
SciTech MGL
Professional Graphics Library

Getting Started and
Programmer’s Guide

Version 4.0

SciTech Software, Inc.
505 Wall Street
Chico, CA 95928

Main: (530) 894-8400
FAX: (530) 894-9069
www.scitechsoft.com

Information in the document is subject to change without notice. No part of
this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express
written permission of SciTech Software, Inc.

 1996-8 SciTech Software, Inc. All rights reserved.

SciTech Software, Inc.
505 Wall Street
Chico, CA 95928 USA
(530) 894-8400
(530) 894-9069 FAX

SciTech Display Doctor, SciTech MGL, SciTech SuperVGA Kit, UniVBE,
UVBELib, and WinDirect are trademarks of SciTech Software, Inc.

All other marks are trademarks or registered trademarks of their respective
companies.

SciTech MGL Software License Agreement

BEFORE PROCEEDING WITH THE INSTALLATION AND/OR USE OF THIS SOFTWARE, CAREFULLY READ THE
FOLLOWING TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT AND LIMITED WARRANTY (The
"Agreement").

BY INSTALLING OR USING THIS SOFTWARE YOU INDICATE YOUR ACCEPTANCE OF THIS AGREEMENT. IF
YOU DO NOT ACCEPT OR AGREE WITH THESE TERMS, YOU MAY NOT INSTALL OR USE THIS SOFTWARE!

PREAMBLE

The terms and conditions of the SciTech MGL Software License Agreement have one major goal in mind; to foster a development
community based around the SciTech MGL graphics library and associated source code. SciTech Software does however reserve the
right as the sole distributor of the library source code. Hence although we encourage you to change and modify the library to suit your
needs, you may not distribute derivative works based on the library source code without express written permission from SciTech
Software. Worthwhile derivative works such as ports to other operating systems may be submitted to SciTech Software and we will
make them available to the general public via our web pages and ftp site. Worthwhile changes and modifications to the libraries may be
submitted to SciTech Software for integration into a future release of the product.

Note that the intent of this license agreement is also to foster development and use of the VESA VBE/Core 3.0, VBE/AF 2.0 standards
on Intel based systems, regardless of the operating system. Specifically we want to allow developers to use portions of SciTech MGL
in other products and libraries related to using these standards, as well as the WinDirect runtime libraries for Windows 3.1 and
Windows 95. Although we do require that you obtain written consent from SciTech Software in order to use portions of the code in
your own products and libraries, in general we will not withhold this consent from other developers.

LICENSE

This software, including documentation, source code, object code and/or additional materials (the "Software") is owned by SciTech
Software and is protected by copyright law and international treaty provisions. This Agreement does not provide you with title or
ownership of Product, but only a right of limited use as outlined in this license agreement. SciTech Software hereby grants you a non-
exclusive, royalty free license to use the Software as set forth below:

· integrate the Software with your Applications, subject to the redistribution terms below.
· modify or adapt the Software in whole or in part for the development of Applications based on the Software.
· use portions of the SciTech MGL source code in your own products and libraries (such as the VBE/Core 3.0, VBE/AF 2.0 and

WinDirect components), provided you obtain prior written consent from SciTech Software.
· distribute the official Object Code only releases of the Software to other parties for free, (shareware distribution companies may

charge their normal shipping and handling fees). Please also note that distribution of the Object Code only releases may only be
through the normal shareware distribution channels as a single, complete package.

REDISTRIBUTION RIGHTS

You are granted a non-exclusive, royalty-free right to reproduce and redistribute executable files created using the Software (the
"Executable Code") in conjunction with software products that you develop and/or market (the "Applications"). You may also be
granted rights to reproduce and distribute components of the Software specified in the "Redistributable Components" section of the
"Getting Started" manual.

RESTRICTIONS

Without the expressed, written consent of SciTech Software, you may NOT:

· re-distribute any portion of the Source Code, in whole or in part except as expressly allowed above. SciTech Software reserves
the right as the sole distributor of the complete Source Code, which can only be download from SciTech Software’s internet
sites.

· modify, or distribute the documentation for the Software, in whole or in part.
· distribute modified versions of the Software, in whole or in part, in source or object format. Specifically you may not distribute

derivative works based on the SciTech MGL.
· rent or lease the Software.
· use the Software in the development of an operating system, online service or their associated drivers & utilities, or in a graphics

library.
· sell any portion of the Software on its own, without integrating it into your Applications as Executable Code.

OBJECT CODE ONLY RELEASES

Object Code only releases include all official installation archives provided by SciTech Software that do not include any of the source
code to the SciTech MGL libraries. The MGL Source Code release will always be in a file named MGLSxx.EXE where xx is the
version number for that release of the SciTech MGL source code, so the Object Code only releases include all official install archives
other than this. This includes the base install archive (MGLBxx.EXE), font and data install archive (MGLFxx.EXE), the MGL object

code archives for the different supported compilers and any other new archives that we add in the future.

SOURCE CODE RELEASE

The Source Code release is the official installation archive provided by SciTech Software that contains all of the source code in the
SciTech MGL libraries. The MGL Source Code release will always be in a file named MGLSxx.EXE where xx is the version number
for that release of the SciTech MGL source code. You are prohibited from distributing this archive to others via the internet, shareware
distribution services or by any other means. SciTech Software reserves the right as the sole distributor of the Source Code release and
it can only be downloaded directly from SciTech Software’s web and ftp sites.

SELECTION AND USE

You assume full responsibility for the selection of the Software to achieve your intended results and for the installation, use and results
obtained from the Software.

LIMITED WARRANTY

THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PRODUCT IS WITH YOU. SHOULD THE PRODUCT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING OR ERROR CORRECTION.

SCITECH SOFTWARE DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR
ERROR FREE.

No oral or written information given by SciTech Software, its agents or employees shall create a warranty.

LIMITATION OF REMEDIES AND LIABILITY.

IN NO EVENT SHALL SCITECH SOFTWARE, OR ANY OTHER PARTY WHO MAY HAVE DISTRIBUTED THE
SOFTWARE AS PERMITTED ABOVE, BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
SOFTWARE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR FAILURE OF THE SOFTWARE TO OPERATE WITH
ANY OTHER PRODUCTS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The cumulative liability of SciTech Software to you for all claims relating to the Software, in contract, tort, or otherwise, shall not
exceed the total amount of license fees paid to SciTech Software for the relevant Software. The foregoing limitation of liability and
exclusion of certain damages shall apply regardless of the success or effectiveness of other remedies.

GENERAL

Notices. All notices or other communications required to be given shall be in writing and delivered either personally or by U.S. mail,
certified, return receipt requested, postage prepaid, and addressed as provided in the Agreement or as otherwise requested by the
receiving party. Notices delivered personally shall be effective upon delivery and notices delivered by mail shall be effective upon
their receipt by the party to whom they are addressed.

Severability. Should any term of this License Agreement be declared void or unenforceable by any court of competent jurisdiction,
such declaration shall have no effect on the remaining terms hereof.

Governing Law. This Agreement shall be governed by and construed and enforced in accordance with the laws of the State of
California, USA as it applies to a contract made and performed in such state.

No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party in the event of
any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequent actions in the
event of future breaches.

Costs of Litigation. If any action is brought by either party to this License Agreement against the other party regarding the subject
matter hereof, the prevailing party shall be entitled to recover, in addition to any other relief granted, reasonable attorney fees and
expenses of litigation.

If you have any questions regarding this agreement, please contact SciTech Software at (530) 894-8400.

Contents i

Contents

Introduction.. 1
SciTech MGL Feature Summary..1
What is the SciTech MGL Graphics Library? ..2

Support for Windowed Applications ... 2
Support for Full-Screen Applications.. 3
Support for OpenGL... 3
Support for the Game Framework.. 3
Support for Simple, Fast Hardware Sprites... 4

Device Independent, Directly Accessible Drawing Surfaces4
Hardware Acceleration Support ...5
Portable to Other Operating Systems and Architectures ..5
Supplemental Libraries...6

SciTech MegaVision GUI library .. 6
SciTech Fixed/Floating Point transform library.. 7
SciTech Quick2D Rendering Library .. 7
SciTech Quick3D Rendering Library .. 7
SciTech QuickModeler 3D Modeling Library ... 8
SciTech Techniques Class Library ... 8

Installation.. 9
Hardware and Software Requirements..9
Installing SciTech MGL ..9
Setting up Your Compiler Configuration ..9
Using the Optional Makefile Utilities...12
Manually Configuring the Makefile Utilities ..15
Using the Makefile Utilities ...17
SciTech Standard Directory Tree...21
Letting SciTech MGL Know Where to Find Shared Resources22

Getting Started with SciTech MGL ... 24
Differences Between MGL/Lite and Regular Libraries...24
Compiling and Linking with SciTech MGL ..25

Standard C Header Files.. 26
Standard C++ Header Files ... 26
DOS Runtime Libraries... 27
Special DOS Debugging Libraries for Borland C++... 27
Windows Runtime Libraries.. 28
Special Win32 DLL’s for Watcom C++ users ... 30

Where to Next? The MGL Sample Programs ..31
MGL Sample Programs ... 31

BITBLT.EXE...32

SciTech MGLii

BITMAP.EXE .. 32
DIRECT.EXE ... 32
ELLIPSES.EXE .. 32
HELLO.EXE... 32
LINES.EXE .. 33
MGLDEMO.EXE .. 33
MOUSE.EXE ... 33
MOUSEDB.EXE.. 33
PAGEFLIP.EXE... 34
PALETTE.EXE .. 34
PCX.EXE.. 34
PIXELFMT.EXE.. 34
POLYS.EXE... 34
RECTS.EXE ... 34
REGIONS.EXE.. 35
SPRITES.EXE.. 35
STEREO.EXE .. 35
STRETCH.EXE.. 35
TEXTDEMO.EXE ... 35
VIEWPORT.EXE... 36

Game Framework Sample Programs ..36
BOUNCE.EXE... 36
FOXBEAR.EXE ... 36
GEARS.EXE... 37
SKYFLY.EXE... 37

General MGL Demo Programs ..38
DEMO.EXE ... 38
DEMO3D.EXE .. 38
MGLDOG.EXE.. 38
PLAY.EXE ... 39
SHOWBMP.EXE... 39
WMGLDOG.EXE .. 39
WSHOWBMP.EXE ... 39

OpenGL Sample Programs ..40
ATLANTIS.EXE .. 40
GEARS.EXE... 40
GEARS2.EXE... 40
MECH.EXE.. 41
MOTH.EXE ... 41
RINGS.EXE ... 41
IDEAS.EXE.. 41

Using SciTech MGL.. 42
Building Your First Fullscreen MGL Program..42

The MGLDOG.EXE Sample Program ..42
What is a Fullscreen MGL Program? ..44
Initializing the MGL Fullscreen Environment ..45
Displaying the Initial Dialog Box ..45
Specifying the Initial Display Mode, and Initializing SciTech MGL ..46
Registering the Device Drivers ..46
Specifying Which Drivers to Support ..47

Contents iii

Creating a Display Device Context ... 48
The Current Device Context.. 48
Fullscreen Applications and Focus .. 48
Identity Palettes and Performance... 49
Drawing Something on the Display .. 50
What the Heck is a Blt? ... 51
Drawing the Mouse Cursor... 51
Interacting with the User .. 51

Using the MGL Event Handling Functions ...52
Using Your Own Window Procedure...54

Changing Display Modes on the Fly ... 55
Using DirectSound with the SciTech MGL .. 55
Setting the Task Bar Icon and Program Name.. 56
Destroying SciTech MGL Before Exit ... 56

Building Your First Windowed MGL Program ..57
What is a Windowed MGL Program?... 57
Initializing the MGL Windowed Environment... 57
Creating a Window Manager Window and Initializing SciTech MGL 58
Registering the Device Drivers.. 58
Creating Device Contexts and Loading the Doggie Sprite .. 59
Creating Windowed Device Contexts... 60
Synchronizing Color Depth... 60
Creating a Memory Device Context .. 60
Changing and Realizing the Windows Color Palette .. 61
Getting Access to all 254 entries in the Color Palette ... 61
Drawing Something to the Memory DC ... 62
Blting the Results to the Window.. 62

Stretching to a Resized Window ...63
Repainting the Window Contents ... 63
Interacting with the User .. 63
Destroying SciTech MGL Before Exit ... 63

Advanced MGL Programming..64
Page Flipping for Smooth Animation (Double and Triple Buffering)... 64

Implementing Page Flipping...64
Implementing Multiple Buffering ...65
Swapping the Multiple Buffers ...65

Directly Accessing the Device Context Surface .. 65
Using Linear Access..66
Accessing Virtual Linear Framebuffers...66
Accessing Surface Color Information ..67

Creating Offscreen Device Contexts.. 68
Storing Bitmaps in Offscreen Device Contexts...68
Blting Offscreen Memory Bitmaps..69

Using Mouse Cursors.. 69
Double Buffered Mouse Cursors.. 69
Displaying Stereo Images for LC Shutter Glasses ... 71
Debugging Fullscreen SciTech MGL Applications ... 72

Using the Game Framework ... 74

SciTech MGLiv

What is the Game Framework? ...74
Using the Game Framework..74
Setting Driver Options..75
Initializing the Game Framework...76
Registering your Application Callbacks ..77

Keyboard Callbacks...77
Mouse Callbacks...78
Trapping Your Own Events ..79
Game Logic Callback ..79
Draw Callback..80

Using Dirty Regions... 80
More Advanced Callbacks ..81

Activation Callbacks ... 81
Mode Switch Callback... 81
Mode Filter Callback... 82
Pre-Mode Switch Callback.. 82

Starting Graphics Modes..82
Finding Supported Graphics Modes ... 82
Setting the Graphics Mode ... 83

Setting the Palette ..83
Accessing the Entire Palette ... 84

Starting OpenGL 3D Rendering Support...84
Capturing Window Messages Directly ..85
Your First Game Framework Application ...85

Using the Sprite Manager .. 87
What is the Sprite Manager?..87
Initializing the Sprite Manager..87
Adding a Bitmap to the Sprite Manager ..88

Adding a Transparent Bitmap ...88
Adding an Opaque Bitmap ..88

Drawing a Sprite..88
Reloading the Hardware After Task Switching..89

Using Fullscreen OpenGL ... 90
Using OpenGL ...90
Register the OpenGL Hardware Drivers ...90
Choosing a Visual..90
Creating and Using OpenGL Rendering Contexts...91
Swapping the Display Buffers...93
Resizing the Display Buffers..93
Deleting a OpenGL Rendering Context ...94
Programming the Hardware Palette ..94
Forcing the OpenGL Implementation ..94

Forcing a Specific OpenGL Driver...95

Contents v

Appendix A : Shipping your MGL Product... 96
What is WinDirect? ...96
MGL Redistributable Components ...97

Windows 95 Specific Runtime Files .. 97
WinDirect Runtime Files .. 97
OpenGL Runtime Files.. 98

Appendix B: Using the Zen Timer .. 100
What is the Zen Timer?...100
Timing with the Long Period Zen Timer ...101
Timing with the Ultra Long Period Zen Timer...102
Using the C++ interface..102

Appendix C: Developing for Maximum Compatibility........................... 105
Provide for Solid Backwards Compatibility..105
Don’t Assume all SVGA Low Res Modes are Available ...106
Develop for the Future with Scalability ...106
Include an Option for Rendering to a System Buffer...107

Redistributable Components.. 108

Glossary ... 109

Index ... 117

Introduction 1

Introduction

This document provides an overview and introduction to the SciTech MGL
Graphics Library and associated supplemental libraries. For detailed
reference information please consult the MGL Reference Guide.

SciTech MGL Feature Summary

This section provides a summary of the SciTech MGL features, to give you
an overview and what the SciTech MGL provides and the features you can
expect to use in your products.

General Features

• High performance 32-bit assembler code for maximum speed
• Resolutions from 320x200 to 1600x1200
• Color depths from 4-bits to 32-bits per pixel
• Support for DOS and Windows
• Supports CreateDIBSection under Windows 95 and Windows NT 3.5
• Supports WinDirect full screen under Windows 95
• Supports Microsoft DirectX under Windows 95 and Windows NT 4.0
• Full hardware and software double/multi buffering support
• Rendering direct to video memory
• Rendering direct to offscreen video memory
• Rendering to system memory buffers
• Full linear surface virtualization under DOS and Windows
• Direct surface access to bypass SciTech MGL if desired
• C++ wrapper class API
• Loading of Windows bitmaps, fonts, cursors and icons
• Loading of PCX bitmap files
• High performance 2D and 3D rendering capabilities
• OpenGL support in windowed and full-screen modes. - New in 4.0
• Refresh rate control - New in 4.0
• Stereo display support for LC shutter glasses - New in 4.0
• Game Framework library for easy game programming - New in 4.0
• Sprite Manager library for simplified sprite management - New in 4.0
• Native libraries for the DEC Alpha running Windows NT - New in 4.0
• Support for hardware triple-buffering - New in 4.0
• Support for double buffered-mouse cursors - New in 4.0
• Support for Borland Delphi 2.0 and 3.0 - New in 4.0

SciTech MGL2

Event Handling Support

• Unified event queue handling mechanism for DOS and Windows
• Supports keyboard events KEYDOWN, KEYUP and KEYREPEAT
• Supports mouse movement, mouse down and mouse up events
• Supports user specified timer events
• Supports user events posted to queue
• Same event functions for DOS, windowed and fullscreen modes
• Supports user supplied Window procedure under Windows

Graphics Output

• Lines
• Rectangles
• Ellipses
• Elliptical arcs
• Text
• Monochrome bitmaps
• Complex regions (including union, difference, intersection etc.)
• BitBlt
• TransBlt (source and destination transparency)
• StretchBlt
• Full 3D rendering functionality via OpenGL

What is the SciTech MGL Graphics Library?

The SciTech MGL Graphics Library is a full featured 32-bit graphics library
for high performance graphics programming in DOS and Windows
environments. It provides fast, low level rasterization of 2D and 3D
primitives, that can be used for computer games, user interface software and
other real-time graphics applications. SciTech MGL fully supports all
graphics resolutions from 320x200 right up to 1600x1200, with any pixel
depth from 4 bits per pixel to 32-bits per pixel.

Support for Windowed Applications

SciTech MGL can be used for rendering in a windowed environment under
Windows 3.x, Windows 95 and Windows NT. Under Windows 3.x SciTech
MGL will use the WinG library for high performance output. When running
under Windows 95 or Windows NT 3.5 or later, SciTech MGL will use
CreateDIBSection or DirectDraw with support for all color depths from 8-

Introduction 3

bits to 32-bits per pixel.

Support for Full-Screen Applications

SciTech MGL for Windows can also support full screen graphics under
Windows using SciTech’s WinDirect technology (Windows 3.x and
Windows 95), or Microsoft’s DirectX technology (Windows 95 and
Windows NT). SciTech’s WinDirect technology provides high performance,
full screen graphics in any supported graphics mode independent of the
current GDI graphics mode, and allows the SciTech MGL to work with any
existing VBE 2.0 or higher or VBE/AF 1.0 or higher compliant graphics card
(or with our SciTech Display Doctor drivers installed).

Support for OpenGL

SciTech MGL also includes complete support for OpenGL, the most
advanced and widely used API for 3D graphics on PC’s and workstations
The SciTech MGL provides an open, seamless, easy-to-use interface to the
OpenGL API for ultra-fast 3D rendering in software and hardware. The
SciTech MGL support for OpenGL is complete and supports both
windowed modes and fullscreen graphics modes for high performance
games and entertainment titles. SciTech MGL fully supports Microsoft
OpenGL, Silicon Graphics OpenGL for Windows and the freeware MESA
OpenGL clone when rendering in software. If there is a hardware device
with OpenGL drivers installed, SciTech MGL can use either Microsoft
OpenGL or Silicon Graphics OpenGL for Windows implementations for
maximum performance using the installed graphics hardware.

Support for the Game Framework

SciTech also includes the Game Framework, a library of functions designed
to free game programmers from much of the tedium associated with
Windows programming and interfacing your game code with the SciTech
MGL. The Game Framework contains a complete set of simple, game
oriented wrapper functions for the SciTech MGL that take care of the
important tasks that all game developers require. These include features
such as automatically handling both windowed and fullscreen graphics
modes, enumerating the available fullscreen modes, taking over the system
static palette entries cleanly in a window, handling alt-tabbing back to the
desktop and focus issues, using a single window to simplify DirectSound
integration and many other features required of today’s advanced Windows

SciTech MGL4

based games.

