializedThese messages are displayed if the com-
piler thinks that a variable will be used (i.e. appears in the right-hand-side of an expression)
when it wasn’t initialized first (i.e. appeared in the left-hand side of an assigment)

Error: identifier idents no member arg1 When using the extended syntax ofnew, you must spec-
ify the constructor method of the class you are trying to create. The procedure you specified
does not exist.

Found declaration: arg1 You get this when you use the-vb switch. In case an overloaded pro-
cedure is not found, then all candidate overloaded procedures are listed, with their parameter
lists.

71

C.6. CODE GENERATOR MESSAGES

C.6 Code generator messages

This section lists all messages that can be displayed if the code generator encounters an error condi-
tion.

Error: BREAK not allowed You’re trying to usebreak outside a loop construction.

Error: CONTINUE not allowed You’re trying to usecontinue outside a loop construction.

Error: Expression too complicated - FPU stack overflow Your expression is too long for the com-
piler. You should try dividing the construct over multiple assignments.

Error: Illegal expression This can occur under many circumstances. Mostly when trying to evalu-
ate constant expressions.

Error: Invalid integer expression You made an expression which isn’t an integer, and the compiler
expects the result to be an integer.

Error: Illegal qualifier One of the following is happening :

• You’re trying to access a field of a variable that is not a record.

• You’re indexing a variable that is not an array.

• You’re dereferencing a variable that is not a pointer.

Error: High range limit < low range limit You are declaring a subrange, and the lower limit is
higher than the high limit of the range.

Error: Illegal counter variable The type of afor loop variable must be an ordinal type. Loop
variables cannot be reals or strings.

Error: Can’t determine which overloaded function to call You’re calling overloaded functions with
a parameter that doesn’t correspond to any of the declared function parameter lists. e.g. when
you have declared a function with parametersword andlongint , and then you call it with
a parameter which is of typeinteger .

Error: Parameter list size exceeds 65535 bytesThe I386 processor limits the parameter list to 65535
bytes (theRETinstruction causes this)

Error: Illegal type conversion When doing a type-cast, you must take care that the sizes of the
variable and the destination type are the same.

Conversion between ordinals and pointers is not portable across platformsIf you typecast a pointer
to a longint, this code will not compile on a machine using 64bit for pointer storage.

Error: File types must be var parameters You cannot specify files as value parameters, i.e. they
must always be declaredvar parameters.

Error: The use of a far pointer isn’t allowed there Free Pascal doesn’t support far pointers, so
you cannot take the address of an expression which has a far reference as a result. Themem
construct has a far reference as a result, so the following code will produce this error:

var p : pointer;
...
p:=@mem[a000:000];

Error: illegal call by reference parameters You are trying to pass a constant or an expression to a
procedure that requires avar parameter. Only variables can be passed as avar parameter.

72

C.6. CODE GENERATOR MESSAGES

Error: EXPORT declared functions can’t be called No longer in use.

Warning: Possible illegal call of constructor or destructor (doesn’t match to this context)No longer
in use.

Note: Inefficient code You construction seems dubious to the compiler.

Warning: unreachable code You specified a loop which will never be executed. Example:

while false do
begin
{.. code ...}
end;

Error: procedure call with stackframe ESP/SP The compiler encountered a procedure or func-
tion call inside a procedure that uses aESP/SP stackframe. Normally, when a call is done the
procedure needs aEBPstackframe.

Error: Abstract methods can’t be called directly You cannot call an abstract method directy, in-
stead you must call a overriding child method, because an abstract method isn’t implemented.

Fatal: Internal Error in getfloatreg(), allocation failure An internal error occurred in the com-
piler; If you encounter such an error, please contact the developers and try to provide an exact
description of the circumstances in which the error occurs.

Fatal: Unknown float type The compiler cannot determine the kind of float that occurs in an ex-
pression.

Fatal: SecondVecn() base defined twiceAn internal error occurred in the compiler; If you en-
counter such an error, please contact the developers and try to provide an exact description
of the circumstances in which the error occurs.

Fatal: Extended cg68k not supportedThe varextended type is not supported on the m68k plat-
form.

Fatal: 32-bit unsigned not supported in MC68000 modeThe cardinal is not supported on the m68k
platform.

Fatal: Internal Error in secondinline() An internal error occurred in the compiler; If you encounter
such an error, please contact the developers and try to provide an exact description of the cir-
cumstances in which the error occurs.

Register arg1 weight arg2 arg3Debugging message. Shown when the compiler considers a vari-
able for keeping in the registers.

Error: Stack limit excedeed in local routine Your code requires a too big stack. Some operating
systems pose limits on the stack size. You should use less variables or try ro put large variables
on the heap.

Stack frame is omitted Some procedure/functions do not need a complete stack-frame, so it is
omitted. This message will be displayed when the -vd switch is used.

Error: Object or class methods can’t be inline. You cannot have inlined object methods.

Error: Procvar calls can’t be inline. A procedure with a procedural variable call cannot be inlined.

Error: No code for inline procedure stored The compiler couldn’t store code for the inline proce-
dure.

73

C.7. UNIT LOADING MESSAGES.

Error: Element zero of an ansi/wide- or longstring can’t be accessed, use (set)length insteadYou
should usesetlength to set the length of an ansi/wide/longstring andlength to get the
length of such kinf of string

Error: Include and exclude not implemented in this case include andexclude are only par-
tially implemented fori386 processors and not at all form68k processors.

Error: Constructors or destructors can not be called inside a ’with’ clause Inside aWith clause
you cannot call a constructor or destructor for the object you have in thewith clause.

Error: Cannot call message handler method directly A message method handler method can’t be
called directly if it contains an explicit self argument

C.7 Unit loading messages.

This section lists all messages that can occur when the compiler is loading a unit from disk into
memory. Many of these mesages are informational messages.

Unitsearch: arg1 When you use the-vt , the compiler tells you where it tries to find unit files.

PPU Loading arg1 When the-vt switch is used, the compiler tells you what units it loads.

PPU Name: arg1 When you use the-vu flag, the unit name is shown.

PPU Flags: arg1 When you use the-vu flag, the unit flags are shown.

PPU Crc: arg1 When you use the-vu flag, the unit CRC check is shown.

PPU Time: arg1 When you use the-vu flag, the unit time is shown.

PPU File too short When you use the-vu flag, the unit time is shown.

PPU Invalid Header (no PPU at the begin)A unit file contains as the first three bytes the ascii
codes ofPPU

PPU Invalid Version arg1 This unit file was compiled with a different version of the compiler, and
cannot be read.

PPU is compiled for an other processorThis unit file was compiled for a different processor type,
and cannot be read

PPU is compiled for an other target This unit file was compiled for a different processor type, and
cannot be read

PPU Source: arg1 When you use the-vu flag, the unit CRC check is shown.

Writing arg1 When you specify the-vu switch, the compiler will tell you where it writes the unit
file.

Fatal: Can’t Write PPU-File An err

Fatal: reading PPU-File Unexpected end of file

Fatal: unexpected end of PPU-FileThis means that the unit file was corrupted, and contains in-
valid information. Recompilation will be necessary.

Fatal: Invalid PPU-File entry: arg1 The unit the compiler is trying to read is corrupted, or gener-
ated with a newer version of the compiler.

74

C.7. UNIT LOADING MESSAGES.

Fatal: PPU Dbx count problem There is an inconsistency in the debugging information of the unit.

Error: Illegal unit name: arg1 The name of the unit doesn’t match the file name.

Fatal: Too much units Free Pascal has a limit of 1024 units in a program. You can change this
behavior by changing themaxunits constant in thefiles.pas file of the compiler, and re-
compiling the compiler.

Fatal: Circular unit reference between arg1 and arg2 Two units are using each other in the inter-
face part. This is only allowed in theimplementation part. At least one unit must contain
the other one in theimplementation section.

Fatal: Can’t compile unit arg1, no sources availableA unit was found that needs to be recom-
piled, but no sources are available.