The Game Framework also allows you to get started with OpenGL 3D
rendering in your game with only a single function call to the Game
Framework to turn it on!

Of course the Game Framework, like the SciTech MGL is completely
portable between DOS and Windows, so the same code you write for DOS
can be re-compiled easily for Windows. Best of all the complete source code
to the Game Framework is provided so you can see exactly how your game
is interacting with the SciTech MGL libraries.

Support for Simple, Fast Hardware Sprites

SciTech also includes the Sprite Manager, a library of functions designed to
provide a seamless, intuitively easy to use library for storing sprites and
other bitmaps in offscreen video memory on the graphics adapter. Storing
bitmaps in offscreen video memory allows the SciTech MGL to move them
around on the screen extremely quickly using the hardware built into the
graphics adapter. Support is included for both rectangular and linear layout
of sprites in offscreen video memory, and the Sprite Manager includes
powerful memory management routines to find the best locations to store
your sprites.

Of course the sprite manager is intelligent enough to know how to handle
the limited resources of offscreen video memory, and will automatically
store any overflow or remaining bitmaps that don’t fit into offscreen video
memory in system memory buffers. Support is included for pre-compiling
the system memory sprites into Run Length Encoded (RLE) bitmaps for
higher performance drawing to the display memory, so the Sprite Manager
provides you with the best of hardware accelerated sprites along with fast,
software sprites when there is no hardware memory available.

Device Independent, Directly Accessible Drawing Surfaces

SciTech MGL is device independent, and provides routines for creating
device contexts for rendering directly to video memory, and device contexts
for rendering directly to system memory. All the high performance 32-bit
code in SciTech MGL is written for flat linear framebuffer access and under
DOS and Windows full screen modes, SciTech MGL will provide a virtual
flat linear surface for normal VBE 1.2 and 2.0 (VBE 2.0 required for

Introduction 5

Windows) devices if there is no hardware linear framebuffer support.

SciTech MGL provides a whole host of high performance rendering routines
including fast line drawing, BitBlt operations with source transparency and
stretching and fast 2D and 3D rendering functions. However if the routines
in SciTech MGL do not suit your purposes, SciTech MGL also provides
direct access to the display surfaces, so you can render directly to the surface
with your own application specific code, including rendering directly to
video memory via the hardware or virtualized flat linear framebuffer.

In cases where the virtual linear framebuffer is not available (for instance
under Windows and OS/2 DOS sessions for DOS programs), SciTech MGL
provides high speed banked framebuffer devices as a fallback measure.

Hardware Acceleration Support

SciTech MGL is also designed extensively to support full hardware
acceleration, and will plug in directly with the VBE/AF Graphics
Accelerator driver architecture under DOS and WinDirect under Windows,
as well as hardware accelerated OpenGL drivers for Windows. SciTech
MGL also fully supports the hardware acceleration features exposed by the
Microsoft DirectX libraries.

With full hardware acceleration support, SciTech MGL supports hardware
accelerated BitBlt and TransBlt (source and destination transparency)
operations between offscreen memory surfaces and display memory
surfaces, for incredibly fast sprite animation. Of course accelerated line
drawing, rectangle filling and polygon filling are also be provided and
complete hardware acceleration of the OpenGL 3D functions is available via
standard OpenGL accelerator drivers.

Contact SciTech Software for more information on licensing accelerated
device driver support for SciTech MGL.

Portable to Other Operating Systems and Architectures

SciTech MGL source code is also fully portable to other operating systems
and architectures such as embedded systems development. The portable
version of SciTech MGL is a C only version of the library that can be
compiled and linked with any standard C compiler. A native version of the
complete SciTech MGL is available for the DEC Alpha running Windows

SciTech MGL6

NT.

For more information on the portable version of SciTech MGL for embedded
systems development or other operating systems, contact SciTech Software
directly for pricing and availability.

Supplemental Libraries

The SciTech MGL ships with a number of supplemental libraries, including
the discontinued SuperVGA Kit, the WinDirect libraries for fullscreen
SuperVGA graphics under Windows, the PM/Pro library for providing a
DOS extender independent API for protected mode services, and the Zen
Timer for providing high precision timing under all these environments.

Some of these libraries such as the PM/Pro library and WinDirect library are
used directly by SciTech MGL for portability between the DOS and
Windows operating systems. For maximum portability you should stick to
the standard MGL API, but these supplemental libraries are provided since
they may well be useful for developing code that is specific to the DOS and
Windows operating systems.

Also included are a set C++ utility libraries for the SciTech MGL. Libraries
are provided for performing 2D and 3D vector math and transformations,
realtime 2D rendering including arbitrary rotations, scales and shears,
realtime 3D rendering including arbitrary parallel and perspective viewing
with wireframe, flat shaded and smooth polygons, a 3D modeling system
for easy scene management, a C++ abstract data type class library and a C++
GUI framework.

All of these C++ libraries are provided with the SciTech MGL, and the full
source code to all the supplemental libraries is available in the SciTech MGL
Plus Pack. Most of the libraries are provided on an “as is” basis and are not
supported directly by SciTech Software. These libraries were developed in
house by SciTech Software and are being made available in the hope that
they may help our customers to take full advantage of SciTech MGL’s
capabilities.

All libraries are provided pre-built for all supported compilers. The
following is a brief description of each of the C++ supplemental libraries:

SciTech MegaVision GUI library

Introduction 7

SciTech MegaVision is a C++ based GUI toolkit for SciTech MGL and is the
GUI library that was used to build the SciTech MGL demo programs.
MegaVision is a fully object oriented user interface library and provides
support for moveable, resizeable windows, pull down menus, file browsing,
radio buttons, check boxes and message boxes. Full source available in the
SciTech MGL Plus Pack.

SciTech Fixed/Floating Point transform library

This is a C and C++ library that provides high performance fixed point or
floating point math functions for both DOS and Windows. This library has
been designed to provide the ability to write a single set of source code that
can be compiled to use either 16.16 fixed point numbers or full floating point
numbers.

High performance functions are provided for common math functions like
trig functions, 2D, 3D and 4D vector math functions and 2D and 3D
transformation matrices. All code has been hand tuned for maximum speed
on Pentium processors and this library provides the mathematical
foundation for the Quick2D, Quick3D and QuickModeler libraries. Full
source available in the SciTech MGL Plus Pack.

SciTech Quick2D Rendering Library

The Quick2D library is a C++ rendering library that provides a fast
fixed/floating point two dimensional world coordinate system on top of
SciTech MGL. It provides full support for arbitrary 2D transformations such
as translates, rotates, scales and shears. It provides 2D versions of the MGL
primitives such as pixels, lines, ellipses, polygons and even vector font text
output (fully transformed). It relies upon the fixed point library for fast
vector and matrix math functions. Full source available in the SciTech MGL
Plus Pack.

SciTech Quick3D Rendering Library

The Quick3D library is a C++ rendering library that provides a fast
fixed/floating point three dimensional world coordinate system on top of
SciTech MGL. It provides support for arbitrary 3D transformations such as
translates, rotates, scales and 3D viewing transformations. It provides 3D
primitives such as pixels, lines, ellipses, polygons and even vector font text
output (fully transformed). It relies upon the fixed point library for fast

SciTech MGL8

vector and matrix math functions.

This library is written entirely in C++ and hence is not as fast as it could be.
In fact there are many parts of this library that can be sped up, but it was
developed as an experimental 3D library to prototype many of the concepts
that will hopefully become available as a new, high performance 3D library
running on top of SciTech MGL. This is the library that is used by the MGL
3D demonstration programs. Full source available in the SciTech MGL Plus
Pack.

SciTech QuickModeler 3D Modeling Library

The QuickModeler 3D modeling library is a hierarchy of C++ objects that
can be rendered directly using SciTech MGL. It provides support for
building complete modeling hierarchies and provides support for single
polygons and polygonal models. There is much that can be done to this
library, and it is intended as a guide to show how you can develop a high
performance modeling system on top of MGL and Quick3D. Full source
available in the SciTech MGL Plus Pack.

SciTech Techniques Class Library

The Techniques Class Library is high performance C++ class library for
neatly implementing various data structures in C++. It uses the C++
template facility to provide type-safe generic data structures such a arrays,
stacks, queues, linked lists, hash tables etc. This library is used by all SciTech
Software's C++ products as the low level data structure class library. Full
source available in the SciTech MGL Plus Pack.

Installation 9

Installation

Hardware and Software Requirements

SciTech MGL requires the following minimum system requirements for
programs that you will be developing:

• IBM PC compatible
• An 80386 or higher processor
• VGA or SuperVGA display adapter
• VBE 1.2, 2.0 or VBE/AF 1.0 compliance for SuperVGA support
• MS-DOS 3.3 or later (MGL for DOS)
• Windows 95 or Windows NT (MGL for Windows)
• Microsoft DirectX 3a or later (optional)

Installing SciTech MGL

Before you install any SciTech Software developer products, you should
decide upon a standard root directory for installing all of the products into.
By default the installation programs will choose the C:\SCITECH directory
as the installation location. You might like to install the files onto a different
drive, but should install all the files for all the different SciTech Software
developer products (MGL for DOS, MGL for Windows, Plus Pack etc.) that
you have under the same directory tree. Many SciTech Software products
use common libraries and common header files, so when you install them
into the same directory you will only have one copy of each of these
common files and won’t run into conflicts with multiple copies of the same
files on your system.

Note: If you have installed a previous release of SciTech MGL then you
should uninstall the previous release files or install the new release
files into a different directory. Please don’t install the new release
over the top of an existing release, as there may be conflicts with
changes in the directory structures for the product.

Setting up Your Compiler Configuration

Once you have installed the files you want from the distribution CD, you

SciTech MGL10

will need inform your compiler where the include files and library files are
located. The following steps provide a guide to setting things up correctly
for your compiler.

The installation program installs all include files into the \INCLUDE
directory under the installation directory where you chose to install the
product (so if you installed the product in c:\scitech, the INCLUDE
directory is c:\scitech\include). If you are compiling your applications from
the Integrated Development Environment (IDE) for your compiler, you will
need to set the include directories for your project file’s to include the
c:\scitech\INCLUDE directory.

If you are compiling from the command line, you simply need to add the
c:\scitech\INCLUDE directory to your INCLUDE path environment
variable (for Borland C++ users you will need to add this directory to your
Borland C++ ‘turboc.cfg’ and ‘bcc32.cfg’ configuration files located in the
x:\bc\BIN directory where ‘x:\bc’ is where you installed the compiler; for
DJGPP 2.01 users you will need to add this to the DJGPP.ENV file located in
your x:\djgpp directory where x:\djgpp is where you install your
compiler).

The installation program installs all the library files for the compilers that
you select under the \LIB directory under the installation directory where
you chose to install the product (so if you installed the product in c:\scitech,
the LIB directory is c:\scitech\lib). Beneath this directory is a hierarchy of
directories containing library files for different operating systems and
different compilers as shown in the table below(some may not be present
depending on what libraries you selected at installation time and what
platforms are supported by your compiler).

32-bit DOS protected mode support:

DOS32\BC4 Borland C++ 4.52 32-bit DOS libraries

DOS32\BC5 Borland C++ 5.02 32-bit DOS libraries

DOS32\WC10 Watcom C++ 10.6 32-bit DOS libraries

DOS32\WC11 Watcom C++ 11.0 32-bit DOS libraries

DOS32\DJ2 DJGPP 2.01 32-bit DOS libraries

Installation 11

32-bit Windows support:

WIN32\BC4 Borland C++ 4.52 Win32 libraries

WIN32\BC5 Borland C++ 5.02 Win32 libraries

WIN32\SC7 Symantec C++ 7.5 Win32 libraries

WIN32\VC4 Microsoft Visual C++ 4.2 Win32 libraries

WIN32\VC5 Microsoft Visual C++ 5.0 Win32 libraries

WIN32\WC10 Watcom C++ 10.6 Win32 libraries

WIN32\WC11 Watcom C++ 11.0 Win32 libraries

WIN32\IC35 IBM VisualAge for C++ 3.5 Win32 libraries

WIN32\DELPHI2 Borland Delphi 2.0 Win32 libraries

WIN32\DELPHI3 Borland Delphi 3.0 Win32 libraries

NT-AXP\VC4 Microsoft Visual C++ 4.1 DEC Alpha Win32 libraries

NT-AXP\VC5 Microsoft Visual C++ 5.0 DEC Alpha Win32 libraries

Note that the compiler versions listed are those that were used to compile
the library files that you will find in those directories. In most cases the
libraries should work fine for previous versions of the compiler for the
standard C libraries (for C++ libraries such as the Techniques Class Library
and MGL Plus Pack libraries you may need to recompile them with your
compiler).

If you are compiling your applications from the IDE for your compiler, you
will need to set the library directories for your project file to include the
c:\scitech\LIB\xxx\xx directory (select the appropriate directory from
Table 1 above). If you are compiling from the command line, you simply
need to add the c:\scitech\LIB\xxx\xxx path to your LIB path environment
variable (for Borland C++ users you will need to add this directory to your
Borland C++ ‘tlink.cfg’ and ‘tlink32.cfg’ configuration files; for DJGPP 2.01
users you will need to add this to the DJGPP.ENV file located in your
x:\djgpp directory where x:\djgpp is where you install your compiler).

Note: For Watcom C++ Users, by default Watcom C++ compiles all source
code using register based parameter passing, so by default all
SciTech Software libraries are compiled with register based
parameter passing. If you are compiling and linking you code for
stack based parameter passing, you will need to link with a different
set of libraries. All libraries are provided with both stack and register

SciTech MGL12

based versions for Watcom C++ and the default libraries use register
based parameter passing. The stack based libraries will have the
same name as the register based versions of the libraries, but will
have an extra ‘s’ added to the front of the library name. Hence the
SciTech MGL/Lite library for stack based parameters is called
SMGLLT.LIB rather than MGLLT.LIB.

Once you have done this, you can simply start using the library files as
provided. If you intend to re-compile any of the sample programs using the
supplied makefiles from the command line, you will need to follow the
additional steps outlined below.

Using the Optional Makefile Utilities

In order to be able to re-compile any of the sample programs using the
supplied makefiles from the command line, or re-build any of the libraries
that come with source code, you will also need to install the SciTech
Software Makefile Utilities package (re-run the installation program and
install this if you have not done so already). This installs all of the relevant
executable utility files (including the freeware make program called
DMAKE), batch files and DMAKE startup scripts required to re-compile the
examples for any of the supported compilers.

The makefile utilities package was developed by SciTech Software to allow
us to build all of our code from the command line for any of the supported
compilers and operating systems using a common set of makefiles. This is
achieved by using a standard make program that supports powerful make
startup scripts which are changed to reflect the currently selected compiler.
To complete the process we also provide a number of utility programs and
batch files that can be used to fully automate this process.

The installation program also installs the MKSETUP.EXE configuration
program that can be used to re-configure the makefile utilities using a
convenient ‘wizard’ style interface. This configuration program allows you
to set up the locations to all your compilers and select which compiler you
want to be your default compiler. Once you have done this the configuration
program will edit all the configuration files for you, so that you can get up
and running quickly. If you move your compilers or change any of this
information, you can simply re-run the configuration program (located
conveniently on the Start Menu in the folder you install the SciTech MGL
program folder icons into). The following explains the setup and

Installation 13

configuration steps for the Makefile Utilities setup program:

1. Run the Makefile Utilities Configuration Program (located on the
Start Menu under the program folder you installed the SciTech MGL
into):

This dialog box contains locations to the root directories for the
compilers supported by the Makefile Utilities. The initial values will be
suggested values based on the defaults directories that the compilers
normally install into, but you should modify all the entries for the
compiler that you will be using (you can safely ignore any entries for
compilers you don’t use).

Click on the ‘Search’ button to browse for the directory on your hard
drive.

2. Click ‘Next’ to bring up the ‘Set Default Path’ screen:

SciTech MGL14

The path listed will be the current path used by Windows, and you
should modify this path to include all the directories you want on the
path minus any compiler specific paths. This variable is used by the
SciTech Makefile Utilities batch files to construct the complete path for
the selected compiler by appending the above path to the end of the
compiler specific paths.

3. Click ‘Next’ to bring up the ‘Select Default Compiler’ screen:

In here you should select the compiler that you want to be selected as
the default compiler when you start an ‘MGL Compilation Shell’
command prompt. You can of course change the selected compiler at
any time using the SciTech Makefile Utilities batch files, but this
provides a mechanism to automatically enable the compiler you use the

Installation 15

most as the default.

4. Click ‘Next’ to bring up the ‘Complete Setup’ screen:

You have now completed the setup process. You can click ‘Back’ to go
back and review all the setup information, and the clock ‘Update’ to
complete the updating of the configuration files.

Once you have complete the setup process, you can simply run the
C:\SCITECH\STARTMGL.BAT batch file and you are ready to begin
compiling your programs with your default compiler. For Windows 95 and
Windows NT 4.0 the install program will have added a shortcut to your
Start Menu (called the ‘MGL Compilation Shell’) which will execute the
STARTMGL.BAT batch file with the appropriate settings.

Note: For the Makefile Utilities to work properly, you must have at least
2048 bytes of environment space available. To change this with a
normal DOS configuration, add the /E:2048 command line switch to
the end of your SHELL= command line. If you are using the latest
4DOS from JP Software (highly recommended) then you can do this
in the 4DOS startup files. For Windows 95 and Windows NT 4.0
users, you can simply use the provided ‘MGL Compilation Shell’
shortcut installed in your Start Menu that is pre-configured with the
appropriate command line switches.

Manually Configuring the Makefile Utilities

Once you have installed the makefile utilities onto your hard drive, you may

SciTech MGL16

want to manually edit the configuration files. This section contains detailed
information about how to set up your compiler configuration by manually
editing all the configuration files.

Change the default executable path in your AUTOEXEC.BAT file to include
the c:\scitech\BIN directory (where ‘c:\scitech’ is where you installed the
SciTech MGL files). This can be placed anywhere on your path, so long as
the DMAKE.EXE file in the BIN directory will be found first (if there is
another program with the same name).

Edit the C:\scitech\BIN\SET-VARS.BAT batch file to set environment
variable SCITECH to point to the c:\scitech directory. The SCITECH
environment variable is used by the batch files in the BIN directory for
setting up for compiling with a particular compiler, and by the DMAKE
program so that it can find all of the relevant files during compilation (such
as include files).

Edit the C:\scitech\BIN\SET-VARS.BAT batch file to set the environment
variable SCITECH_LIB to point to the c:\scitech directory. The
SCITECH_LIB environment variable is used by the batch files in the BIN
directory to determine where to find all library files, and where to install
new files when they are built. By default this is usually the same as the
SCITECH variable, but you can make this point to a different drive if your
libraries are not located in the normal location. This is extremely useful if
you are re-building libraries over a network, and want all the final builds of
the libraries to be located on a single machine on the network.

Edit the C:\scitech\BIN\SET-VARS.BAT batch file to set up the
environment variables needed by the remainder of the utility batch files.
This file is an example that we use for DOS, so you can start with this to
build your own configuration file. This should be the only batch file in the
BIN directory that should need to be modified as all the remaining batch
files feed off the environment variables set up by this master batch file. This
batch file essentially lets the rest of the system know where you have
installed all of your compiler specific files such as your include and library
files.

So an example SET-VARS.BAT configuration might be as follows:

Installation 17

 @echo off
 SET SCITECH=c:\scitech
 SET SCITECH_LIB=c:\scitech

 SET BC3_PATH=C:\C\BC3
 SET BC4_PATH=C:\C\BC45
 SET BC5_PATH=C:\C\BC50
 SET VC_PATH=C:\C\MSVC
 SET VC4_PATH=C:\C\VC42
 SET VC5_PATH=C:\C\VC50
 SET SC70_PATH=C:\C\SC75
 SET WC10_PATH=C:\C\WC10
 SET WC11_PATH=C:\C\WC11
 SET TNT_PATH=C:\C\TNT
 SET DJ_PATH=C:\C\DJGPP

You should call this batch file from your AUTOEXEC.BAT file if you will
use it all the time, or run this batch file before you use any of the remaining
utilities.