Warning: Compiling the system unit requires the -Us switch When recompiling the system unit
(it needs special treatment), the-Us must be specified.

Fatal: There were arg1 errors compiling module, stoppingWhen the compiler encounters a fatal
error or too many errors in a module then it stops with this message.

Load from arg1 (arg2) unit arg3 When you use the-vu flag, which unit is loaded from which unit
is shown.

Recompiling arg1, checksum changed for arg2

Recompiling arg1, source found onlyWhen you use the-vu flag, these messages tell you why the
current unit is recompiled.

Recompiling unit, static lib is older than ppufile When you use the-vu flag, the compiler warns
if the static library of the unit are older than the unit file itself.

Recompiling unit, shared lib is older than ppufile When you use the-vu flag, the compiler warns
if the shared library of the unit are older than the unit file itself.

Recompiling unit, obj and asm are older than ppufile When you use the-vu flag, the compiler
warns if the assembler of object file of the unit are older than the unit file itself.

Recompiling unit, obj is older than asm When you use the-vu flag, the compiler warns if the
assembler file of the unit is older than the object file of the unit.

Parsing interface of arg1 When you use the-vu flag, the compiler warns that it starts parsing the
interface part of the unit

Parsing implementation of arg1 When you use the-vu flag, the compiler warns that it starts pars-
ing the implementation part of the unit

Second load for unit arg1 When you use the-vu flag, the compiler warns that it starts recompiling
a unit for the second time. This can happend with interdepend units.

PPU Check file arg1 time arg2 When you use the-vu flag, the compiler show the filename and
date and time of the file which a recompile depends on

75

C.8. COMMAND-LINE HANDLING ERRORS

C.8 Command-line handling errors

This section lists errors that occur when the compiler is processing the command line or handling the
configuration files.

Warning: Only one source file supported You can specify only one source file on the command
line. The first one will be compiled, others will be ignored. This may indicate that you forgot
a ’-’ sign.

Warning: DEF file can be created only for OS/2 This option can only be specified when you’re
compiling for OS/2

Error: nested response files are not supportedyou cannot nest response files with the@file
command-line option.

Fatal: No source file name in command lineThe compiler expects a source file name on the com-
mand line.

Error: Illegal parameter: arg1 You specified an unknown option.

Hint: -? writes help pages When an unknown option is given, this message is diplayed.

Fatal: Too many config files nestedYou can only nest up to 16 config files.

Fatal: Unable to open file arg1 The option file cannot be found.

Note: Reading further options from arg1 Displayed when you have notes turned on, and the com-
piler switches to another options file.

Warning: Target is already set to: arg1 Displayed if more than one-T option is specified.

Warning: Shared libs not supported on DOS platform, reverting to static If you specify-CD for
theDOS platform, this message is displayed. The compiler supports only static libraries under
DOS

Fatal: too many IF(N)DEFs the#IF(N)DEF statements in the options file are not balanced with
the#ENDIF statements.

Fatal: too many ENDIFs the#IF(N)DEF statements in the options file are not balanced with the
#ENDIF statements.

Fatal: open conditional at the end of the file the #IF(N)DEF statements in the options file are
not balanced with the#ENDIF statements.

Warning: Debug information generation is not supported by this executableIt is possible to have
a compiler executable that doesn’t support the generation of debugging info. If you use such
an executable with the-g switch, this warning will be displayed.

Hint: Try recompiling with -dGDB It is possible to have a compiler executable that doesn’t sup-
port the generation of debugging info. If you use such an executable with the-g switch, this
warning will be displayed.

Error: You are using the obsolete switch arg1 this warns you when you use a switch that is not
needed/supported anymore. It is recommended that you remove the switch to overcome prob-
lems in the future, when the switch meaning may change.

Error: You are using the obsolete switch arg1, please use arg2this warns you when you use a
switch that is not supported anymore. You must now use the second switch instead. It is
recommended that you change the switch to overcome problems in the future, when the switch
meaning may change.

76

C.9. ASSEMBLER READER ERRORS.