Using the Makefile Utilities

To get up and running with your default compiler configuration, you can
simply run the c:\scitech\STARTMGL.BAT batch file, or you can add the
commands from this batch file to your AUTOEXEC.BAT startup file. Once
you have done that, you can switch between different compilers on the
command line simply by running the batch file that is appropriate for the
compiler you want to use:

32-bit DOS protected mode support:

bc45-d32.bat Borland C++ 4.52 32-bit DPMI32

bc50-d32.bat Borland C++ 5.0 32-bit DPMI32

dj20-d32.bat DJGPP 2.01 32-bit

wc10-d32.bat Watcom C++ 10.6 32-bit DOS4GW

wc11-d32.bat Watcom C++ 11.0 32-bit DOS4GW

SciTech MGL18

32-bit Windows support:

bc45-w32.bat Borland C++ 4.52 32-bit

bc50-w32.bat Borland C++ 5.0 32-bit

vc40-w32.bat Microsoft Visual C++ 4.2 32-bit

vc50-w32.bat Microsoft Visual C++ 5.0 32-bit

sc70-w32.bat Symantec C++ 7.5 32-bit

wc10-w32.bat Watcom C++ 10.6 32-bit

wc11-w32.bat Watcom C++ 11.0 32-bit

Note: When using Borland C++ 4.x/5.x with these batch files, you will
need to edit the supplied TURBOC.*, TLINK.*, BCC32.* and
TLINK32.* to contain the proper information for your installation.
These files are then copied by the batch files into the proper Borland
C++ installation directories to correctly set up the compiler for
compiling and linking code for the specified target environment. By
default the Makefile Utilities Configuration program will
automatically edit these files for you, but if you need to link with
different libraries that are not supplied by Borland or SciTech, you
will need to edit these files to reflect their location (or simply put
them in the SCITECH\LIB directories or your compiler’s LIB
directories).

Once you have everything set up, you should be able to run DMAKE from
the directory containing the sample programs that you wish to compile. If
things run smoothly you should get a resulting executable file that you can
run.

Standard Makefile Targets

All of the makefile utilities DMAKE startup scripts support a standard set of
targets for controlling the compilation for the current makefile. The most
common commands and useful targets that you may want to use when
building examples and re-compiling any libraries are listed in the table
below:

Installation 19

dmake Running dmake by itself in a directory will select
the default target for the makefile, which is usually
to compile and link all sample programs in that
directory. Some makefiles only support building
libraries so the default target may produce an error.

dmake -u The -u command line option forces a complete re-
build of all files, so it is useful to re-build an entire
directory from scratch.

dmake lib This re-builds the library for the directory.

dmake install This re-builds the library for the directory and
installs the final library into the appropriate
c:\scitech\LIB\xxx\xx directory. You should only
do this once you are sure that everything is working
correctly! The old library will simply be overwritten
by the new library.

Dmake clean This cleans out all object files, libraries, pre-
compiled header files etc. from the directory, but
leaves all executable files and DLL’s.

dmake cleanexe This cleans out all non-source files including all
DLL’s and EXE files.

Standard Makefile Options

All of the makefile utilities DMAKE startup scripts support a standard set of
options for controlling the way that the compilation is performed. Makefile
options are provided for turning on debug information, speed or size
optimizations and inline floating point instructions. By default when you
build files, no optimizations and no debugging information is generated.
The following table lists the most common and useful of these options for
building examples and re-compiling any libraries.

SciTech MGL20

DBG Turns on debugging information

OPT Turns on speed optimizations

OPT_SIZE Turns on size optimizations

FPU Turns on inline floating point arithmetic

STKCALL Turns on stack calling conventions for Watcom C++

USE_PMODEW Use PMODE/W replacement DOS extender for
Watcom C++

USE_CAUSEWAY Use CauseWay replacement DOS extender for
Watcom C++

Options can be passed to DMAKE in one of two ways: on the command line
or as global environment variables. For instance the following are
equivalent:

 dmake DBG=1 OPT=1 install

or

 set DBG=1
 set OPT=1
 dmake install

Assembling 32-bit code

All of SciTech Software's assembler code is written in Borland TASM IDEAL
mode, so you will need a copy of Borland TASM in order to re-assemble the
assembler code. If you are assembling for 32-bit protected mode, you MUST
use TASM 4.0 or later, since TASM 3.1 and earlier do not generate correct 32-
bit code in some instances. If you don’t have a copy of Borland TASM but
you wish to re-build the C code portions of the libraries, you can recompile
and link with just the module you need, or you can use your compiler’s
librarian utility to extract the pre-assembled modules from the libraries that
you wish to build (see your compiler’s documentation for more
information).

Changing the default DOS extender

All of the SciTech Software DOS libraries are DOS extender independent.
All DOS extender dependent information is encapsulated in the
PMODE.LIB library files. The default library provided for each of the

Installation 21

compilers is compiled for the default DOS extender normally used by that
compiler. All you need to do in order to use a different DOS extender is re-
compile the PM/Pro library with the appropriate command line options,
and then link with this new library.

SciTech Standard Directory Tree

All SciTech Software products install into a common directory structure so
that all header files and library files are all stored in common locations. This
makes it very easy to find particular library files and include files that you
need, but it also means that once you have set yourself up for compiling and
linking with one SciTech Software product, installing and using another is
simple because everything will already be set up.

The following is a brief outline of the common directory tree structure.

SciTech MGL22

SCITECH ROOT directory (SCITECH is default directory name)
³
ÃÄÄÄBIN Useful tools and batch files for library building
³
ÃÄÄÄDOC Documentation files. Each individual product has
³ ÃÄÄÄMGL its own separate directory which contains all files
³ ÃÄÄÄ... specific to that product.
³ ÀÄÄÄSVGAKIT
³
ÃÄÄÄREDIST All reditributable DLL and EXE components
³
ÃÄÄÄRDST-AXP DEC ALpha reditributable DLL and EXE components
³
ÃÄÄÄFONTS All MGL font files installed here.
³
ÃÄÄÄBITMAPS All MGL bitmap files installed here.
³
ÃÄÄÄCURSORS All MGL mouse cursor files installed here.
³
ÃÄÄÄICONS All MGL icon files installed here.
³
ÃÄÄÄEXAMPLES Any example source code. Separate sub-directories
³ ÃÄÄÄMGL are provided for each of the different products.
³ ÃÄÄÄ...
³ ÀÄÄÄOPENGL
³
ÃÄÄÄINCLUDE All installed header files.
³
ÃÄÄÄLIB All installed library files.
³ ÃÄÄÄDOS32 All 32 bit DOS libraries
³ ³ ÃÄÄBC4 Borland C++ 4.52
³ ³ ÃÄÄBC5 Borland C++ 5.02
³ ³ ÃÄÄWC10 Watcom C++ 10.6
³ ³ ÃÄÄWC11 Watcom C++ 11.0
³ ³ ÀÄÄDJ2 DJGPP 2.01
³ ÃÄÄÄWIN32 All 32 bit Windows libraries
³ ³ ÃÄÄDELPHI2 Borland Delphi 2.0
³ ³ ÃÄÄDELPHI3 Borland Delphi 3.0
³ ³ ÃÄÄBC4 Borland C++ 4.52
³ ³ ÃÄÄBC5 Borland C++ 5.02
³ ³ ÃÄÄSC7 Symantec C++ 7.5
³ ³ ÃÄÄVC4 Visual C++ 4.2
³ ³ ÃÄÄVC5 Visual C++ 5.0
³ ³ ÃÄÄWC10 Watcom C++ 10.6
³ ³ ÃÄÄWC11 Watcom C++ 11.0
³ ³ ÀÄÄIC35 IBM VisualAge for C++ 3.5
³ ÀÄÄÄNT-AXP All 32 bit Windows libraries for DEC Alpha
³ ÃÄÄVC4 Visual C++ 4.1
³ ÀÄÄVC5 Watcom C++ 4.0
³
ÀÄÄÄSRC All source code for building the libraries (if
 ÃÄÄÄMGL provided). Each package has a separate directory
 ÃÄÄÄ... that contains all of the source code and makefiles
 ÀÄÄÄGM for building the library and installing it under
 \SCITECH\LIB.

Letting SciTech MGL Know Where to Find Shared Resources

SciTech MGL provides a number of functions for loading shared resource
files such as Windows bitmaps, fonts, cursor and icons. In order for SciTech
MGL to be able to find these files, a standard search algorithm is always
used (see MGL_loadBitmap in the MGL Reference Guide for more

Installation 23

information). The last resort used is to look for all files relative to the
MGL_ROOT environment variable, which is normally set to point to the
directory where you installed SciTech MGL. Under the MGL root directory
will be a set of BITMAPS, FONTS, CURSORS and ICONS that contain the
resource files that all the MGL sample programs use. When you installed
SciTech MGL the installation program would have modified the
STARTMGL.BAT batch file in the directory that you install SciTech MGL
into to set up this environment variable, and you may want to move the
commands from this batch file to your AUTOEXEC.BAT file.

If you don’t set this environment variable and you compile any of the MGL
sample programs and run them directly from the installation directories, the
samples will not be able to find the files they need and will exit with an
error message. In this case simply set the MGL_ROOT variable manually to
point to the directory where you installed SciTech MGL.

When you distribute your applications built with SciTech MGL, you can
simply store all shared resource files in subdirectories below where your
application program is located and you won’t need to set this environment
variable.

SciTech MGL24

Getting Started with SciTech MGL

This section provides an overview of the SciTech MGL graphics library,
including information on how to get started compiling and linking your
code with the SciTech MGL libraries.

Differences Between MGL/Lite and Regular Libraries

SciTech MGL is provided with two different sets of libraries. The primary
reason for this is to cut down on the amount of code that needs to be linked
into an application if you are not using all of SciTech MGL’s functionality.
For instance, if you are developing a game and have all your own custom
rendering code, you can link with the MGL/Lite library to only link with
the absolute minimum functionality that you require.

Essentially the MGL/Lite library contains only the basic initialization and
setup code, pixel plotting, line drawing, basic blitting and device clearing
code. Below is a summary of the functionality that is included and excluded
from the MGL/Lite libraries.

Functions included in MGL/Lite

All initialization and setup functions (MGL_init, MGL_createDisplayDC)
MGL_setColor family
MGL_pixel family
MGL_line family (single pixel solid lines only)
MGL_clearDevice, MGL_clearViewport
MGL_bitBlt from system memory to screen and back (no write modes)
MGL_stretchBlt from system memory to screen and back (no write modes)
Mouse cursor support
Viewport and clip rectangle support

Although the SciTech MGL API functions themselves are only linked if you
call those functions, the low level device driver rendering code is all linked
in whenever you register a specific device driver for use. Since a large
percentage of the high performance code in SciTech MGL is located in the
device drivers, linking with the full SciTech MGL libraries can bring in a lot

Getting Started with SciTech MGL 25

of extra baggage if you are not all the rendering functions.

Functions NOT included in MGL/Lite

Scanline filling
Rectangle filling
Text output
Markers
Wide pen support
Bitmap pattern support
Polyline drawing
Polygon filling
Scanline color scanning
Border drawing
Ellipse drawing
Stretch Blting
Divot support
Onscreen BitBlt’s
Transparent Blting
Offscreen hardware Blting
Monochrome bitmap support
Complex region support
Icon loading/drawing support
Bitmap loading/drawing support
PCX file loading/drawing support
Dithering support
Bitmap translation or palette translation support

Compiling and Linking with SciTech MGL

To compile standard C code to use SciTech MGL, you only need to include
the MGRAPH.H header file in your source files. This file contains all the
information required to compile MGL code, and you simply link your
application with the appropriate MGLxx.LIB library supplied for your
compiler. These libraries are listed in the table below individually for both
DOS and Windows. If you are compiling C++ code you can either stick to

SciTech MGL26

the C based MGL API, or you can also use the optional C++ wrapper
functions for SciTech MGL (used by all of the Plus Pack C++ libraries). To
use the C++ wrapper API simply include the MGRAPH.HPP header file and
link with both the MGLxx.LIB and MGLCPP.LIB library files for your
compiler.

SciTech MGL consists of a number of header files and static link libraries,
and the following sections describes the files and their purpose.

Standard C Header Files

Header File Purpose

MGRAPH.H Main MGL header file

MGLDOS.H MGL DOS specific header file

ZTIMER.H Zen Timer library header file

GL\GL.H Main OpenGL header file

GL\GLU.H Main OpenGL Utility Library header file

GL\GLUT.H GLUT OpenGL sample program framework header

GL\GLUTDLG.RH Resource header for GLUT sample programs

GL\GLUTDLG.RC Resource file for GLUT sample programs

GM\GM.H Game Framework header file

GM\SPRITE.H Sprite Manager header file

Note: You do not need to directly include the MGLDOS.H or MGLWIN.H
header files. These header files are automatically included when you
build your applications for either DOS or Windows (the header files
automatically determine the target environment).

Standard C++ Header Files

Header File Purpose

MGRAPH.HPP Main MGL C++ header file

MGLPOINT.HPP MGL C++ header file for MGLPoint class

MGLRECT.HPP MGL C++ header file for MGLRect class

GM\SPRBMP.HPP Sprite Manager C++ header file

Getting Started with SciTech MGL 27

DOS Runtime Libraries

SciTech MGL for DOS consists of a number of static link libraries, and the
following files comprise the full MGL library package (see Installation for
details on where the files will be located).

Library File Purpose

MGLLT.LIB MGL/Lite static link library

MGLFX.LIB MGL static link library

MGLDB.LIB MGL debug static library for Borland C++

MGLCPP.LIB MGL C++ binding static link library

MESAGL.LIB Mesa OpenGL implementation for DOS

MESAGLU.LIB Mesa OpenGL utility library for DOS

GLUT.LIB GLUT OpenGL sample program library

GM.LIB Game Framework library

ZTIMER.LIB Zen Timer Library

Note: Watcom C++ users are also provided with a complete set of stack
calling convention libraries with the same names as the above
libraries, but with a pre-pended ‘s’ at the start (i.e.: SMGLFX.LIB is
the main MGL library for stack calling conventions).

Special DOS Debugging Libraries for Borland C++

For Borland C++ users we have also supplied special debugging libraries to
get around certain problems with the Borland debuggers.

If you are compiling and linking code for the Borland C++ DOS IDE and
wish to debug the code from within the IDE, you cannot link your code with
the standard MGLFX.LIB library. SciTech MGL installs its own keyboard
interrupt handling routines, and the IDE debugger does not correctly save
and restore these vectors while it debugs you code, so the IDE will hang
once you hit your first breakpoint and attempt to step into any code. To get
around this problem link your code with the MGLDB.LIB library in the
DOS16\BC3 directory. This version does not install a keyboard interrupt
handler. However your application may not receive keyboard and mouse
events in the order that the user issued them, and you won’t get separate

SciTech MGL28

KEYDOWN, KEYREPEAT and KEYUP events (you only get KEYDOWN’s).

If you are compiling and linking code for the Borland C++ 4.52 32-bit DOS
PowerPack, and you wish to debug your code with the TD32 debugger, you
cannot link with the standard MGLFX.LIB library. For the same reason
outlined above, the TD32 debugger does not correctly save and restore
DPMI interrupt handlers and hence as soon as SciTech MGL is initialized,
the debugger’s keyboard handler is locked out and you cannot debug your
code! The MGLDB.LIB library provided in the DOS32\BC directory does not
include a keyboard interrupt handler and has the same caveats as the BC++
3.1 version. Also note that TD32 does not correctly handle user installed
mouse handlers, and hence while debugging MGL code the TD32 mouse
handler will be locked out and you will not be able to use the mouse from
within the debugger.

Windows Runtime Libraries

SciTech MGL for Windows can also be compiled to use the DLL version of
the SciTech MGL libraries. By default when you compile the code it selects
the static link libraries, so to select the DLL version you must #define
MGL_DLL in your IDE’s project options or on the compiler command line.
Then to use the DLL you need to link with the appropriate MGLxxI.LIB
import library for you compiler. When you have compiled for the DLL
version, your application will require the appropriate MGLxx.DLL library
file to be present on the path when it is run (or in the same directory as your
application).

SciTech MGL for Windows consists of a number of static link libraries, and
optional 32-bit DLL’s for Windows applications. The following files
comprise the full MGL library package (see installation section for details on
where the files will be located).

Getting Started with SciTech MGL 29

Library File Purpose

MGLLT.LIB MGL/Lite static link library

MGLLTI.LIB MGL/Lite DLL import library

MGLFX.LIB MGL static link library

MGLFXI.LIB MGL DLL import library

MGLCPP.LIB MGL C++ binding static link library

MGLLTWI.LIB Watcom C++ MGL/Lite DLL import library

MGLFXWI.LIB Watcom C++ MGL DLL import library

GLUT.LIB GLUT OpenGL sample program library

GM.LIB Game Framework library

ZTIMER.LIB Zen Timer Library

SciTech MGL also requires a number of runtime DLL’s which are all located
in the c:\scitech\REDIST directory where you installed the SciTech MGL.
All the DLL’s are listed below, however you only need to ship the necessary
DLL’s for your runtime environment and selected compiler (see the
Appendix A : Shipping your MGL for more information on the DLL’s you
need to ship with your product).

SciTech MGL30

Runtime DLL Purpose

MGLLT.DLL MGL/Lite Win32 DLL

MGLFX.DLL MGL Win32 DLL

MGLLTW.DLL Watcom C++ specific MGL/Lite Win32 DLL

MGLFXW.DLL Watcom C++ specific MGL Win32 DLL

MGLGM.DLL MGL Game Framework DLL for Delphi

MGLGLUT.DLL MGL OpenGL GLUT DLL for Delphi

ZTIMER.DLL Zen Timer Library DLL for Delphi

SGIGL.DLL Silicon Graphics OpenGL for Windows

SGIGLU.DLL Silicon Graphics OpenGL for Windows

OPENGL95.DLL Microsoft Windows 95 OpenGL

GLU95.DLL Microsoft Windows 95 OpenGL

MESAGL.DLL Mesa OpenGL clone

WDIR16.DLL SciTech WinDirect 16-bit side DLL (required!)

WDIR32.DLL SciTech WinDirect 32-bit side DLL

Note: The OPENGL95.DLL and GLU95.DLL libraries must be renamed to
OPENGL32.DLL and GLU32.DLL respectively, and then installed
into the Windows 95 system directory. The library files are Windows
95 specific and must not be installed on Windows NT!

Special Win32 DLL’s for Watcom C++ users

The standard MGL Win32 DLL’s use the __cdecl calling conventions for all
public functions, as this is a common standard supported by all compilers.
However by default Watcom C++ always uses register based parameter
passing and although you can compile and link with the standard
MGLxx.DLL’s, the calling conventions used will be different than those
used by the standard MGLxx.LIB static link libraries.

If however you plan to compile and link your code with the C++ wrapper
API or with the SciTech MGL for Windows Plus Pack libraries, these
libraries are all compiled to use the faster register based calling conventions.
You might also want to use it because it will provide for faster code that is
comparable to the static link library version. For this reason we have also
provided a special DLL for Watcom C++ that is compiled to use register

Getting Started with SciTech MGL 31

based calling conventions for all public functions. To use this DLL simply
need to link you code with appropriate MGLxxWI.LIB import library rather
than the MGLxx.LIB static link library. You don’t need to #define
MGL_DLL as this is only required if you are linking with the MGLxx.DLL
library.

When you have compiled for the Watcom C++ specific DLL, your
application will require the appropriate MGLxxW.DLL library file to be
present on the path when it is run (or in the same directory as the
application).

Note: This DLL can only be called from Watcom C++ code and cannot be
used with any other compiler.

Where to Next? The MGL Sample Programs

This section gives a brief overview of the MGL sample programs to give you
an idea of the best place to start learning about SciTech MGL. All programs
except for the WMGLDOG and WSHOWBMP demos can be compiled and
run under both fullscreen DOS and fullscreen Windows (fullscreen
Windows support requires WinDirect or Microsoft DirectX to be installed;
WinDirect is provided as part of the SciTech MGL). Note also that none of
the C++ sample programs have been ported to Borland Delphi, only the C
sample programs.

Note that all MGL sample programs are provided with Integrated
Development Environment (IDE) project files for all supported compilers.
All of the SciTech MGL example projects are included in a single IDE. IDE
files exist for each of the compilers supported by the SciTech MGL, and
there will be a directory for each supported compiler within the
c:\scitech\EXAMPLES\MGL directory. For instance the IDE files for
Borland C++ 4.5 will be in the BC4-IDE directory, those for Borland C++ 5.0
will be in the BC5-IDE directory and those for Visual C++ 4.2 will be in the
VC4-IDE directory etc.

MGL Sample Programs

All the MGL sample programs are located in the
c:\scitech\EXAMPLES\SAMPLES directory, and most of them use the
MGLSAMP.C utility module to initialize and set up SciTech MGL. Hence
the sample code itself only contains the functions illustrated by that sample

SciTech MGL32

program to keep it clear what is code related to that function and what is
general SciTech MGL maintenance code.

BITBLT.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\BITBLT.C

This simple sample program shows how to use the MGL_bitBlt functions to
move blocks of data around on the screen.

BITMAP.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\BITMAP.C

This simple sample program shows how to use SciTech MGL to load a
bitmap file from disk and display it on the screen.

DIRECT.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\DIRECT.C

This is a very simple sample program that shows how to directly access the
display surface for a device context, and shows how you can integrate your
own custom rendering code with SciTech MGL rendering code. It shows
drawing lines directly to video memory and directly to a system memory
buffer using identical code. Can be compiled and linked with the MGL/Lite
libraries.

ELLIPSES.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\ELLIPSES.C

This simple sample program shows how to use SciTech MGL ellipse
functions to draw ellipses and elliptical arcs on the screen.

HELLO.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\HELLO.C

This is a simple hello world style program that shows how to get up and
running with your first MGL program. It simply uses the 640x480x4
standard VGA 16 color mode and draws a bunch of lines. This would be the

Getting Started with SciTech MGL 33

first program you should try to get up and running on your system.

LINES.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\BITBLT.C

This simple sample program shows how to use the MGL line drawing
functions to draw lines on the screen in interesting patterns.

MGLDEMO.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\MGLDEMO

This is a full featured demo program that exercises nearly every part of the
SciTech MGL API. By default this demo runs in the 640x480x4 standard
VGA mode, but you can select the graphics mode to use from the command
line (run MGLDEMO -h for a list of graphics modes). This is a good example
showing you how to select any graphics mode at runtime, and how to
handle color issues for a single executable that needs to run in both 4/8-bit
palette modes and 15/16/24/32-bit RGB modes.

The demo is quite long but it contains code showing how to do just about
everything with the SciTech MGL API, from palette fades to floodfills to
high speed polygon filling.

MOUSE.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\MOUSE.C

This simple sample program shows how to use SciTech MGL to display a
mouse cursor in fullscreen graphics modes, and how to change the shape of
the mouse cursor from your code.

MOUSEDB.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\MOUSEDB.C

This simple sample program shows how to use SciTech MGL to display
flicker free mouse cursors while doing double buffered animation. Two
different methods are outline for two different types of animation that can
be used.

SciTech MGL34

PAGEFLIP.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\PAGEFLIP.C

This simple sample program shows how to use the MGL page flipping
functions to implement double and multi-buffered, smooth animation.
Includes support for triple buffering as well.

PALETTE.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\PALETTE.C

This simple sample program shows how to use the MGL palette
manipulation functions for changing the color palette in 8-bit graphics
modes, as well as doing palette fades and rotates.

PCX.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\PCX.C

This simple sample program shows how to use SciTech MGL for loading
and displaying a PCX bitmap file from disk.

PIXELFMT.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\PIXELFMT.C

This simple sample program shows how to use SciTech MGL to load a
bitmap with a different pixel format to the screen, and use SciTech MGL to
Blt it to the screen with automatic color depth translation. This sample also
shows how to create your own memory buffers with specific pixel formats
for 15-bit and above memory buffers.

POLYS.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\POLYS.C

This simple sample program shows how to use SciTech MGL to draw
polygons on the screen.

RECTS.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\RECTS.C

Getting Started with SciTech MGL 35

This simple sample program shows how to use SciTech MGL to display both
filled and outlined rectangles on the screen with different pen widths.

REGIONS.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\REGIONS.C

This simple sample program shows how to use the MGL region
manipulation functions to create regions, display them on the screen and do
math operations such as unions, intersections and differences using SciTech
MGL.

SPRITES.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\SPRITES.C

This simple sample program shows how to use SciTech MGL for displaying
sprites on the screen, and include code to automatically use an offscreen
memory device context for storing the sprites in offscreen video memory
and using the hardware blitter to move the sprites around on the screen.

STEREO.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\STEREO.C

This simple sample program shows how to use the MGL stereo LC shutter
glasses support to load and display stereo bitmaps, and enable and display
stereo viewing with SciTech MGL. You will require a pair of supported
stereo LC shutter glasses to be able to view the images generated by this
sample program!

STRETCH.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\STRETCH.C

This simple sample program shows how to use SciTech MGL to stretch
bitmaps from a system memory buffer to the screen. SciTech MGL supports
both fast shrinking and expanding of bitmaps, and this sample program
demonstrates both types of stretching.

TEXTDEMO.EXE

SciTech MGL36

c:\scitech\EXAMPLES\MGL\SAMPLES\TEXTDEMO.C

This simple sample program shows how to display text on the screen using
SciTech MGL, and shows both bitmap fonts and vector fonts.

VIEWPORT.EXE
c:\scitech\EXAMPLES\MGL\SAMPLES\VIEWPORT.C

This simple sample program shows how to use the MGL viewport functions
to change the local coordinate system for all output and move it to a
different location on the screen.

Game Framework Sample Programs

The Game Framework sample programs include simple sample programs
that show how to get started quickly, along with full fledged sprite demos
and OpenGL demonstration programs. Most but not all are located in the
c:\scitech\EXAMPLES\MGL\GM directory.

BOUNCE.EXE
c:\scitech\EXAMPLES\GM\BOUNCE.C

This is a very simple Game Framework sample program that shows how to
use the Game Framework and show a bouncing ball animation around on
the screen. It uses all of the Game Framework features such as automatically
switching between windowed and fullscreen modes, and supporting all
available color depths.

FOXBEAR.EXE
c:\scitech\EXAMPLES\MGL\FOXBEAR

This is complete sprite based C++ animation demo, based on ATI
Technologies Fox & Bear benchmark program. It fully supports both high
performance RLE based software transparent sprites combined with
hardware accelerated transparent sprites via the SciTech Game Framework
and the SciTech Sprite Manager libraries. This sample programs makes
extensive use of the SciTech Game Framework and the SciTech Sprite
Manager, so it is a gold mine of information on using these libraries for

sprite based animation.

Getting Started with SciTech MGL 37

Unlike the original ATI demo, this version was essentially rebuilt as a set of
real C++ classes and provides full support for scaling the original 640x480 8-
bit bitmap data to any graphics mode resolution ranging from 320x200x8 up
to 1600x1200x32! With hardware accelerated rendering this demo can reach
speeds of 72fps at 1024x768x8 with double buffering (on a 486DX266 with a
4Mb ATI Mach64). With software only rendering it can reach speeds of 30-
40fps at 640x480x8 on a fast Pentium90 machine with VBE 2.0 PCI graphics
card.

Also included in this demo is optional sound support using the
DiamondWare Sound ToolKit for DOS and Windows, showing how you can
include sound support in your SciTech MGL applications. For more
information on these libraries, check out the shareware versions supplied on
the \COOLSTUFF\DWSTK directory of the installation CD-ROM.

GEARS.EXE
c:\scitech\EXAMPLES\GM\GEARS.C

This is a very simple Game Framework sample program that shows how to
use the Game Framework and OpenGL to draw 3D scenes on the screen in
real time. It uses all of the Game Framework features such as automatically
switching between windowed and fullscreen modes, and supporting all
available color depths with OpenGL.

For more complete sample programs specific to OpenGL, see the
c:\scitech\EXAMPLES\OPENGL directory which contain many more
OpenGL sample programs, some of which use the Game Framework and
others which use the GLUT Utility libraries.

SKYFLY.EXE
c:\scitech\EXAMPLES\OPENGL\SKYFLY

This is a neat OpenGL sample program developed originally by Silicon
Graphics and ported to SciTech MGL by SciTech Software. This sample
program shows how to use the Game Framework with OpenGL, as well as
showing a simple terrain renderer in action based on OpenGL.

This sample program also shows how to set up and display stereo 3D scenes
using SciTech MGL and OpenGL (run with -stereo from the command line if
you have LC shutter glasses!).

SciTech MGL38

General MGL Demo Programs

The following MGL demo programs show off different aspects of SciTech
MGL, and as such as not specifically good sample programs to learn how to
get started with SciTech MGL. However most do contain lots of interesting
things that can be done with SciTech MGL, so when you are more
experienced with SciTech MGL you might want to come back and
investigate what these sample programs do.

DEMO.EXE
c:\scitech\EXAMPLES\MGL\DEMO

This sample program shows off most of the capabilities of SciTech MGL
using the MegaVision C++ GUI interface class library. It is essentially a GUI
version that contains much the same functionality as the MGLDEMO
sample program, but allows the user to switch graphics modes on the fly
using the Graphics mode dialog box.

DEMO3D.EXE
c:\scitech\EXAMPLES\MGL\DEMO3D

This sample program shows off the 3D capabilities of SciTech MGL using
the Quick3D and QuickModeler libraries. This application itself is actually
very simple, as the Quick3D and QuickModeler libraries take care of most of
the details related to performing the 3D rendering. It is a good reference to
determine how to use the MegaVision file browser dialog box and how to
perform hardware double buffered animation in a MegaVision GUI
window.

MGLDOG.EXE
c:\scitech\EXAMPLES\MGL\MGLDOG

This sample program is a simple program showing how you can use the
SciTech MGL for displaying transparent bitmaps for sprite and animation
effects. It is loosely based on the WinG DOGGIE sample program, but fully
supports all color depths and resolutions.

This sample is a good place to get information on how to load bitmaps,
convert them to the color format of the display, allowing for maximum

Getting Started with SciTech MGL 39

performance when blitting the bitmaps to the screen.

PLAY.EXE
c:\scitech\EXAMPLES\MGL\SMACKER

This is a fullscreen Smacker video player for both DOS and Windows.
Smacker is a cool package for compressing animation and sound files into 8-
bits per pixel videos, and is used in many commercial games for video
playback. This demo shows how you can integrate SciTech MGL and
Smacker together for high performance video playback in any of the
resolutions supported by SciTech MGL. For more information on Smacker
check out the Smacker Toolkit in the \COOLSTUFF\SMACKER directory
on your installation CD-ROM.

SHOWBMP.EXE
c:\scitech\EXAMPLES\MGL\SHOWBMP

This is a fullscreen version of the WSHOWBMP demo, and is based on the
SHOWBMP.EXE demo in the WinG SDK. It shows how to load a bitmap or
PCX file directly into a device context surface in fullscreen graphics modes,
and will automatically do on the fly color conversion of bitmaps to the
selected graphics mode.

WMGLDOG.EXE
c:\scitech\EXAMPLES\MGL\WMGLDOG

This sample program is the same as the MGLDOG program above, but
displays all output in a window on the desktop rather than fullscreen. It is
good sample program to start with if you want to learn how to use the
SciTech MGL for drawing to a window on the desktop.

WSHOWBMP.EXE
c:\scitech\EXAMPLES\MGL\WSHOWBMP

This is a windowed version of the SHOWBMP.EXE demo, and is based on
the SHOWBMP.EXE demo in the WinG SDK. It shows how to load a bitmap
directly into a system memory device context surface and display that in a
Window. It automatically does on the fly color conversion of bitmaps to the

SciTech MGL40

current GDI display mode and will handle HiColor and TrueColor graphics
modes properly under Windows 95 and Windows NT.

This demo also contains code showing how to create and use the SYS_PAL
static mode to properly create a palette that will allow your applications to
display 254 colors out of the total 256 (256 if you can use black and white as
0 and 255).

OpenGL Sample Programs

All of the SciTech MGL OpenGL specific sample programs and located
under the c:\scitech\EXAMPLES\OPENGL directory, and may be located
in sub-directories specific to each sample program. Most of the sample
programs use the free OpenGL Utility Library (GLUT) ported to the SciTech
MGL, which allows you to download most OpenGL sample code of the
internet based on GLUT and simple compile and link it with SciTech MGL.

Note that we have only listed a small selection of the available OpenGL
sample programs, so please check the directories as we have included as
many sample programs as we could lay out hands on for your enjoyment.

ATLANTIS.EXE
c:\scitech\EXAMPLES\OPENGL\ATLANTIS

This is a simple OpenGL sample program based on GLUT that shows a
bunch of fish swimming around in the ocean.

GEARS.EXE
c:\scitech\EXAMPLES\OPENGL\DEMOS\GEARS.C

This is a simple OpenGL sample program based on GLUT that shows some
gears rotating around on the screen. This is the same code that the Game
Framework gears program is based on, and shows the difference between
using the Game Framework and the GLUT libraries for OpenGL
development.

GEARS2.EXE
c:\scitech\EXAMPLES\OPENGL\DEMOS\GEARS2.C

Getting Started with SciTech MGL 41

This is a simple OpenGL sample program based on GLUT that shows a
different set of gears spinning around on the screen.

MECH.EXE
c:\scitech\EXAMPLES\OPENGL\DEMOS\MECH.C

This is a simple OpenGL sample program based on GLUT that shows a
mechanical robot strolling down the street of a futuristic city.

MOTH.EXE
c:\scitech\EXAMPLES\OPENGL\DEMOS\MOTH.C

This is a simple OpenGL sample program based on GLUT that shows a view
of a moth spinning around a lamp post in the middle of a room, as the room
zooms in from the distance toward the viewer.

RINGS.EXE
c:\scitech\EXAMPLES\OPENGL\DEMOS\RINGS.C

This is a simple OpenGL sample program based on GLUT that shows the
classic spinning Olympic rings.

IDEAS.EXE
c:\scitech\EXAMPLES\OPENGL\IDEAS

This is a simple OpenGL sample program based on GLUT that shows the
classic Silicon Graphics ‘Ideas in Motion’ animation sequence.

SciTech MGL42

Using SciTech MGL

Building Your First Fullscreen MGL Program

To get started with SciTech MGL, we’ll build a simple, full-screen
application which has minimal logic but which does contain the basic
elements of any full-scale SciTech MGL application.

The MGLDOG.EXE Sample Program

To open and browse your first fullscreen MGL program:

1. Open the Examples IDE for your compiler.

All of the SciTech MGL example projects are included in a single IDE.
IDE files exist for each of the compilers supported by the SciTech MGL.

For example, if you are using Borland’s C++ v5.02, your IDE would be
found in this directory:

<root>\scitech\MGL\examples\bc50-ide\

2. Run the MGLDOG node in the project.

The MGLDOG program is quite simple. An image of a red dog appears
in the center of the screen:

Using SciTech MGL 43

• Hold the left mouse button down to paint the screen with dogs

Note that the dogs are copied with Source Transparency. Pixels in the
new image which are the same color as pixels in the underlying image
are not copied.

• Click the right mouse button to copy an instance of the dog sprite to the

SciTech MGL44

screen:

Note that this time the dog sprite is copied without source transparency.
The black pixels around the figure of the dog overwrite the pixels of the
underlying image.

What is a Fullscreen MGL Program?

Most people are familiar with windowed applications. A windowed
application runs in the context of a window, an object provided by the
operating system. The operating system provides various services to
windows, including the transmission of system events. Examples of events
include the user pressing a key on the keyboard, moving the mouse,
minimizing or maximizing the window. A windowed applications window
can be programmed to respond in various ways to these events. For game
programmers, events are the key to controlling user interaction with the
game.

Windows provide a framework within which a complex application can
run, and also provide an interface governing the interaction between the
application and the rest of the system.

Windows does not, however, provide the maximum in flexibility in terms of
the parameters game developers are often most interested in: fullscreen

Using SciTech MGL 45

graphics. A windowed application can only run in the graphics mode
(resolution and color depth) in which the operating system as a whole is
running. For example, if a user chooses to keep their desktop at 1024x768
pixels and 16.7 million of color, your game will have to provide graphics
output at that resolution. This can mean a serious degradation in
performance in order for your code to generate the necessary number of
pixels (or if a translation step must be done on the fly every frame for the
display data), or a minute display area if code intended for lower
resolutions is run at the higher resolution.

Fortunately, you can run your games in a full-screen mode. A full-screen
mode occupies the entire display, concealing the desktop. Furthermore,
full-screen mode provide complete control over graphics mode, including
resolution and color-depth. Full-screen modes are also normal windows,
however, in the sense that all the facilities for handling events and
manipulating the window are still in place. You can use the same event
handling code in a windowed and in a full-screen mode.

Initializing the MGL Fullscreen Environment

The SciTech MGL simplifies the interface to the Windows API, so
initializing the full-screen MGL environment is a matter of a simple function
call. Browse the source code for MGLDOG.C and move to the WinMain
function:

int PASCAL WinMain(HINSTANCE hInst,HINSTANCE hPrev,LPSTR
szCmdLine,int sw)
{
 ... Some code for linking with other SciTech libraries is here...
 DialogBox(hInst,MAKEINTRESOURCE(IDD_MAINDLG),NULL,
 (DLGPROC)MainDlgProc);
}

Displaying the Initial Dialog Box

The first step in this particular program is to display an initial dialog box
allowing the user to select the fullscreen graphics mode to run the demo in.
The call above initializes a dialog box, with which the user can select a
graphics mode, color depth, and driver type to use when running the demo.
Execution now shifts to the process which handles events for the window,
MainDlgProc:

 DialogBox(hInst,MAKEINTRESOURCE(IDD_MAINDLG),NULL,
 (DLGPROC)MainDlgProc);

Of course, in a real application these parameters would be determined at

SciTech MGL46

runtime. SciTech MGL and its companion library for game developers, the
Game Framework, include routines for handling hardware detection and
selecting graphics modes. For now, however, we’ll ignore these
complications and focus on the methods by which device drivers are
registered in SciTech MGL.

Note: We’ll be covering device detection in a later chapter, but if you’d like
to see how SciTech MGL detects video device drivers, have a look in
the RefreshModeList routine.

Specifying the Initial Display Mode, and Initializing SciTech MGL

The call to MGL_init establishes the initial graphics mode used when the
SciTech MGL creates Display Contexts. This mode can be overridden later
“on the fly” (see below). You should always pass in grDETECT for the driver
parameter to allow the SciTech MGL to detect and use the highest
performance driver available on your system.

MGLDC *initGraphics(void)
{
 MGLDC *dc;
 /* Start SciTech MGL and create a display device context
*/
 MGL_unregisterAllDrivers();
 MGL_registerAllDispDrivers(useLinear,useDirectDraw,
 useWinDirect);
 MGL_registerAllMemDrivers();
 if (!MGL_init(&driver,&modeNum,"..\\..\\..\\"))
 initFatalError();
 if ((dc = MGL_createDisplayDC(1)) == NULL)
 initFatalError();
 MGL_makeCurrentDC(dc);

 /* Register our suspend application callback */
 MGL_setSuspendAppCallback(doSuspendApp);

 /* Turn off identity palette checking for maximum speed */
 MGL_checkIdentityPalette(false);
 return dc;
}

Registering the Device Drivers

Without bothering too much with the specifics of the dialog box
implementation of graphics mode and driver selection, move to the
initGraphics function in MGLDOG:

Using SciTech MGL 47

The first step is to unregister any drivers which may be registered. This
clears the way for initializing and registering all the display drivers which
are present on the system with a call to MGL_registerAllDispDrivers.
Next, all known packed pixel memory drivers are detected and linked in
with a call to MGL_registerAllMemDrivers.

Note: These two functions, MGL_registerAllDispDrivers and
MGL_registerAllMemDrivers, are useful for getting code up and
running quickly. In a production environment, however, you’ll
want to specify the drivers you want registered to reduce the total
size of the resulting executable by linking in only those drivers you
application will be using. SciTech MGL will only end up linking with
the device support code for the specific drivers you specific if you
include the code in your application to register them.

Note: If you are running at a lower color-depth, and use
MGL_loadBitmapIntoDC to load a bitmap with a deeper color-depth,
SciTech MGL will translate the color-depth of the source bitmap to
the color-depth of the target DC. However, this translation
operation requires that the appropriate packed pixel memory drivers
for the source bitmap be loaded. So, you must load packed pixel
memory drivers for all the color-depths you plan to support, even if
you never intend to display images at these color depths (i.e.: if you
need to convert 24-bit bitmaps to other pixel formats, make sure you
register the PACKED24 memory driver).

Specifying Which Drivers to Support

The parameters to MGL_registerAllDispDrivers tell that function
whether or not to register all Linear, DirectDraw, and WinDirect drivers. If
you choose to do so, you can remove these drivers from the list of drivers to
be registered even if they are installed and available in the system. To do so, just
pass in a value of False for these parameters. At the same time you can force
the use of WinDirect or DirectDraw drivers by excluding other possibilities.