Note: Switching assembler to default source writing assemblerthis notifies you that the assem-
bler has been changed because you used the -a switch which can’t be used with a binary
assembler writer.

C.9 Assembler reader errors.

This section lists the errors that are generated by the inline assembler reader. They arenot the
messages of the assembler itself.

General assembler errors
Divide by zero in asm evaluator This fatal error is reported when a constant assembler expressions

does a division by zero.

Evaluator stack overflow, Evaluator stack underflow These fatal errors are reported when a con-
stant assembler expression is too big to evaluate by the constant parser. Try reducing the
number of terms.

Invalid numeric format in asm evaluator This fatal error is reported when a non-numeric value is
detected by the constant parser. Normally this error should never occur.

Invalid Operator in asm evaluator This fatal error is reported when a mathematical operator is
detected by the constant parser. Normally this error should never occur.

Unknown error in asm evaluator This fatal error is reported when an internal error is detected by
the constant parser. Normally this error should never occur.

Invalid numeric value This warning is emitted when a conversion from octal,binary or hexadecimal
to decimal is outside of the supported range.

Escape sequence ignoredThis error is emitted when a non ANSI C escape sequence is detected in
a C string.

Asm syntax error - Prefix not found This occurs when trying to use a non-valid prefix instruction

Asm syntax error - Trying to add more than one prefix This occurs when you try to add more
than one prefix instruction

Asm syntax error - Opcode not found You have tried to use an unsupported or unknown opcode

Constant value out of boundsThis error is reported when the constant parser determines that the
value you are using is out of bounds, either with the opcode or with the constant declaration
used.

Non-label pattern contains @ This only applied to the m68k and Intel styled assembler, this is
reported when you try to use a non-label identifier with a ’@’ prefix.

Internal error in Findtype()

Internal Error in ConcatOpcode()

Internal Errror converting binary

Internal Errror converting hexadecimal

Internal Errror converting octal

Internal Error in BuildScaling()

77

C.9. ASSEMBLER READER ERRORS.

Internal Error in BuildConstant()

internal error in BuildReference()

internal error in HandleExtend()

Internal error in ConcatLabeledInstr() These errors should never occur, if they do then you have
found a new bug in the assembler parsers. Please contact one of the developers.

Opcode not in table, operands not checkedThis warning only occurs when compiling the system
unit, or related files. No checking is performed on the operands of the opcodes.

@CODE and @DATA not supported This Turbo Pascal construct is not supported.

SEG and OFFSET not supported This Turbo Pascal construct is not supported.

Modulo not supported Modulo constant operation is not supported.

Floating point binary representation ignored

Floating point hexadecimal representation ignored

Floating point octal representation ignored These warnings occur when a floating point constant
are declared in a base other then decimal. No conversion can be done on these formats. You
should use a decimal representation instead.

Identifier supposed external This warning occurs when a symbol is not found in the symolb table,
it is therefore considered external.

Functions with void return value can’t return any value in asm code Only routines with a return
value can have a return value set.

Error in binary constant

Error in octal constant

Error in hexadecimal constant

Error in integer constant These errors are reported when you tried using an invalid constant ex-
pression, or that the value is out of range.

Invalid labeled opcode

Asm syntax error - error in reference

Invalid Opcode

Invalid combination of opcode and operands

Invalid size in reference

Invalid middle sized operand

Invalid three operand opcode

Assembler syntax error

Invalid operand type You tried using an invalid combination of opcode and operands, check the
syntax and if you are sure it is correct, please contact one of the developers.

Unknown identifier The identifier you are trying to access does not exist, or is not within the current
scope.

78

C.9. ASSEMBLER READER ERRORS.

Trying to define an index register more than once

Trying to define a segment register twice

Trying to define a base register twiceYou are trying to define an index/segment register more then
once.

Invalid field specifier The record or object field you are trying to access does not exist, or is incor-
rect.

Invalid scaling factor

Invalid scaling value

Scaling value only allowed with index Allowed scaling values are 1,2,4 or 8.