Note: You might want to take a look at the
MGL_registerAllDispDriversExt function which provides more
fine grained control over exactly which drivers are registered, and
for simplicity the above sample program does not use this function.

SciTech MGL48

Creating a Display Device Context

If the drivers are registered correctly, then the next step is to create an MGL
Display Device Context, or MGLDC. The display device context is the
section of memory, basically an array of pixels, to which we will render our
graphics along with the associated structures for describing that memory.
In our example, the MGLDC is created with a call to MGL_createDisplayDC:

 if ((dc = MGL_createDisplayDC(1)) == NULL)
 initFatalError();

MGL_createDisplayDC returns NULL if there is not enough memory to
create the MGLDC. This would effectively end the program, so the call to
MGL_createDisplayDC is wrapped in the appropriate error trapping code.

Note: MGL_createDisplayDC creates a device context for writing directly
to the hardware display device in full screen modes. The SciTech
MGL uses other functions to create device contexts in windowed
applications. See the MGL Library Reference for more information.

The Current Device Context

The Current Device Context is the MGLDC used for all the SciTech MGL
rendering routines. So, if you want to see the results of your rendering code,
make sure you’ve got the right MGLDC selected as the current DC. You can
make an MGLDC the current MGLDC with a call to MGL_makeCurrentDC.

Fullscreen Applications and Focus

In Windows, the application with which the user is currently interacting is
said to have the focus. Gaining or losing focus occurs when the user clicks
on another window, or uses a system key combination like ALT-TAB to shift
focus to another application. Gaining or losing focus also generates a
system event, for which you can code a specific response in your
application.

You can include code in a single routine to set up your application for losing
and regaining focus with a call to MGL_setSuspendAppCallback. Just
provide the name of a function you want executed when your application
gains or loses the focus, as on line 100.

 MGL_setSuspendAppCallback(doSuspendApp);

In general you’ll want to be sure that you reset the system to a reasonable

Using SciTech MGL 49

state in your callback function when it loses the focus, and restore the
system to the state required by your application when it regains the focus.
In MGLDOG, the callback function restores a clear image when the
application regains focus (because it is not possible to save the previous
image when the focus is lost, since by the time your application gets the
message that the has been lost the display memory has already been
changed):

{
 if (flags == MGL_REACTIVATE) {
 MGLDC *oldDC = MGL_makeCurrentDC(dc);
 MGL_clearDevice();
 MGL_makeCurrentDC(oldDC);
 }
 return MGL_SUSPEND_APP;
}

The flags argument can have one of two values, depending upon whether
the application is gaining or losing the focus:

• WD_DEACTIVATE

Losing focus.

• WD_REACTIVATE

Gaining focus

Identity Palettes and Performance

The last step in the initialization of the SciTech MGL environment in
MGLDOG is related strictly to performance. MGL_checkIdentityPalette
toggles identity palette checking, in our example, it is toggled off:

 MGL_checkIdentityPalette(false);

When identity palette checking is off, no effort is made to translate colors
from a source bitmap to a destination bitmap during BitBlt operations. You
must handle palette translation yourself. In this case, we’re only working
with a single bitmap so we don’t really have to worry about weird colors
popping up due to different, untranslated palettes. And things go much
more quickly without palette checking on because the SciTech MGL does
not have to check for an identity palette prior to every Blt operation.

Following this execution returns to the doGraphics routine.

SciTech MGL50

Drawing Something on the Display

Now that we’ve created our display device context, we need to create
another device context to hold the “doggie” image. We’ll transfer this
device context onto the display device context in different positions when
the user moves the mouse.

The implementation is relatively simple:

1. Create another device context and load a bitmap file into it in a single
operation.

This is accomplished with a call to MGL_loadBitmapIntoDC, in
doGraphics:

 memDC = loadBitmapIntoMemDC(dc,"doggie2.bmp");

This system memory MGLDC now contains the doggie image.

2. Set the transparent color for subsequent Blting operations.

In this case, we choose the color of the lowest left pixel of the doggie
bitmap as our transparent color, first by making the MGLDC with the
doggie image the current device context, then by calling
MGL_getPixelCoord to extract the color of this pixel:

 MGL_makeCurrentDC(memDC);
 transparent = MGL_getPixelCoord(0,0);
 MGL_makeCurrentDC(dc);

3. Blt the device context with the image to the center of the display
device context.

 MGL_makeCurrentDC(dc);
 width = MGL_sizex(memDC)+1;
 height = MGL_sizey(memDC)+1;
 MGL_transBltCoord(dc,memDC,0,0,width,height,
 (MGL_sizex(dc) - width)/2,(MGL_sizey(dc) -
 height)/2,transparent,true);

The actual Blt is done with a call to MGL_transBltCoord. The display
MGLDC (dc) is the destination device context, while the offscreen MGLDC
(memDC) containing the doggie image is the source device context. The next
four arguments are pixel coordinates defining a rectangle within the source
image to be Blted (in this case, the entire image), while the next two
arguments determine the upper left corner of the area in the destination

Using SciTech MGL 51

image into which the source image will be Blted.

The transparent parameter is the color we selected earlier as the
transparency color. Pixels of this color will be skipped during the Blting
operation.

The final parameter determines whether the Blt operation will use source or
destination transparency. In source transparency, pixels in the source image
which match the transparent color are ignored (not drawn). In destination
transparency, pixels in the destination image which match the transparent
color are ignored (not drawn).

Note the use of the MGL_sizex and MGL_sizey routines to determine the
size of the image and the destination device context.

What the Heck is a Blt?

Blt (pronounced “Blit”) is a word derived from the Windows API function,
BitBlt, which in turn stands for Bit Block Transfer.

Drawing the Mouse Cursor

So, now that we have an image, we need to provide the user with a way to
manipulate it. Since we’re in a full-screen application, there is no default
windows mouse handling. That means we’ll have to use SciTech MGL to
manage the mouse. That’s easy enough, fortunately, with a call to MS_show.
But first, if we’re running in 8-bit (color mapped) mode, we need to
explicitly set the color of the cursor by passing in the index into the system
palette for the color we want. In this case, white is 255 (0xFF).

 if (MGL_getBitsPerPixel(dc) == 8)
 MS_setCursorColor(0xFF);
 MS_show();

You can hide the mouse cursor with a call to MS_hide.

Interacting with the User

Interacting with the user means tracking which keys are pressed, where the
mouse is moved to, and which mouse buttons are pressed. In the case of
MGL dog, we want to draw transparent doggies while the left mouse button
is pressed and opaque doggies while the right mouse button is pressed. We
also want to continue doing this until the user presses the Escape key

SciTech MGL52

(which has ASCII code 0x1B, or 27). So, we loop until the escape key is
pressed:

 while (!done) {
 if (EVT_getNext(&evt,EVT_EVERYEVT)) {
 switch (evt.what) {
 case EVT_KEYDOWN:
 if (EVT_asciiCode(evt.message) == 0x1B)
 done = true;
 break;
 case EVT_MOUSEMOVE:
 x = evt.where_x - width/2;
 y = evt.where_y - height/2;
 MS_obscure();
 if (evt.modifiers & EVT_LEFTBUT) {
 MGL_transBltCoord(dc,memDC,0,0,width,height,x,y,
 transparent,true);
 }
 else if (evt.modifiers & EVT_RIGHTBUT) {
 MGL_bitBltCoord(dc,memDC,0,0,width,height,x,y,
 MGL_REPLACE_MODE);
 }
 MS_show();
 break;
 }
 }
 }
 MGL_exit();

Using the MGL Event Handling Functions
The core of the loop are the MGL event handling functions. MGL provides a
unified event queue, which means you only have to look in one place to find
out about keyboard, mouse, and other system events. To get the most recent
event in the event queue, call EVT_getNext, passing by reference an object
of type event_t as well as a flag indicating which events to include (line 20
in the code segment above):

 EVT_getNext(&evt, EVT_EVERYEVENT)

This fills the members of the evt object with information about the most
recent event on the stack. The type of event is stored in evt.what. In
MGLDOG, we’re interested in four types of events:

• EVT_MOUSEDOWN, EVT_MOUSEUP, EVT_MOUSEMOVE

A mouse button has been pressed, released, or the mouse has moved.

• EVT_KEYDOWN

A key has been pressed.

Using SciTech MGL 53

The coordinates at which a mouse event occurred are stored in evt.where_x
and evt.where_y. You can determine which buttons are down by
examining the evt.message field. There are three possible values for a
mouse event:

• EVT_LEFTBUT

The left button was down.

• EVT_RIGHTBUT

The right button was down.

• EVT_DBLCLK

The mouse down event was a double-click.

Check for a button down by using a bitwise AND to compare the value in
evt.modifiers with the constant value for EVT_LEFTBUT, as in line 120
above:

 if (evt.modifiers & EVT_LEFTBUT)

For an event of type EVT_KEYDOWN, the particulars are stored in
evt.message. The data stored in evt.message are in bits, but you can
extract the ASCII code for the key which was pressed by calling
EVT_asciiCode, as on line 50 in the code segment above:

 EVT_asciiCode(evt.message)

So, in the code segment above we’re looping until the user quits by pressing
the escape key. Whenever the mouse is moved, we check to see whether or
not a button was pressed. If a button was pressed, we Blt the doggie image
onto the display DC again, creating the overlapping pattern of doggie
images:

SciTech MGL54

// If the mouse is moved

 case EVT_MOUSEMOVE:
// Record the position of the cursor

 x = evt.where_x - width/2;
 y = evt.where_y - height/2;

// Hide the mouse cursor.

 MS_obscure();

// Check to see if the left button was pressed
 if (evt.modifiers & EVT_LEFTBUT) {

// If so, transparently Blt the doggie image onto the display DC

 MGL_transBltCoord(dc,memDC,0,0,width,height,x,y,
 transparent,true);
 }

// Check to see if the right button was pressed.

 else if (evt.modifiers & EVT_RIGHTBUT) {

// If so, Blt the doggie onto the display DC with no transparency

 MGL_bitBltCoord(dc,memDC,0,0,width,height,x,y,
 MGL_REPLACE_MODE);
 }

Using Your Own Window Procedure
The SciTech MGL event handling routines simplify Windows event
handling, and have the added advantage of allowing your applications to
use the same event handling code whether running as windowed or as full
screen applications. In addition, DOS and Windows applications can also
use the same event handling code so you can re-compile for DOS and
Windows without having to change your code. However, you may have a
requirement to supply your own windows procedure. For example, in
legacy code situations it may be more trouble to recode your windows
procedures than to just include them as they are. You can register your
window procedure with the SciTech MGL, and then all Windows events
will be passed to and handled by that routine rather than by the MGL event
handling routines.

To register your own Windows Event procedure, call
MGL_registerEventProc:

Using SciTech MGL 55

 MyEventProc(HWND hWnd, UINT message UINT wParam, LONG lParam)
 {
 ...your code here...
 }

 MGL_registerEventProc(myEventProc)

Changing Display Modes on the Fly

When you initialize SciTech MGL, you specify a graphics mode during the
call to MGL_init. This mode is used by MGL_createDisplayDC to initialize
the desired fullscreen graphics mode. However, to change the graphics
mode you don’t have to exit MGL and reinitialize. Instead use the following
steps:

1. Call MGL_destroyDC on the existing display DC and all offscreen
DCs.

2. Call MGL_changeDisplayMode, passing in the new graphics mode.

3. Call MGL_createDisplayDC again.

MGL_destroyDC late binds destruction of the graphics mode so that the
SciTech MGL remains in full-screen mode until another DC is created. This
avoids the expensive process of returning to the GDI desktop, and the
resulting flickering of the display. The effect is similar to switching graphics
modes in a pure DOS environment.

However if you destroy a full-screen DC and then wish to switch to a
windowed mode (such as when the user presses ALT-ENTER), you must
call MGL_changeDisplayMode and pass in grWINDOWED in order to force
SciTech MGL to switch back to the GDI desktop so you can created the
windowed device context.

Using DirectSound with the SciTech MGL

In order to use DirectSound with your MGL applications, you will need to
do the following:

1. Create a single main window before you initialize the SciTech MGL.

The attributes of this window do not matter at this point; it can even be
hidden.

2. Initialize Direct Sound with the window handle.

3. Call MGL_registerFullScreenWindow, passing in the handle to your

SciTech MGL56

main window.

This call informs SciTech MGL to use the window you created rather
than one it creates itself for fullscreen display DCs. Be sure to call
MGL_registerFullScreenWindow before any calls to
MGL_createDisplayDC.

This window can be toggled between windowed and full-screen modes
without being destroyed, and DirectSound need only be initialized once.
Otherwise, a window created by the MGL internal code is created on the call
to MGL_createDisplayDC and destroyed on the call to MGL_destroyDC,
which means that the DirectSound focus is lost. Thus, a change in graphics
mode such as a switch to windowed mode or to a different full-screen
resolution destroys the window and causes DirectSound to lose focus
requiring it to be re-initialized. Due to the problems with DirectSound, it is
not possible to properly re-initialize the libraries for a new window handle,
which is why we allow you to create a single window for the duration of
your MGL program.

Note: If you create your own window and register it with SciTech MGL, do
not use the MGL_registerEventProc and register your window
procedure with SciTech MGL or your application will likely crash!

Setting the Task Bar Icon and Program Name

If you create your own window you set the task bar icon when you create
the class and the window name when you create the window itself.
However, in full screen modes when SciTech MGL creates a window for
you the icon used will be the icon with numerical identifier ‘1’ in your
resource file. The window name will always be the string with numerical
identifier ‘1’ in the stringtable in your resource file.

Destroying SciTech MGL Before Exit

When your application has finished, you must destroy the objects created by
the SciTech MGL and deallocate the memory they occupy. Fortunately this
is relatively straightforward; just call MGL_exit.

Note: MGL_exit destroys all existing display and memory device contexts.
Thus if your code maintains any pointers to DCs after the call to
MGL_exit, you must ensure that your code does not reference these
pointers after the call to MGL_exit (Especially in Windows modes,

Using SciTech MGL 57

where Windows messages may arrive after the destruction of the
DC).

Building Your First Windowed MGL Program

In the last example we built a full-screen application using SciTech MGL.
Now it’s time to try building a standard windows application, which will
run like any other application in a window on the desktop.

What is a Windowed MGL Program?

Unlike a full-screen application, a windowed MGL program runs in a
window on the desktop. Application windows can be resized, minimized,
or maximized to cover the entire desktop. In addition, a windowed
application can run in the background when a user shifts focus to a different
application. All of these capabilities can have implications for the way in
which you must code your windowed applications.

The windowed version of MGLDOG.EXE, called WMGLDOG.EXE, is an
excellent example of a windowed MGL application. Because we’ve already
introduced much of the code for the application, we can focus on new
concepts strictly related to coding for the windowed environment. Take a
moment to load the project in your IDE and browse the code.

Initializing the MGL Windowed Environment

Initialization of the MGL windowed environment consists of these steps:

1. Registering an instance of WNDCLASS for our applications with
Windows

The Registration process includes configuring basic parameters for the
Window which govern its appearance and behavior.

2. Initializing the SciTech MGL

3. Creating and displaying the main window for our application

4. Polling messages from the Windows event queue.

Like nearly all windows applications, our application loops through a
message processing routine until receipt of the WM_QUIT message.

SciTech MGL58

Creating a Window Manager Window and Initializing SciTech MGL

The following is standard windows code to register, create, and show a
window, as well as create a basic event handling loop. Note that
immediately after creating the window class SciTech MGL is initialized with
a call to MGL_init. After SciTech MGL is initialized, the window is
displayed which in turn sets of the chain of events that cause SciTech MGL
device contexts to be created and something to display on the screen (which
appears to be strangely missing from the code below).

 if (!hPrev) {
 /* Register a class for the main application window */
 WNDCLASS cls;
 cls.hCursor = LoadCursor(NULL,IDC_ARROW);
 cls.hIcon = LoadIcon(hInst,"AppIcon");
 cls.lpszMenuName = "AppMenu";
 cls.lpszClassName = szAppName;
 cls.hbrBackground = NULL;
 cls.hInstance = hInst;
 cls.style = CS_BYTEALIGNCLIENT | CS_VREDRAW |
 CS_HREDRAW | CS_DBLCLKS;
 cls.lpfnWndProc = (LPVOID)AppWndProc;
 cls.cbWndExtra = 0;
 cls.cbClsExtra = 0;
 if (!RegisterClass(&cls))
 return FALSE;
 }

 /* Create the main window and display it */
 hwndApp = CreateWindow(szAppName,szAppName,WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,0,400,400,NULL,NULL,hInst,NULL);
 ShowWindow(hwndApp,sw);

 /* Initialise SciTech MGL */
 InitMGL();

 /* Create the main window and display it */
 hwndApp = CreateWindow(szAppName,szAppName,WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,0,400,400,NULL,NULL,hInst,NULL);
 ShowWindow(hwndApp,sw);

The InitMGL routine includes a call to MGL_initWindowed, which initializes
the SciTech MGL for operation in windowed only modes.

Registering the Device Drivers

The InitMGL routine also takes care of registering device drivers, as well as
loading the doggie image into a memory (backbuffer) DC.

You don’t register full-screen drivers for windowed modes. However, you
must register packed pixel drivers if you want to create a memory DC. So if
you want to support say 24 bpp in a memory DC (which lives in system

Using SciTech MGL 59

memory) and then Blt it to the DisplayDC, you must register the appropriate
packed pixel drivers to support the creation of the DC. You can choose to
support only 8 bpp, in which case you need not register any additional
packed pixel drivers other than the packed 8 driver.

 MGL_registerDriver(MGL_PACKED8NAME,PACKED8_driver);
 MGL_registerDriver(MGL_PACKED16NAME,PACKED16_driver);
 MGL_registerDriver(MGL_PACKED24NAME,PACKED24_driver);
 MGL_registerDriver(MGL_PACKED32NAME,PACKED32_driver);

If your display DCs are running at a lower color-depth, and you call
MGL_loadBitmapIntoDC to load a bitmap with a deeper color-depth,
SciTech MGL will translate the color-depth of the source bitmap to the color-
depth of the target DC. However, this translation operation requires that
the appropriate packed pixel memory drivers for the source bitmap be
loaded. So, you must load packed pixel memory drivers for all the color-
depths you plan to support, even if you never intend to display images at
these color depths.

Creating Device Contexts and Loading the Doggie Sprite

Before we begin to process events we need to create a DC and load the
doggie bitmap from file into that DC. The following code creates a
windowed DC, then loads the doggie image from disk with a call to
LoadBitmapIntoMemDC:

 if ((winDC = MGL_createWindowedDC(GetDesktopWindow())) == NULL)
 MGL_fatalError("Unable to create Windowed DC!");
 if ((bits = MGL_getBitsPerPixel(winDC)) < 8)
 MGL_fatalError("This program requires 256 or more colors!");
 MGL_getPixelFormat(winDC,&pf);

 /* Load the sprite bitmap into the dogDC */
 dogDC = LoadBitmapIntoMemDC(winDC,"doggie2.bmp");

Note that the code checks that the system supports at least 8-bits per pixel.

Once the dogDC is created with the doggie sprite, we can extract useful
information about the image for use later in Blting the image around the
display. Such information includes the dimensions of the image, as well as
a color to use as the transparency color during Blt operations:

 MGL_makeCurrentDC(dogDC);
 transparent = MGL_getPixelCoord(0,0);
 width = MGL_sizex(dogDC)+1;
 height = MGL_sizey(dogDC)+1;
 MGL_makeCurrentDC(NULL);

SciTech MGL60

Creating Windowed Device Contexts

In WMGLDOG, device contexts are created and modified in response to the
WM_SIZE event, handled in AppWndProc. This message is also fired as part
of the window creation process, and also allows us to recreate all of the DCs
used by the application when the user resizes, minimizes or maximizes the
window.

In AppWndProc, receipt of a WM_SIZE message results in a call to the
CreateMGLDeviceContexts routine. This argument requires the handle to
your application window, so that SciTech MGL will know which window
with which to associate any windowed device contexts it creates.

Creation of the windowed DC is handled in a call to
MGL_createWindowedDC. Note that the window handle is passed in:

 if ((winDC = MGL_createWindowedDC(hwnd)) == NULL)
 MGL_fatalError("Unable to create Windowed DC!");

Synchronizing Color Depth

After the DC is created, the following call to GetMemoryBitmapDepth
ensures that the color depth and pixel format of the DC are correct for the
current GDI desktop mode:

{
 if (!haveTrueColor)
 *bits = 8;
 else {
 *bits = MGL_getBitsPerPixel(dc);
 MGL_getPixelFormat(dc,pf);
 }
}

If TrueColor is not supported (for example, is we’re running under
Windows 3.x which only supports 8-bits per pixel memory DC’s), then we
will want to force 8-bits per pixel. If TrueColor support does exist, we set
the pixel format and bit-depth to match that of the windowed DC passed in
(i.e.: the color depth and pixel format of the GDI display mode). We’ll use
this information to ensure that all system memory DCs we create use the
same pixel format and color depth as the GDI display mode.

Creating a Memory Device Context

Once the windowed DC is created, we need to create the primary backbuffer
DC. In this case we’ll create the DC in system memory, which is controlled
directly by the operating system, rather than in hardware video memory.

Using SciTech MGL 61

Create the memory DC with a call to MGL_createMemoryDC. Note that the x
and y dimensions of the windowed DC are used in this call, as well as the
bit depth and pixel formats set earlier in the call to GetMemoryBitmapDepth:

 if ((memDC = MGL_createMemoryDC(sizex,sizey,bits,&pf)) == NULL)
 MGL_fatalError("Unable to create Memory DC!");

Changing and Realizing the Windows Color Palette

All DCs contain a palette member. Because we intend to Blt pixels from our
memory DC to our windowed DC, the palettes for the memory DC must
match that of the windowed DC. The SciTech MGL automatically takes care
of creating identity palettes when you realize the palette for the memory DC
and the windowed DC (A bitmap is said to have an identity palette is it’s
palette matches the palette on the hardware). However, you must ensure
that each is realized, which means updating the hardware with the color
values in the DC palette. Palette realization in the hardware is taken care of
with a call to MGL_realizePalette. Since realizing a palette is an expensive
process, call MGL_realizePalette only after you have performed all palette
manipulations you wish to before updating the display. Whenever you
change the palette, you must again realize the palettes for all DCs. The code
for accomplishing all of this looks like this:

 MGL_getPalette(dogDC,pal,MGL_getPaletteSize(dogDC),0);
 MGL_setPalette(memDC,pal,MGL_getPaletteSize(memDC),0);
 MGL_realizePalette(memDC,MGL_getPaletteSize(memDC),0,false);
 MGL_setPalette(winDC,pal,MGL_getPaletteSize(winDC),0);
 MGL_realizePalette(winDC,MGL_getPaletteSize(winDC),0,false);

Getting Access to all 254 entries in the Color Palette

Windows uses first and last 10 color entries for system colors. This so called
static palette means you only have access to 236 color entries. You can make
Windows give up it’s hold on these entries by making the system palette
non-static with a Windows API call:

 SetSystemPaletteUse(hdc, SYSPAL_NOSTATIC);

To restore the system palette, simply make the same call with
SYSPAL_STATIC:

 SetSystemPaletteUse(hdc, SYSPAL_STATIC);

If you choose to use system palette entries in this manner, you should trap
the WM_ACTIVATE message so that you can restore the system palette when
your app loses the focus, and reclaim control when your app regains the

SciTech MGL62

focus. For more information, see WSHOWBMP.C.

Drawing Something to the Memory DC

In the SciTech MGL you never draw directly to the windowed DC. Instead
you composite your scenes in a memory DC, then Blt the composited scene
to the windowed DC to update the display. This process is exactly the same
as for a full-screen display DC, except you don’t see the image in the
memory DC until you Blt it to the screen.

In WMGLDOG, we copy doggies around the screen as long as the user
holds the left or right mouse button down and moves the mouse. In effect,
we copy a doggie from dogDC to the memory DC (memDC) with a call to
MGLtransBltCoord (This is where the transparency color we extracted
earlier in InitMGL comes in handy):

 leftDown = (GetKeyState(VK_LBUTTON) < 0);
 rightDown = (GetKeyState(VK_RBUTTON) < 0);
 if (!leftDown && !rightDown)
 break;
 hdc = GetDC(hwnd);
 GetViewportOrgEx(hdc,&ofs);
 ReleaseDC(hwnd,hdc);
 x = LOWORD(lParam) - width/2 - ofs.x;
 y = HIWORD(lParam) - height/2 - ofs.y;
 if (leftDown) {
 MGL_transBltCoord(memDC,dogDC,0,0,width,height,x,y,
 transparent,true);
 }
 else if (rightDown) {
 MGL_bitBltCoord(memDC,dogDC,0,0,width,height,x,y,
 MGL_REPLACE_MODE);
 }

Note that if the user is holding the right mouse button down, the Blt is
accomplished with a call to MGL_bitBltCoord, which Blts without
transparency.

Blting the Results to the Window

Now that we’ve created the scene in memDC, we still don’t see the scene in
the window. In order to see the results, we Blt the composited scene to the
windowed DC:

 MGL_bitBltCoord(winDC,memDC,x,y,x+width,y+height,x,y,
 MGL_REPLACE_MODE);

Since we know the width and height of the doggie image, and the

Using SciTech MGL 63

coordinate of the new image, we know which portion of the memory DC
has actually being changed. For efficiencies sake, we need only Blt that
modified portion to the window DC (called the dirty rectangle).

Stretching to a Resized Window
When Blting to a window without stretching, you specify only the top and
left coordinates of the source image and the top left coordinate in the
destination DC to which to Blt the image. To stretch an image when Blting,
call MGL_stretchBLT, and provide the top left corner of the destination
rectangle, as well as the bottom right corner. The SciTech MGL will map
pixels in the source DC to the target rectangle. You can shrink or expand
images in this way. For more information, see WSHOWBMP.C.

Note: Stretches to arbitrary aspect ratios can be slow. However, both
SciTech MGL and Windows are optimized for efficient stretches by a
factor of 2 in both the X and Y dimensions (i.e.: stretching a 320x240
bitmap to a 640x480 window).

Repainting the Window Contents

When windows repaints a window, it automatically clips the repaint to that
portion of the window which has actually changed (for example, the portion
of a window exposed by moving another window away from it). Thus, on
the WM_PAINT, we Blt the entire backbuffer DC to the Window DC,
trusting Windows to clip out the unmodified portions.

Interacting with the User

You can use the MGL event handling routines in a windowed application in
exactly the same way you’d use them in a full-screen application. In fact the
portability of this code between full-screen and windowed apps is a major
benefit of the SciTech MGL event handling functionality. Of course, this
may be impractical for some reason, such as the existence of legacy code, the
recoding of which is precluded by time or cost factors. You can create your
own window procedure to process events just as you would for any other
windowed application.

Destroying SciTech MGL Before Exit

When your program exits you must destroy all the DCs you created, as well

SciTech MGL64

as deallocate the memory they occupy. Fortunately, this is easily
accomplished with a call to MGL_exit.

Advanced MGL Programming

Page Flipping for Smooth Animation (Double and Triple Buffering)

Page flipping is handled very easily in SciTech MGL. When you create a
fullscreen MGLDC with a call to MGL_createDisplayDC, you specify the
number of pages or buffers that you want that device context to support, e.g.,

 myMGLDC = MGL_createDisplayDC(2);

Of course, if the hardware cannot support that many pages in the specified
graphics mode the function will fail. You can help to prevent this with a call
to MGL_availablePages first, to determine how many pages the hardware
can support. Thus the code for creating a display DC with the maximum
number of pages looks something like this:

 numPages = MGL_availablePages(mode);
 myMGLDC = MGL_createDisplayDC(numPages);

Once you’ve created your full-screen MGLDC, you must enabled double-
buffering with a call to MGL_doubleBuffer:

 if (!MGL_doubleBuffer(myMGDC))
 MGL_fatalError(“Unable to start double buffering!”);

If for some reason double-buffering cannot be initialized this function
returns false (such as when you forget to specify more than one page when
you create the full-screen DC).

Implementing Page Flipping
All MGL drawing operations are carried out on the active page of the current
device context in fullscreen graphics modes. The pixels displayed on the
screen are display from the visual page. When you’ve finished drawing and
you’re ready to display the scene, you need to flip the pages, making the
active page the visual page, and the visual page the active page, ready to be
drawn on again.

To flip display pages, call MGL_swapBuffers on your MGLDC. You choose
whether you want the hardware to wait for vertical retrace or not:

 MGL_swapBuffers(myMGLDC, MGL_waitVRT);

Using SciTech MGL 65

Implementing Multiple Buffering
MGL_swapBuffers is an easy way to implement double-buffering (page
flipping with two buffers). Today’s hardware with lots of available video
memory offers the possibility of using 3 or more buffers for multi-buffering.
SciTech MGL provides full functionality for multi-buffering with two
functions. To select an active page, call MGL_setActivePage on your DC,
passing in the page you want to make active for drawing:

 MGL_setActivePage(myMGLDC, 0); //make the front page active

Then to set the visual page, call MGL_setVisualPage on your DC, passing in
the new page to display:

 MGL_setVisualPage(myMGLDC, 1); // display the back page

Obviously you’ll not want to specify a page greater than the number
initialized with your MGLDC. You can check this value anytime by
accessing the Mode Information member of your display DC:

 maxPages = myMGLDC->mi.maxPage;

See the MGL Library Reference for more information.

Swapping the Multiple Buffers
You can use the properties of the mode information structure to manage
multiple buffers yourself. For example, to swap buffers:

 MGL_setVisualPage(activePage);
 activePage = (activePage + 1) % (maxPage + 1);
 MGL_setActivePage(activePage);

Directly Accessing the Device Context Surface

The SciTech MGL abstracts video hardware for you, obviating the need for
complicated routines for direct access to video memory. However, services
exist which allow you to directly manipulate the display surface itself (the
video memory which contains pixel information) for custom rendering
routines not supported by SciTech MGL.

Before you can access a display surface directly, you must determine which
type of access to that surface (if any) your application has. Access type is
determined by system configuration; some hardware doesn’t allow direct
access. Call MGL_surfaceAccessType on your MGLDC to determine the

SciTech MGL66

access type:

 MGL_surfaceAccessType(*myMGLDC);

This function returns one of the surface access flags enumerated in
MGL_surfaceAccessFlagsType, which are summarized in the following
table:

Flag Description

MGL_NO_ACCESS Surface cannot be accessed
MGL_VIRTUAL_ACCESS Surface is virtualized
MGL_LINEAR_ACCESS Surface can be linearly accessed

Using Linear Access
With MGL_LINEAR_ACCESS, you can treat the display surface like regular
memory. The MGLDC has a member variable, surface, which points to the
beginning of the surface associated with the MGLDC. Before you can write
to the surface, however, you’ll need to know how to compute a pixel
address. Given an X and Y coordinate, MGL_computePixelAddress returns
a pointer to the corresponding pixel address:

 MGL_computePixelAddress(*myMGLDC, x, y);

If you want to perform this calculation yourself, you can use the members of
the surface structure of your MGLDC. Essentially this function computes the
following:

 addr = dc->surface + (y * dc->mi.bytesPerLine) +
 (x * bytesPerpixel);

Accessing Virtual Linear Framebuffers
Many older SuperVGA devices do not include hardware linear framebuffer
support, and hence access to the framebuffer on these devices must be done
through a small 64Kb bank switched window. By being able to access the
entire framebuffer via a 32-bit near pointer, you can use the same code for
rendering to a system memory buffer and for rendering directly to video
memory (hence enabling you to write one set of code that can be used for
drawing to a DIB and Blting to a real GDI window, or rendering directly to
the framebuffer for fullscreen MGL code). In a bank switched environment,
SciTech MGL may be able to virtualize the framebuffer to make it appears a
32-bit linear address to your application code, even though underneath we

Using SciTech MGL 67

automatically handle bank switching using a page fault handler.

Note: You must ensure that when you directly access the surface you do so
on BYTE, WORD and DWORD aligned boundaries. If you access it
on a non-aligned boundary across a page fault, you will cause an
infinite page fault loop to occur. To copy blocks of memory to the
display in a manner that is both fast and virtual safe, see the functions
MGL_memcpyVIRTSRC and MGL_memcpyVIRTDST.

Accessing Surface Color Information
If your using an 8 bpp mode, then writing pixel information directly to
video memory is easy: just write each byte to the proper address that
represents the color you want on the screen. If you’re using higher color
modes such as 15 bpp and above modes, you’ll need to packed the color
information for a pixel into the appropriate format before you can write it to
memory. This information on how the pixels are packed in memory is
stored in the PixelFormat structure of your MGLDC (MGLDC->pf). SciTech
MGL provides functions to pack the color values for you, such as
MGL_packColor which packs the colors from a 24-bit RGB tuple to the
appropriate pixel format:

 colorBits = MGL_packColor(&myMGLDC->pf, Red, Green, Blue);

Note that this routine returns a color_t, which is basically a long integer
with the color information correctly packed into the appropriate bit
positions.

Note: In order to achieve maximum performance for custom rendering
code that does color packing, you might want to use the
MGL_packColorFast macro or even hard code the equivalent of this
macro into your code.

To read color information from the hardware display device, use
MGL_unpackColor on the pixel you have read from memory:

 myColor = MGL_getPixelCoord(0,0);
 MGL_unpackColor(&myMGLDC->pf, myColor, *red, *green, *blue);

This returns an equivalent RGB color for the color_t, minus the loss in
precision (e.g., 5:6:5 gets converted to 8:8:8, with the bottom bits truncated or
set to 0).

For more information on direct memory access, refer to the DIRECT.EXE

SciTech MGL68

sample program.

Creating Offscreen Device Contexts

You can create offscreen device contexts in offscreen video memory for
storing bitmaps, sprites, or whatever else you’d like handy in hardware
memory. Although the SciTech MGL Sprite Manager can perform most of
these functions for you, you can also directly access this functionality if you
choose.

You can create two kinds of offscreen DCs:

• Rectangular contexts

Bitmaps are stored in rectangular chunks of memory, references by their
planar (x, y) coordinates in memory. This can require careful fitting to
ensure optimal use of video memory (the Sprite Manager has automatic
routines to do this for you).

• Linear contexts

Bitmaps are stored linearly in memory. Not supported by all hardware
devices, but completely eliminates wasted memory.

To create a rectangular offscreen MGLDC, call MGL_createOffscreenDC:

 myMGLDC = MGL_createOffscreenDC();

To create a linear offscreen MGLDC, call MGL_createLinearOffscreenDC:

 MGL_createLinearOffscreenDC();

Storing Bitmaps in Offscreen Device Contexts
With your offscreen DCs created, it’s a simple matter of using
MGL_loadBitmapIntoDC or MGL_putBitmap to stuff bitmaps into them. In
short, they perform identically to other DCs for the purposes of writing
bitmaps.

You need only use MGL_memcpy to write a bitmap directly to a linear buffer,
although you will need to keep track of exactly where you put the bitmaps
in memory:

 MGL_memcpy(source, pixelAddr, numBytes);

Using SciTech MGL 69

Blting Offscreen Memory Bitmaps
For rectangular offscreen DCs, Blt just as you would with any other
rectangular DC by using MGL_bitBlt or MGL_transBlt, except of course
that the source DC for these Blts is an offscreen DC.

For linear offscreen DCs, use MGL_bitBltLin, and MGL_transBltLin,
passing in the starting address for the bitmap which is the address that you
copied the bitmap to.

Using Mouse Cursors

Loading your own custom mouse cursors can be an easy and effective way
of customizing your full-screen game environment. The SciTech MGL
makes it easy to load and manipulate mouse cursors using standard
Windows 3.1 mouse cursor (.cur) files.

Load a cursor with MGL_loadCursor:

 myCursor = MGL_loadCursor(“c:\\stuff\\mycursor.cur”);

Once a cursor is loaded, make it the current cursor with a call to
MS_setCursor:

 MGL_setCursor(*myCursor);

If you like, you can change the cursor color in a single operation with
MS_setCursorColor:

 MS_setCursorColor(newColor);

Make sure that the color you pass in is a color_t structure in the correct
format for the current display mode!

See the MOUSE.EXE sample program for more information.

Double Buffered Mouse Cursors

Double-buffering mouse cursors provides a quick and easy way to provide
flicker free mouse cursor animation. There are two methods for double-
buffered cursor animation using the SciTech MGL.

For the first method, all you have to do is hide the cursor with a call to
MS_hide, and then draw the new cursor on your active buffer with
MS_drawCursor after drawing the next frame in your animation and then

SciTech MGL70

switch buffers. This type of animation requires that you completely update
the entire display memory every frame, to erase the old image of the moue
cursor. As long as the frame rate remains relatively high, the mouse will
appear to move smoothly. The following code from the MOUSEDB.EXE
sample program illustrates the concept:

 MS_show();
 MS_hide();

 initAnimation();
 do {
 /* Clear the entire display device before drawing the next
 * frame
 */
 mainWindow(dc,"Double buffered mouse cursor");
 statusLine("Method 1: Re-render entire scene per frame");

 /* Draw the clock at the current location and move it */
 drawClock();
 moveClock();

 /* Draw the mouse cursor on top of the current frame and
 * flip
 */
 MS_drawCursor();
 MGL_swapBuffers(dc,true);
 } while (!checkEvent());
 waitEvent();

The second method can be more appropriate for situations where you may
not be re-drawing the entire frame or require the mouse to move in between
page flips (i.e.: if you flip on an intermittent basis such as in an RPG). In this
case, just turn on the mouse cursor and SciTech MGL will automatically take
care of moving it and ensuring it turns up at the right places after a flip.
Note that the mouse cursor will always be visible on the visible page so you
don’t need to show and hide the cursor while drawing to the active page in
these modes.

Using SciTech MGL 71

 MGL_doubleBuffer(dc);
 mainWindow(dc,"Double buffered mouse cursor");
 MGL_swapBuffers(dc,false);
 mainWindow(dc,"Double buffered mouse cursor");
 MS_show();

 initAnimation();
 do {
 /* Draw the clock at the current location and move it */
 clearDirtyRect();
 drawClock();
 moveClock();

 /* Flip buffers */
 MGL_swapBuffers(dc,true);
 } while (!checkEvent());
 waitEvent();

Displaying Stereo Images for LC Shutter Glasses

The SciTech MGL includes full support for creating stereoscopic display
device contexts for display 3D images that can be viewed in stereo by users
wearing inexpensive LC shutter glasses (such as the StereoGraphics
SimulEyes glasses). Stereo support in SciTech MGL is very simple and
intuitive, and you create a stereo display device context just the same as you
would for a normal display device context:

 stereoDC = MGL_createStereoDisplayDC(2,120);

Note that the number of buffers you pass in is the number of stereo buffers
that you want, and the maximum you can create will be half the number of
buffers normally available in that mode, because SciTech MGL needs to use
one buffer for the left eye image and another buffer for the right eye image.

In order to display the stereo image, when stereo mode is turned on SciTech
MGL will automatically flip between the left and right eye images on every
vertical refresh of the display adapter (and simultaneously signal to the LC
shutter glasses when the left and right image is being display so they can
blank out the appropriate eyes). Because of this the effective refresh rate
that the users sees through the glasses will be half that of the real refresh
rate, and hence at 60Hz the user will perceive 30Hz per eye! In order to get
around this problem, SciTech MGL allows you to pass in a desired refresh
rate as the second parameter to the above function. SciTech MGL will
attempt to use that refresh rate or the next lowest available refresh rate for
the mode instead of the adapter default refresh rate, allowing you to display
your images at very high refresh rates such as 120Hz for ergonomic stereo
viewing.

SciTech MGL72

Once you have created the stereo display device context, the display mode
will look like any regular non-stereo display mode. In order to get SciTech
MGL to start the automatic stereo page flipping, you must enable stereo
page flipping:

 MGL_startStereo(stereoDC);

and you can stop it with the following:

 MGL_stopStereo(stereoDC);

Of course when you are doing all drawing, you also have to tell SciTech
MGL which buffer you want to draw to (left or right eye) and you do that
with the MGL_setActivePage function and pass in the MGL_LEFT_BUFFER or
MGL_RIGHT_BUFFER flags:

 MGL_setActivePage(0 | MGL_LEFT_BUFFER);
 ... do drawing to the left buffer
 MGL_setActivePage(0 | MGL_RIGHT_BUFFER);
 ... do drawing to the right buffer

For more information on using stereo with SciTech MGL, see the
STEREO.EXE sample program or the SKYFLY.EXE OpenGL sample
program.