Cannot use SELF outside a methodYou are trying to access the SELF identifier for objects out-
side a method.

Invalid combination of prefix and opcode This opcode cannot be prefixed by this instruction

Invalid combination of override and opcode This opcode cannot be overriden by this combination

Too many operands on lineAt most three operand instructions exist on the m68k, and i386, you
are probably trying to use an invalid syntax for this opcode.

Duplicate local symbol You are trying to redefine a local symbol, such as a local label.

Unknown label identifer

Undefined local symbol

local symbol not found inside asm statementThis label does not seem to have been defined in the
current scope

Assemble node syntax error

Not a directive or local symbol The assembler statement is invalid, or you are not using a recog-
nized directive.

I386 specific errors
repeat prefix and a segment override on<= i386 ... A problem with interrupts and a prefix instruc-

tion may occur and may cause false results on 386 and earlier computers.

Fwait can cause emulation problems with emu387This warning is reported when using the FWAIT
instruction, it can cause emulation problems on systems which use the em387.dxe emulator.

You need GNU as version >= 2.81 to compile this MMX codeMMX assembler code can only be
compiled using GAS v2.8.1 or later.

NEAR ignored

FAR ignored NEARandFARare ignored in the intel assemblers, but are still accepted for compati-
blity with the 16-bit code model.

Invalid size for MOVSX/MOVZX

16-bit base in 32-bit segment

16-bit index in 32-bit segment 16-bit addressing is not supported, you must use 32-bit addressing.

79

C.9. ASSEMBLER READER ERRORS.

Constant reference not allowedIt is not allowed to try to address a constant memory address in
protected mode.

Segment overrides not supportedIntel style (eg: rep ds stosb) segment overrides are not support
by the assembler parser.

Expressions of the form [sreg:reg...are currently not supported] To access a memory operand in a
different segment, you should use the sreg:[reg...] snytax instead of [sreg:reg...]

Size suffix and destination register do not matchIn intel AT&T syntax, you are using a register
size which does not concord with the operand size specified.

Invalid assembler syntax. No ref with brackets

Trying to use a negative index register

Local symbols not allowed as references

Invalid operand in bracket expression

Invalid symbol name:

Invalid Reference syntax

Invalid string as opcode operand:

Null label references are not allowed

Using a defined name as a local label

Invalid constant symbol

Invalid constant expression

/ at beginning of line not allowed

NOR not supported

Invalid floating point register name

Invalid floating point constant:

Asm syntax error - Should start with bracket

Asm syntax error - register:

Asm syntax error - in opcode operand

Invalid String expression

Constant expression out of bounds

Invalid or missing opcode

Invalid real constant expression

Parenthesis are not allowed

Invalid Reference

Cannot use __SELF outside a method

Cannot use __OLDEBP outside a nested procedure

80

C.9. ASSEMBLER READER ERRORS.

Invalid segment override expression

Strings not allowed as constants

Switching sections is not allowed in an assembler block

Invalid global definition

Line separator expected

Invalid local common definition

Invalid global common definition

assembler code not returned to text

invalid opcode size

Invalid character: <

Invalid character: >

Unsupported opcode

Invalid suffix for intel assembler

Extended not supported in this mode

Comp not supported in this mode

Invalid Operand:

Override operator not supported

m68k specific errors.
Increment and Decrement mode not allowed togetherYou are trying to use dec/inc mode together.

Invalid Register list in movem/fmovem The register list is invalid, normally a range of registers
should be separated by - and individual registers should be separated by a slash.

Invalid Register list for opcode

68020+ mode required to assemble

81

Appendix D

Run time errors

The Free Pascal Run-time library generates the following errors at run-time1:

1 Invalid function number You tried to call aDOS function which doesn’t exist.

2 File not found You can get this error when you tried to do an operation on a file which doesn’t
exist.

3 Path not found You can get this error when you tried to do an operation on a file which doesn’t
exist, or when you try to change to, or remove a directory that doesn’t exist, or try to make a
subdirectory of a subdirectory that doesn’t exist.