Note: In stereo display modes, because you have to draw both a left eye
image and a right eye image, it may be beneficial to run the
application in a lower resolution than the regular resolution to cut
down on the number of pixels that have to be draw. You might also
want to have the vertical resolution and draw to a system memory
DC, and then use SciTech MGL to do a fast 1x2 stretch to stretch the
buffer to the screen (i.e.: use a 640x240 buffer and stretch it to a
640x480 screen). Otherwise you can expect your application to run at
half the regular frame rate due to the increased rendering time for
the stereo image pairs.

Debugging Fullscreen SciTech MGL Applications

In order to debug MGL fullscreen applications under Windows 95, you
must run your normal debugger in dual monitor mode, with all debugger
output displayed on a monochrome monitor, or you must use remote
debugging. Using a normal fullscreen or GDI debugger window, you will
not be able to see the standard Windows debuggers output screens once you
have shut down GDI.

Using SciTech MGL 73

Once you have set up your debugging environment properly, you should be
able to step through and trace all MGL code while GDI is still shut down.
Note that sometimes crashing your application while running WinDirect
modes can cause a system lockup. In these cases unless you a debugging
WinDirect specific problems, you might find it more useful to debug in
DirectDraw only modes. In order to force SciTech MGL to ignore WinDirect
and not load any of the drivers (even if you run with DirectDraw, if SciTech
MGL has loaded WinDirect, Windows 95 will not clean up properly when
the app terminates), you can set the following environment variable in your
code:

 putenv(“MGL_USE_WINDIRECT=0”);

SciTech MGL74

Using the Game Framework

What is the Game Framework?

The Game Framework is a comprehensive wrapper for the SciTech MGL
designed for the Game Programmer. It relieves much of the tedium
associated with Windows programming without sacrificing any of the
performance inherent in SciTech MGL. For example, using the Game
Framework it’s possible to code your entire application without constructing
a single window, or writing any of the support code you’d normally have to
write for a windows application. The Game Framework can take care of it
for you, allowing you to concentrate on what’s really important: your game.

The Game Framework also includes the Sprite Manager, which you can use
to manage all the bitmaps used in your game. All you have to do is tell the
Sprite Manager to load your bitmaps, and it knows how to store them in
video memory for fast hardware Blts if your system supports it. Sprite
Manager can also manage video memory and begin storing sprites in system
memory if video memory runs low.

We’ll use BOUNCE.EXE as an example of a simple Game Framework
application in the following section. Take a moment to load the project into
your IDE and browse the code.

Using the Game Framework

Initialization of the Game Framework consists of six primary steps:

1. Call to GM_setDriverOptions

This routine tells the Game Framework which driver technologies you
want to support in your game. By default all of them are enabled, and
you can use this function to disable certain driver technologies at
runtime for compatibility in the field. You may call this function as
many times as you wish to change the driver options on the fly, and if
the values change the Game Framework will re-enumerate the list of
available graphics modes for you

The driverOpt parameter is a variable of type GM_driverOptions,
which contains several boolean fields for enabling or disabling different

Using the Game Framework 75

drivers, such as UseWinDirect, UseVGA, etc. You’ll want to fill in the
fields of this object before calling GM_setDriverOptions.

2. Call to GM_init

This call starts the game framework, and also returns an object of type
GMDC, which contains information necessary to continue the
initialization process.

3. Registration of your application callback functions.

The Game Framework works by calling your registered application
callback functions in response to certain events, and regularly in the
course of executing it’s main loop routine (GM_mainLoop). So, all you
have to provide are routines for handling game logic, drawing the
screen, dealing with changes in graphics modes, etc. We’ll cover
application callback function registration in detail in the next section.

4. Selection and setting of Graphics mode.

You must find and select the appropriate graphics mode for your
application.

5. Pre-Main Loop initialization

Before the Main Loop begins, you’ll need to setup the screen and
perform any other functions which you only want to happen once on
startup. In BOUNCE.C, the myInit routine initializes several global
variables used by other routines in the application.

6. Execute the main loop.

The Game Framework provides you with a built in main loop routine,
which will execute the application callback functions you registered
earlier.

That’s all there is to it!

Setting Driver Options

Before your application starts up you’ll need to tell the Game Framework
which driver technologies you wish to support with a call to
GM_setDriverOptions:

 GM_setDriverOptions(&driverOpt);

SciTech MGL76

The argument to this function is an object of type GM_driverOptions, which
you should fill in ahead of time with the drivers you want to support. By
default all available drivers are enabled, but you can use the
GM_driverOptions argument to this function to disable certain driver
technologies at runtime for compatibility in the field. For example, in
BOUNCE.C, we’ve opted to enable all driver technologies except hardware
OpenGL:

 GM_driverOptions driverOpt = {
 true, /* UseWinDirect*/
 true, /* UseDirectDraw*/
 true, /* UseVGA*/
 true, /* UseVGAX*/
 true, /* UseVBE*/
 true, /* UseVBEAF*/
 true, /* UseLinear*/
 true, /* UseFullscreenDIB*/
 false, /* UseHWOpenGL*/
 MGL_GL_AUTO, /* OpenGLType */
 GM_MODE_ALLBPP, /* modeFlags*/
 };

You may call this function as many times as you wish to change the driver
options on the fly, and if the values change the will re-enumerate the list of
available graphics modes for you.

The GM_driverOptions structure also contains the modeFlags field which
represents the color depths that you will be supporting in your application,
so that the Game Framwork will only enumerate modes that your game can
support. For instance if you only support 8bpp modes, than pass a value of
GM_MODE_8BPP. If you support 8bpp and 15/16bpp then pass in a value of
GM_MODE_8BPP | GM_MODE_16BPP. Note also that you can change the
supported mode flags at any time, which is useful if your software renderer
only supports 8bpp modes, while in 3D hardware accelerated modes you
want to support all available color depths.

Initializing the Game Framework

A call to GM_init initializes the Game Framework, and returns an object of
type GMDC. This object contains information necessary for subsequent
steps in the initialization process.

 if ((gm = GM_init("Bounce")) == NULL)
 MGL_fatalError(MGL_errorMsg(MGL_result()));

Note: You should wrap this call in appropriate code to detect and handle a

Using the Game Framework 77

failure of the Game Framework to initialize properly.

Registering your Application Callbacks

The GM_mainLoop routine takes care of all Windows housekeeping tasks for
your application. During the loop, the Game Framwork calls functions
which you register to (among other things), composite the next frame, draw
the next frame to the screen, handle user input, and handle system events.
In BOUNCE.EXE, the callback functions are initialized in the Main routine:

 GM_setDrawFunc(draw);
 GM_setGameLogicFunc(gameLogic);
 GM_setKeyDownFunc(keydown);
 GM_setMouseDownFunc(mousedown);
 GM_setModeSwitchFunc(switchModes);
 GM_setAppActivate(activate);
 GM_setSuspendAppCallback(suspendApp);

The arguments to these functions are themselves routines defined in the
application.

Inside of GM_mainLoop, these functions are called in this order:

 GM_exitMainLoop = false;
 while (!GM_exitMainLoop) {
 GM_processEvents (); // Farm out keyboard, mouse,
 // system events to your
 // registered functions
 MyGameLogic(); // Your registered game logic
 // routine
 if (GM_doDraw)
 MyDrawFrame(); // Your registered draw function
 }

 GM_cleanup();

Keyboard Callbacks

Initialize your keyboard event handling routines with GM_setKeyDownFunc,
passing in the name of the function you’ve written to handle these events.
In BOUNCE.C, the keydown routine makes use of the MGL unified event
queue to trap the only keyboard event we care about, pressing the ESC key:

 void keydown(event_t *evt)
 {
 switch (EVT_asciiCode(evt->message)) {
 case 0x1B:
 GM_exit();
 break;
 }
 }

SciTech MGL78

Your callback routine will be passed a copy of the event itself, packaged in a
variable of type event_t. You can parse this object to derive all the
information you need about the event. See the MGL Library Reference for
more information about the event_t structure.

Other keyboard callbacks which you can register with the Game Framework
include routines for handling keyup and keyrepeat events. Register these
callbacks with calls to these routines:

 GM_setKeyUpFunc(myKeyUp);
 GM_setKeyRepeatFunc(myKeyRepeat);

It’s up to you whether you wish to handle all keyboard events in a single
keyDown routine, or provide separate routines for each of the possible
keyboard events.

Note: These callbacks are called from within GM_mainLoop several times
per frame to ensure that all events are handled correctly until the
event queue is empty.

Mouse Callbacks

Your application will almost certainly need to respond to mouse events, and
you may wish to manipulate the mouse in other ways, such as drawing
custom cursors or obscuring the mouse cursor. In BOUNCE.C, mouse
events are handled by the mousedown routine, which simply restarts the
animation when a mousedown event occurs:

 void mousedown(event_t *evt)
 {
 myInit();
 }

Your callback event is passed a pointer to a variable of type event_t. This
variable contains all the relevant information about the event such as mouse
x-position, y-position, button states, etc. Refer to the MGL Library
Reference for more information about this structure.

Other mouse callbacks are available as well, including callbacks for
handling mouseup and mousedown events:

 GM_setMouseUpFunc(myMouseUp);
 GM_setMouseDownFunc(myMouseDown);

You can include separate routines for these events, or include all mouse-

Using the Game Framework 79

handling code in a single mouseEvent routine.

Note: The mouse event callbacks are called several times from within
GM_mainLoop. All events are passed to your callback functions in the
order in which the user performed them.

Trapping Your Own Events

The Game Framework event callbacks cover most of the events your
application is likely to see in the event queue. However, they won’t trap
timer events, nor will they trap any events which you define and post to the
event queue. You can trap these events with a “fallthrough case” callback
which you set up with a call to GM_setEventFunc.

 GM_setEventFunc(myEventFunc);

Your routine will be passed a copy of each event, so you can determine what
to do in response. This function is called several times each frame from
within GM_mainLoop to ensure that all user events are trapped in the correct
order.

Game Logic Callback

The Game Logic callback routine determines what will happen in the next
scene based on the state of the system and user input. This is the core of
your game. In BOUNCE the logic is fairly straightforward; all we need to
do is calculate the new position of the ball. If it’s at the edge of the display,
we bounce it off at a 45 degree angle:

void gameLogic(void)
{
 /* Move the ball to new location */
 if (pixelx >= xres-CSIZE)
 crunchx = xres-pixelx-1;
 if (pixely >= yres-CSIZE)
 crunchy = yres-pixely-1;
 if (pixelx <= CSIZE*2)
 crunchx = pixelx-CSIZE-1;
 if (pixely <= CSIZE*2)
 crunchy = pixely-CSIZE-1;
 pixelx += incx;
 pixely += incy;
 if ((pixelx >= xres) || (pixelx <= CSIZE))
 incx = -incx;
 if ((pixely >= yres) || (pixely <= CSIZE))
 incy = -incy;
}

SciTech MGL80

You should perform all non-drawing related operations in this routine, such
as network updates, sound processing, etc.

Draw Callback

After the game logic function has determined what is happening on the
screen, the draw callback routine applies these changes to the display. In
BOUNCE.C, this routine draws the current frame to the device context and
then swaps the display buffers:

{
 rect_t dirtyRect;
 region_t *dirty = MGL_newRegion();

 /* Draw the ball at the current location */
 MGL_clearDevice();
 MGL_setColorCI(13);
 MGL_fillEllipseCoord(pixelx,pixely,CSIZE+crunchx,CSIZE+crunchy);
 MGL_setColorCI(12);
 MGL_ellipseCoord(pixelx,pixely,CSIZE+crunchx,CSIZE+crunchy);
 dirtyRect.left = pixelx - (CSIZE+crunchx);
 dirtyRect.right = pixelx + CSIZE+crunchx;
 dirtyRect.top = pixely - (CSIZE+crunchy);
 dirtyRect.bottom = pixely + CSIZE+crunchy;

 /* Swap display buffers with dirty rectangles */
 MGL_unionRegionRect(dirty,&prevDirty);
 MGL_unionRegionRect(dirty,&dirtyRect);
 MGL_optimizeRegion(dirty);
 prevDirty = dirtyRect;
 GM_swapDirtyBuffers(dirty,true);
 MGL_freeRegion(dirty);
}

Using Dirty Regions
This routine makes use of SciTech MGL’s arbitrary region technology and
the Game Frameworks dirty region features. When the next frame is being
composited in the backbuffer, SciTech MGL keeps track of a list of those
regions (really a union of rectangles) which are actually updated. When it’s
time to swap the display buffers, only the dirty regions are Blted to the
screen with the call to GM_swapDirtyBuffers; a more efficient scenario than
blindly Blting the whole DC when only a small percentage of it is actually in
need of update.

Note: This function is not called when the application is minimized to
avoid writing to memory owned by another application.

To swap buffers without the dirty region logic, just call GM_swapBuffers,

Using the Game Framework 81

with a flag to tell the Game Framework whether to wait for vertical retrace
or not:

 GM_swapBuffers(true);

More Advanced Callbacks

Activation Callbacks
The activation callback is called when your application starts up, or is
activated after being minimized from the taskbar. Register your activation
callback function with GM_setAppActivate:

 GM_setAppActivate(myActivate);

Your callback is passed a flag that indicates whether your game is now
currently active or not, and should be used to enable and disable support for
things such as CD-Audio when your application loses activation (or the
current focus).

Mode Switch Callback
Use the mode switch callback to provide support for toggling between full-
screen and windowed modes. By default, this callback is set to null, so if
you wish to provide support for multiple graphics modes you must register
a mode switch callback with a call to GM_setModeSwitchFunc:

 GM_setModeSwitchFunc(myModeSwitch);

By default the Game Framework contains code to provide two methods of
switching to fullscreen modes when running in windowed modes:

• When the user hits the Alt-Enter key combination

• When the user clicks the Maximize button on the games title bar

Likewise when the game is running in a fullscreen mode and the user hits
the Alt-Enter key, the graphics mode will automatically be switched to
windowed mode. In order to support auto-switching between fullscreen and
windowed modes, all the MGL device contexts will be destroyed and re-
created during the switch, so you will have to include other code to re-
initialize SciTech MGL to the state that the game is currently in (i.e.: setting
the color palette etc) in your mode switch callback. You will also need to

SciTech MGL82

code your game in such as way that it can handle dynamic resolution
changes on the fly.

Note that your mode switch callback will be passed a variable of type
GM_modeInfo, containing relevant information about the mode which is
about to be switched to.

Mode Filter Callback
The mode filter callback is used to filter out graphics modes which are not
appropriate for your application during mode enumeration. For example,
you could use the mode filter callback to limit mode enumeration to 1:1
aspect ratio modes. Register your mode filter callback with a call to
GM_setModeFilterFunc:

 GM_setModeFilterFunc(myFilterFunc);

Pre-Mode Switch Callback
The pre-mode switch callback function is called when switching on the fly
between full-screen and windowed modes. This callback is called before the
mode switch callback, and is the appropriate place to destroy any internal
data structures that might need to be cleaned up before the current mode is
destroyed and the new one created. Initialize your pre-mode switch
callback with a call to GM_setPreModeSwitchFunc:

 GM_setPreModeSwitchFunc(myPreModeFunc);

Starting Graphics Modes

After you’ve initialized the drivers you’re application will use, you need to
select a graphics mode. Available graphics modes are enumerated in the
modeList field of the GMDC object initialized in the call to GM_init (See the
MGL Library Reference for more information about the GMDC type).

Finding Supported Graphics Modes
The next step is to find the highest performance mode within this list which
supports the resolution and color depth you require with a call to
GM_findMode:

 GM_findMode(&info,320,200,8);

Pass in a pointer to a GM_modeInfo (info in this call) structure, as well as

Using the Game Framework 83

desired values for X and Y resolution and color depth.

This is most useful for finding a good default graphics mode to start your
game in if the user has not selected a default mode yet. Note that this
function searches for the mode from the top of the list backwards, so that we
find the highest performance 320x200 and 320x240 modes (i.e.: the Linear
Framebuffer modes rather than the VGA ModeX or Standard VGA modes).
When it finds an appropriate mode, GM_findMode fills in the fields of the
supplied GM_modeInfo structure with information about the mode (see the
MGL Library Reference for more information about the GM_modeInfo
structure).

Both GM_findMode and GM_setMode return True on success and False on
failure. Be sure to wrap calls to these functions in the appropriate code to
trap and handle errors on initialization!, e.g.:

 if (!GM_findMode(&info,320,200,8))
 MGL_fatalError("Unable to find 320x200x256 graphics mode!");

Setting the Graphics Mode
GM_findMode fills in the info structure with information about the selected
graphics mode. Now, you use the same structure to set the selected mode
with a call to GM_setMode:

 GM_setMode(&info,startWindowed,3,true);

The third argument to GM_setMode is the number of video buffer pages
you’d like to have available to your application. The Game Framework will
attempt to provide you with this number of buffers, but if for some reason it
cannot (limited memory, for example), it will provide you with as many as it
can up to the amount you specify.

You don’t need to keep track of the active page when you’re rendering
animation in your code. The Game Framework keeps track of all that for
you. All you have to do is call when you scene is complete and it’s time to
update the display.

Setting the Palette

You set the Game Framework palette for the currently active device context
with a call to GM_setPalette. This argument takes an object of type
palette_t which has already been initialized, as well as the number of
colors and a start index for the palette. The myInit routine in BOUNCE.C

SciTech MGL84

shows how to initialize and set the Game Framework palette:

 palette_t pal[256] = {{0,0,0},{0,0,0},{0,0,0},
 {0,0,0},{0,0,0},{0,0,0},
 {0,0,0},{0,0,0},{0,0,0},
 {0,0,0},{0,0,0},{0,0,0},
 {255,255,255},{255,0,0}};
 GM_setPalette(pal,256,0);

Any time you set or change the palette, you must realize the palette in
hardware with a call to GM_realizePalette:

 GM_realizePalette(256,0,true);

Accessing the Entire Palette
As discussed in a previous chapter, the Windows operating system reserves
20 colors in the system palette for its own use. You can gain access to this
palette with a call to GM_initSysPalNoStatic:

 GM_initSysPalNoStatic(true);

Starting OpenGL 3D Rendering Support

The SciTech Game Framework provides complete support for OpenGL
rendering via the OpenGL 3D API. You can enabled OpenGL support in the
Game Framework with a call to GM_startOpenGL:

 GM_startOpenGL(flags);

After this call you must do all rendering via calls to the OpenGL API. The
flags parameter (of type MGL_glContextFlagsType) is used to specify the
type of OpenGL rendering context that you want, such as if you want RGB
or color index mode, single or double buffering, an alpha buffer, an
accumulation buffer, a depth buffer (z-buffer) and a stencil buffer.

If you pass in a value of MGL_GL_VISUAL for the flags parameter, SciTech
MGL will use the OpenGL visual that was set by a previous call to
MGL_glSetVisual. Hence if you require more control over the type of
OpenGL rendering context that is created, you can call
MGL_glChooseVisual and MGL_glSetVisual before calling this function.
Note that you should not call MGL_glCreateContext when using the Game
Framework, but call this function instead.

Note: After this function has been called, the current rendering context will
have been made the current OpenGL rendering context with a call to

Using the Game Framework 85

MGL_glMakeCurrent, so you can simply start issuing OpenGL
rendering commands to start drawing after calling this function.

Capturing Window Messages Directly

By default, the Game Framework handles all Windows overhead for you. If
you choose to, you can use the event handling services of the Game
Framework as well as the SciTech MGL to avoid the need for any windows
procedure coding. However, there are situations which require that you
write your own windows code. For example, you may have legacy code
which is perfectly satisfactory, and which you wish to use with your Game
Framework application.

As is the case with SciTech MGL, you need only register your windows
procedure with a call to GM_registerMainWindow in order to use it with the
Game Framework:

 GM_registerMainWindow(handle);

Note: Be sure to make the call to GM_registerMainWindow after you call
GM_init.

Your First Game Framework Application

Load and run BOUNCE.C. Although this is a very simple application, you
can modify it in many ways to familiarize yourself with the Game
Framework and with the SciTech MGL.

Using the Sprite Manager 87

Using the Sprite Manager

What is the Sprite Manager?

The Sprite Manager is designed to manage a list of bitmaps in memory all at
once. For example, you might use the Sprite Manager to manage all the
sprites you’re going to use for a given level in a game. The Sprite Manager
can create either opaque or transparent bitmap objects for that level. If the
hardware supports accelerated bitmap rendering, the Sprite Manager will
cache as many of those bitmaps in an MGL offscreen memory DC as
possible. If there is no hardware support (or we have run out of offscreen
display memory) bitmaps will be created and rendered in software. Source
transparent software bitmaps are actually compiled into RLE encoded
bitmaps and rendered directly to the display surface for maximum speed.