4 Too many open filesWhen attempting to open a file for reading or writing, you can get this error
when your program has too many open files.

5 File access deniedYou don’t have access to the specified file.

6 Invalid file handle If this happens, the file variable you are using is trashed; it indicates that your
memory is corrupted.

12 Invalid file access codeThis will happen if you do a reset or rewrite of a file whenFileMode
is invalid.

15 Invalid drive number The number given to the Getdir function specifies a non-existent disk.

16 Cannot remove current directory You get this if you try to remove the current diirectory.

17 Cannot rename across drivesYou cannot rename a file such that it would end up on another
disk or partition.

100 Disk read error DOS only. An error occurred when reading from disk. Typically when you try
to read past the end of a file.

101 Disk write error DOS only. Reported when the disk is full, and you’re trying to write to it.

102 File not assignedThis is reported by Reset, Rewrite, Append, Rename and Erase, if you call
them with an unassigne function as a parameter.

103 File not open Reported by the following functions : Close , Read, Write, Seek, EOf, FilePos,
FileSize, Flush, BlockRead, and BlockWrite if the file isn’t open.

104 File not open for input Reported by Read, BlockRead, Eof, Eoln, SeekEof or SeekEoln if the
file isn’t opened with Reset.

1TheLINUX port will generate only a subset of these.

82

105 File not open for output Reported by write if a text file isn’t opened with Rewrite.

106 Invalid numeric format Reported when a non-numerice value is read from a text file, when a
numeric value was expected.

150 Disk is write-protected (Critical error,DOS only.)

151 Bad drive request struct length (Critical error,DOS only.)

152 Drive not ready (Critical error,DOS only.)

154 CRC error in data (Critical error,DOS only.)

156 Disk seek error (Critical error,DOS only.)

157 Unknown media type (Critical error,DOS only.)

158 Sector Not Found (Critical error,DOS only.)

159 Printer out of paper (Critical error,DOS only.)

160 Device write fault (Critical error,DOS only.)

161 Device read fault (Critical error,DOS only.)

162 Hardware failure (Critical error,DOS only.)

200 Division by zero You are dividing a number by zero.

201 Range check error If you compiled your program with range checking on, then you can get
this error in the following cases:

1. An array was accessed with an index outside its declared range.

2. You’re trying to assign a value to a variable outside its range (for instance a enumerated
type).

202 Stack overflow error The stack has grown beyond itss maximum size. This error can easily
occur if you have recursive functions.

203 Heap overflow error The heap has grown beyond its boundaries, ad you are rying to get more
memory. Please note that Free Pascal provides a growing heap, i.e. the heap will try to allocate
more memory if needed. However, if the heap has reached the maximum size allowed by the
operating system or hardware, then you will get this error.

204 Invalid pointer operation This you will get if you call dispose or Freemem with an invalid
pointer (notably,Nil)

205 Floating point overflow You are trying to use or produce too large real numbers.

206 Floating point underflow You are trying to use or produce too small real numbers.

207 Invalid floating point operation Can occur if you try to calculate the square root or logarithm
of a negative number.

210 Object not initialized When compiled with range checking on, a program will report this error
if you call a virtal method without having initialized the VMT.

211 Call to abstract method Your program tried to execute an abstract virtual method. Abstract
methods should be overridden, and the overriding method should be called.

212 Stream registration error This occurs when an invalid type is registered in the objects unit.

83

213 Collection index out of rangeYou are trying to access a collection item with an invalid index.
(objects unit)

214 Collection overflow error The collection has reached its maximal size, and you are trying to
add another element. (objects unit)

216 General Protection fault You are trying to access memory outside your appointed memory.

217 Unhandled exception occurredAn exception occurred, and there was no exception handler
present. Thesysutils unit installs a default exception handler which catches all excpetions and
exits gracefully.

227 Assertion failed error An assertion failed, and no AssertErrorProc procedural variable was in-
stalled.

84

Appendix E

The Floating Point Coprocessor
emulator

In this appendix we note some caveats when using the floating point emulator on GO32V2 systems.
Under GO32V1 systems, all is as described in the installation section.

Q: I don’t have an 80387. How do I compile and run floating point programs under GO32V2?

Q: What shall I install on a target machine which lacks hardware floating-point support?

A : Programs which use floating point computations and could be run on machines without an 80387
should be allowed to dynamically load theemu387.dxe file at run-time if needed. To do this you
must link theemu387 unit to your exectuable program, for example:

Program MyFloat;

Uses emu387;

var
r: real;

Begin
r:=1.0;
WriteLn(r);

end.

Emu387 takes care of loading the dynamic emulation point library.

You should always add emulation when you distribute floating-point programs.

A few users reported that the emulation won’t work for them unless they explicitly tellDJGPPthere
is nox87 hardware, like this:

set 387=N
set emu387=c:/djgpp/bin/emu387.dxe

There is an alternative FP emulator called WMEMU. It mimics a real coprocessor more closely.

WARNING:We strongly suggest that you use WMEMU as FPU emulator, sinceemu387.dxe does
not emulate all the instructions which are used by the Run-Time Libary such asFWAIT.

Q: I have an 80387 emulator installed in my AUTOEXEC.BAT, but DJGPP-compiled floating point
programs still doesn’t work. Why?

85

A : DJGPP switches the CPU to protected mode, and the information needed to emulate the 80387
is different. Not to mention that the exceptions never get to the real-mode handler. You must use
emulators which are designed for DJGPP. Apart of emu387 and WMEMU, the only other emulator
known to work with DJGPP is Q87 from QuickWare. Q87 is shareware and is available from the
QuickWare Web site.

Q: I run DJGPP in anOS/2 DOS box, and I’m told thatOS/2 will install its own emulator library if
the CPU has no FPU, and will transparently execute FPU instructions. So why won’t DJGPP run
floating-point code underOS/2 on my machine?

A : OS/2 installs an emulator for nativeOS/2 images, but does not provide FPU emulation for DOS
sessions.

86

Appendix F

A samplegdb.ini file

Here you have a samplegdb.ini file listing, which gives better results when usinggdb . UnderLINUX

you should put this in a.gdbinit file in your home directory or the current directory..

set print demangle off
set gnutarget auto
set verbose on
set complaints 1000
dir ./rtl/dosv2
set language c++
set print vtbl on
set print object on
set print sym on
set print pretty on
disp /i $eip

define pst
set $pos=&$arg0
set $strlen = {byte}$pos
print {char}&$arg0.st@($strlen+1)
end

document pst
Print out a pascal string

end

87

	List of Manuals
	Introduction
	About this document
	About the compiler
	Getting more information.

	Installing the compiler
	Before Installation : Requirements
	Installing the compiler.
	Optional configuration steps
	Testing the compiler

	Compiler usage
	File searching
	Include files
	Object files
	Compiling a program
	Compiling a unit
	Units, libraries and smartlinking
	Creating an executable for GO32V1 and PMODE/DJ targets
	Reducing the size of your program

	Compiling problems
	General problems
	Problems you may encounter under DOS

	Compiler configuration
	Using the command-line options
	Using the configuration file
	Variable substitution in paths

	Porting Turbo Pascal Code
	Things that will not work
	Things which are extra
	Turbo Pascal compatibility mode
	A note on long file names under dos

	Utilities and units that come with Free Pascal
	Supplied programs
	Supplied units

	Debugging your Programs
	Compiling your program with debugger support
	Using gdb to debug your program
	Caveats when debugging with gdb
	Support for gprof, the gnu profiler

	CGI programming in Free Pascal
	Getting your data
	Producing output
	I'm under Windows, what now ?

	Alphabetical listing of command-line options
	Alphabetical list of reserved words
	Compiler messages
	General compiler messages
	Scanner messages.
	Parser messages
	Type checking errors
	Symbol handling
	Code generator messages
	Unit loading messages.
	Command-line handling errors
	Assembler reader errors.

	Run time errors
	The Floating Point Coprocessor emulator
	A sample gdb.ini file