You can make your main device context a system memory device context, in
which case no hardware rendering will be used. When managing
rectangular offscreen memory device contexts, Sprite Manager uses the
MGL complex region manipulation routines to keep track of what parts of
the DC have been allocated so that we can efficiently utilize available
memory by tucking small bitmaps into any gaps that may arise. Bitmaps are
always allocated in a left to right and top to bottom fashion, so you may
want to experiment when loading your bitmaps to find the order which
minimizes the amount of wasted space. Of course, if you are using a linear
offscreen DC then there won’t be any wasted space. The Sprite Manager
will automatically delete all the bitmaps when the bitmap manager is
emptied.

Initializing the Sprite Manager

Call SPR_mgrInit to initialize the Sprite Manager. Pass in a device context
for which to enable the Sprite Manager, and a flag telling the support
manager whether or not to support Run-Length Encoding:

 SPR_mgrInit(myDC, true);

Note: You must reinitialize the Sprite Manager and reload all your bitmaps
when you switch from full-screen to windowed graphics modes, or
between full-screen modes. The reason for this is that the pixel

SciTech MGL88

formats and available display memory may be completely different
in windowed modes and fullscreen modes.

Adding a Bitmap to the Sprite Manager

You can add bitmaps to the Sprite Manager in one of two ways:

• As a transparent bitmap

• As an opaque bitmap

Adding a Transparent Bitmap

Add a transparent bitmap to the Sprite Manger with a call to
SPR_addTransparentBitmap:

 SPR_mgrAddTransparentBitmap(bmp, transparent);

Where bmp is a pointer to a bitmap of type bitmap_t, and transparent (of
type color_t) is the transparency color. This routine returns a pointer to
the bitmap, of type SPR_bitmap. Use this pointer to access the bitmap in the
Sprite Manager.

This function automatically determines the most efficient way to store and
draw the bitmap depending on the underlying hardware configuration.

Note: The Sprite Manager always uses source transparency for transparent
bitmaps.

Adding an Opaque Bitmap

Add an opaque bitmap to the Sprite Manager with a call to
SPR_addOpaqueBitmap:

 SPR_mgrAddOpaqueBitmap(bmp);

This routine returns a pointer to the bitmap, of type SPR_bitmap. Use this
pointer to access the bitmap in the Sprite Manager.

Drawing a Sprite

Drawing a sprite is a simple matter, accomplished with a call to SPR_draw:

Using the Sprite Manager 89

 SPR_draw(bmp, x, y);

Simply provide this function with the SPR_bitmap pointer returned when
you added it to the Sprite Manager.

Reloading the Hardware After Task Switching

When the user switches between a full-screen window and another window
on the desktop, all the video memory holding our sprite information is lost.
When the user returns to the full-screen application, you’ll need to reload
your sprites into the hardware. You can accomplish this with a call to
SPR_mgrReloadHW:

 SPR_mgrReloadHW();

This function should be called when your application is re-activated (in
other words, when the argument to your GM_suspendAppCallback function
is MGL_REACTIVATE). For example:

 int ASMAPI SuspendApp(MGLDC*,int flags)
 {
 if (flags == MGL_REACTIVATE)
 SPR_mgrReloadHW();
 return MGL_NO_SUSPEND_APP;
 }

SciTech MGL90

Using Fullscreen OpenGL

Using OpenGL

The SciTech MGL provides complete support for software and hardware
OpenGL rendering. Initialization of OpenGL support consists of these
steps:

1. Register OpenGL Drivers.

2. Choose a visual for OpenGL rendering.

A visual is the SciTech MGL term for the structure which defines pixel
formats in OpenGL rendering contexts.

3. Set the visual.

Having found an appropriate visual for your implementation of
OpenGL, make it the current visual for OpenGL rendering operations.

4. Create an OpenGL rendering context

An OpenGL rendering context is analogous to an MGLDC, and is the
area of memory to which OpenGL rendering operations are written.

5. Make the OpenGL rendering context current

All OpenGL operations are written to the current OpenGL context.

6. Perform OpenGL rendering operations

Register the OpenGL Hardware Drivers

Register the OpenGL hardware drivers with
MGL_registerAllOpenGLDrivers. The SciTech MGL will utilize these
drivers if OpenGL support is available in the hardware. Otherwise, SciTech
MGL will fall back on software rendering using SGI’s OpenGL for
Windows.

Choosing a Visual

A visual is analogous to a pixel format in MGL. Refer to the MGL Library

Using Fullscreen OpenGL 91

Reference for more information, but the following table describes the
MGLVisual structure and it’s members:

Flag Type Description

rgb_flag bool True for an RGB mode, false for color index
modes

alpha_flag bool True for alpha buffers (8-bits deep)
db_flag bool True for double buffered, false for single

buffered
depth_size Int Size of depth buffer in bits
stencil_size Int Size of stencil buffer in bits
accum_size Int Size of accumulation buffer in bits

Note: Be sure to set up a variable of this type with the parameters you’d
like to see in your OpenGL visual before choosing a visual.

Because hardware capabilities and implementations of OpenGL vary, the
SciTech MGL provides a flexible interface for finding the visual that most
closely matches your requirement. To find an appropriate visual for your
system, call MGL_glChooseVisual:

 MGL_glChooseVisual(dc, &visual);

If requested capability is not supported, the visual passed in will be
modified for the capabilities that the SciTech MGL does support on your
system. For example, the depth buffer may be reduced in size to 16-bits
when you requested 32-bits.

Once you’ve chosen a visual, you set it to make it current for the purposes of
creating OpenGL rendering contexts with a call to MGL_glSetVisual:

 MGL_glSetVisual(dc, &visual);

Creating and Using OpenGL Rendering Contexts

An OpenGL rendering context is analogous to an MGL Device Context, in
that it is an area of memory to which OpenGL commands write their output.
OpenGL supports multiple rendering contexts, so you must make the
rendering context you want to use the current context before you can begin

SciTech MGL92

rendering to it.

Create a context with MGL_glCreateContext:

 MGL_glCreateContext(myMGLDC, MGL_GL_VISUAL);

Passing in MGL_GL_VISUAL as the flags argument tells this command to
use the pixel format information returned by the preceding call to
MGL_glChooseVisual and MGL_glSetVisual when creating the rendering
context.

If you prefer, you can specify a visual for your OpenGL rendering context
when you create it by passing in one or more of the flags enumerated in the
MGL_openGLFlagsType type. For example, to create a context which
supports RGB color mode and double buffering:

 MGL_glCreateContext(myMGLDC, MGL_GL_RGB | MGL_GL_DOUBLE);

See the MGL Library Reference for more details.

After you’ve created the rendering context, make it the current context with
a call to MGL_glMakeCurrent. The following code shows how you would
set up your visual, create a rendering context, then make it the current
context.

Using Fullscreen OpenGL 93

{
 MGLVisual myVisual;
 MGLDC *myMGLDC;

 //Set up the visual we’ll use later when we create our OpenGL
 //rendering context.
 myVisual.rgb_flag = true;
 myVisual.alpha_flag = false;
 myVisual.db_flag = true;
 myVisual.depth_size = 24;
 myVisual.stencil_size = 8;
 myVisual.accum_size = 4;
 MGL_registerAllOpenGLDrivers();

 //Create display DC for fullscreen modes, with double buffering
 if ((myMGLDC = MGL_createDisplayDC(2)) == NULL)
 MGL_fatalError("Can’t create DC!");
 MGL_makeCurrentDC(myMGLDC);

 //Set up the visual
 MGL_glChooseVisual(myMGLDC, &myVisual);
 MGL_glSetVisual(myMGLDC, &myVisual);

 //Create the rendering context and make it current
 if(!MGL_glCreateContext(myMGLDC))
 MGL_fatalError("Can’t create OpenGL context!");
 MGL_glMakeCurrent(myMGLDC);

 ... Your OpenGL rendering code here...
}

Swapping the Display Buffers

The number of buffers supported by an MGLDC is passed in as a parameter
to MGL_createDisplayDC. You needn’t worry specifically where these
buffers are initialized (whether in system memory or in hardware video
RAM). They may actually be in both places. In the MGL OpenGL interface,
the active buffer is abstracted from you, the programmer. All you have to
do to swap buffers is make a call to MGL_glSwapBuffers, passing in an
MGLDC and whether or not to wait for vertical retrace:

 MGL_glSwapBuffers(myMGLDC, true);

The SciTech MGL keeps track of which page is the active page for drawing
operations and which page is being displayed.

Resizing the Display Buffers

You must explicitly respond to a WM_SIZE message, sent by the operating
system when the user resizes a window. Fortunately, all you need to do is

SciTech MGL94

call MGL_glResizeBuffers, passing in the MGLDC that’s been resized:

 MGL_glResizeBuffers(myMGLDC);

Deleting a OpenGL Rendering Context

Destroy OpenGL rendering contexts with a call to MGL_glDeleteContext:

 MGL_glDeleteContext(myMGLDC);

Note: Be sure to call MGL_glDeleteContext before you destroy your
MGLDCs with a call to MGL_destroyDC or MGL_exit.

Programming the Hardware Palette

Each device context (and by extension each OpenGL rendering context) has
its own associated palette. The video hardware also has an onboard palette.
When you make changes to a DCs palette, you are only updating the palette
values stored in the palette structure of that DC. In order for the change to
be reflected in the display, you must also update the hardware palette.

You change the palette with a call to MGL_glSetPalette:

 MGL_glSetPalette(myMGLDC, myPal, 254, 1);

This routine is exactly similar to MGL_setPalette, but contains internal
code appropriate for the OpenGL environment.

After you’ve changed the palette for an MGLDC, you must update the
hardware palette by calling MGL_glRealizePalette:

 MGL_glRealizePalette(myMGLDC, 254, 1, true);

This function is exactly the same as MGL_realizePalette, but contains
internal code appropriate to the OpenGL environment.

Forcing the OpenGL Implementation

The SciTech MGL supports four implementations of OpenGL. Ordinarily
when you start OpenGL, the SciTech MGL will automatically detect the
most appropriate implementation of OpenGL to use in your application.
However, if you choose to do so you can force your application to use one of

Using Fullscreen OpenGL 95

the implementations supported by the SciTech MGL.

Forcing a Specific OpenGL Driver

In the beginning of this section we initialized OpenGL with a call to
MGL_registerAllOpenGLDrivers. This is a good way to get code up and
running quickly, and also ensures that some drives will be found for you to
work with. However, the SciTech MGL provides a way for you to force
your application to register and use a specific driver if you need to.

You can enumerate a list of those OpenGL drivers which are available on
the system at run-time with a call to MGL_ enumerateDrivers, which
returns a NULL-terminated list of drivers available in the system:

 MGL_enumerateDrivers();

The list returned lists software drivers first, then hardware drivers. You can
parse this list, select a driver, then force the system to use that driver with a
call to MGL_glSetDriver:

 MGL_glSetDriver(driverName);

For example, to force the Mesa implementation:

 MGL_glSetDriver(“mesa”);

Note: You must destroy your MGLDCs and OpenGL contexts before a call
to MGL_glSetDriver, and recreate them afterwards when you
reinitialize OpenGL.

SciTech MGL96

Appendix A : Shipping your MGL
Product

In order to ship products you’ve created with the SciTech MGL, you’ll need
to be sure you distribute the necessary components of SciTech MGL,
including WinDirect files, files for support of OpenGL, DirectX runtime
files, etc. There are also platform specific and development environment
specific files which must be installed as well. This section discusses which
runtime components you will need to distribute.

What is WinDirect?

A key component of the SciTech MGL, WinDirect is a runtime package for
DOS and Windows 95 that provides direct access to the display hardware
for both 16 and 32-bit applications. Traditionally Windows applications
have had to perform all graphics output using the standard Graphics Device
Interface (GDI). Although the GDI is very extensive and powerful, it is also
not particularly fast for the sort of graphics that real time applications like
interactive video games require.

WinDirect breaks this barrier by allowing high performance applications to
shut down the normal GDI interface, and to take over the entire graphics
display hardware just like you would normally do under DOS. Once GDI
has been shut down, interactive graphics applications can re-program the
display controller and write directly to video memory. A WinDirect
application can program any standard VGA graphics mode such as
320x200x256, it can re-program the controller and run standard VGA ModeX
style graphics, or it can call the standard VESA BIOS services to run high
resolution SuperVGA graphics.

Note that for maximum portability your should avoid directly using the
WinDirect API, and use the standard MGL API instead. SciTech MGL
includes full support for WinDirect, but the API is portable to future
operating system technologies. Note however that if you are developing
MGL applications that use WinDirect, you will need to ship the WinDirect
DLL and runtime components with your application and ensure they get
installed correctly on the users machine.

Appendix A : Shipping your MGL Product 97

MGL Redistributable Components

Subject to the terms and conditions of the SciTech Software License
Agreement, in addition to any Redistribution Rights granted therein, you
are hereby granted a non-exclusive, royalty-free right to reproduce and
distribute the Components specified below provided that (a) is distributed
as part of and only with your software product; (b) you not suppress, alter
or remove proprietary copyright notices contained therein; and (c) you
indemnify, hold harmless and defend SciTech Software and it’s suppliers
from and against any claims or lawsuits, including attorney’s fees, that arise
or result from the use or distribution of your software product.

Note that we have not listed any standard MGL runtime library DLL’s such
as MGLFX.DLL, only the runtime DLL’s that are required by SciTech MGL
that you do not specifically link to in your application. If you compile and
link with the DLL versions of those libraries, you must also ship the
corresponding DLL with your application and stored it in the same
directory as you application. For more information on the runtime DLL
supported by SciTech MGL for different compilers, consult the section
‘Compiling and Linking with SciTech MGL’ above.

Windows 95 Specific Runtime Files

If you wish to be able to get GDI to draw on MGL fullscreen device context
surfaces, you will need to install the following files into the Windows 95
system directory:

Runtime Files Purpose

MGLDIB.DRV MGL DIB driver for providing support for GDI
drawing access to fullscreen MGL device context
surfaces. Only install on Windows 95, and install to
the Windows system directory with version
checking.

WinDirect Runtime Files

If you wish to support WinDirect for fullscreen modes under Windows 95,
you will need to install the WinDirect runtime libraries files into the same
directory as your application program. Do not install these files into the
Windows system directory!

SciTech MGL98

Runtime Files Purpose

WDIR16.DLL WinDirect 16-bit side DLL. Contains all 16-bit side
WinDirect functions.

WDIR32.DLL WinDirect 32-bit side DLL. Contains all 32-bit side
WinDirect functions. Requires WDIR16.DLL to
interface to the 16-bit subsystem code.

OpenGL Runtime Files

Depending on which implementation’s of OpenGL you wish to support
with your application, you will need to ship at least one set of the following
OpenGL runtime libraries (you always need both the xxGL and xxGLU
library files). Note that for Mesa and SGI OpenGL you should install all of
these runtime libraries into your applications directory to avoid conflicts
with other applications possibly using earlier or later versions of the
libraries:

Runtime Files Purpose

MESAGL.DLL Mesa OpenGL for Windows 95/NT

SGIGL.DLL Silicon Graphics OpenGL for Windows for
Windows 95/NT.

SGIGLU.DLL Silicon Graphics OpenGL for Windows Utility
Library for Windows 95/NT.

OPENGL95.DLL Microsoft OpenGL for Windows 95. This file must
be installed into the Windows 95 system directory
and renamed to OPENGL32.DLL. Do not install this
file on Windows NT!

GLU95.DLL Microsoft OpenGL for Windows 95. This file must
be installed into the Windows 95 system directory
and renamed to GLU32.DLL. Do not install this file
on Windows NT!

Note: If you plan to support DirectX in your application, we highly
recommend that you at least ship the latest version of DirectX with
your product and provide some mechanism for the end user to
install it on their system. We have found that many DirectX related
runtime problems can be tracked down to badly installed or older

Appendix A : Shipping your MGL Product 99

versions of DirectX and doing a re-install of the latest version can
clear up the problems.

Note: All the DLL files should be installed into the same directory as your
application for correct operation, except where noted.

SciTech MGL100

Appendix B: Using the Zen Timer

This section provides an overview of the Zen Timer Library, and provides
background details on the Zen Timer Library’s functionality and how to
utilize this functionality in your own applications.

What is the Zen Timer?

The Zen Timer is a C callable library for timing code fragments with
microsecond accuracy. The code was originally developed by Michael
Abrash for his book “Zen of Assembly language - Volume I, Knowledge”
and later in his book “Zen of Code Optimization.” We modified the code
and made it into a C callable library and added a few extra utility routines,
the ability to read the current state of the timer and keep it running, and
added a set of C++ wrapper classes. We also added a new Ultra Long Period
timer that can be used to time code that takes up to 24 hours to between calls
to the timer and with an accuracy of 1/10th of a second.

Since the original implementation of the Zen Timer Library, the library now
supports the following timing mechanisms in DOS and Windows:

• Pentium RDTSC instruction for cycle accurate timing

• QueryPerformanceCounter for Win32

• timeGetTime for Win32 compatibility

• 8253 timer chip for DOS compatibility

The Long Period Zen Timer uses as many of the above high precision timing
mechanisms to obtain microsecond accurate timings results whenever
possible. The following different techniques are used depending on the
operating system, runtime environment and CPU on the target machine. If
the target system has a Pentium CPU installed which supports the Read
Time Stamp Counter instruction (RDTSC), the Zen Timer library will use
this to obtain the maximum timing precision available.

Under 32-bit Windows, if the Pentium RDTSC instruction is not available,
we first try to use the Win32 QueryPerformanceCounter API, and if that is
not available we fall back on the timeGetTime API which is always

Appendix B: Using the Zen Timer 101

supported.

Under 32-bit DOS, if the Pentium RDTSC instruction is not available, we
then do all timing using the old style 8253 timer chip. The 8253 timer
routines provide highly accurate timings results in pure DOS mode,
however in a DOS box under Windows or other Operating Systems the
virtualization of the timer can produce inaccurate results.

Timing with the Long Period Zen Timer

Before you can use the Zen Timer in your code, you must first always call
the ZTimerInit function to initialize the Zen Timer Library. Once you have
done this, to use the timer, isolate the piece of code you wish to time and
bracket it with calls to LZTimerOn and LZTimerOff. You then call
LZTimerCount to obtain the count use it from within your C program. For
example:

int i;

void main(void)
{
 ulong count;

 ZTimerInit()
 LZTimerOn();
 for (i = 0; i < 20000; i++)
 i = i; /* Do some work */
 LZTimerOff();
 count = LZTimerCount();
}

While the timer is running, you can call the LZTimerLap function to return
the current count without stopping the timer from running.

One point to note when using the long period time is that interrupts are ON
while this timer executes. This means that every time you hit a key or move
the mouse, the timed count will be longer that normal. Thus you should
avoid hitting any keys or moving the mouse while timing code fragments if
you want highly accurate results. It is also a good idea to insert a delay of
about 1-2 seconds before turning the long period timer on if a key has just
been pressed by the user (this includes the return key used to start the
program from the command line!). Otherwise you may measure the time
taken by the keyboard ISR to process the upstroke of the key that was just
pressed.

SciTech MGL102

Note that under DOS the Long Period Zen Timer has a cumulative limit of
approximately 1 hour and 10 minutes between calls to LZTimerOn and
LZTimerOff.

Timing with the Ultra Long Period Zen Timer

As well as the normal long period Zen Timer functions, we also provide
functions that implement an Ultra Long Period Zen Timer. This version of
the timer has lower accuracy and can time intervals that take up to 24 hours
to execute. There are two routines that are used to accomplish this;
ULZReadTime() and ULZElapsedTime(). The way to use these routines is
simple:

void main(void)
{
 ulong start,finish,time;

 ZTimerInit()
 start = ULZReadTime();

 /* Do something useful in here */

 finish = ULZReadTime();
 time = ULZElapsedTime(start,finish);
}

Calling ULZReadTime latches the current timer count and returns it. You call
ULZElapsedTime to compute the time difference between the start and
finishing times, which is returned in 1/10ths of a second. If you are using
C++, you may want to use the simpler C++ classes, which have a common
interface for all timers.

When using the Ultra Long Period timer class you must ensure that no more
than 24 hours elapses between calls to start() and stop() or you will get
invalid results. There is no way that we can reliably detect this so the timer
will quietly give you a value that is much less than it should be. However,
the total cumulative limit for this timer is about 119,000 hours which should
be enough for most practical purposes, but you must ensure that no more
than 24 hours elapses between calls to start() and stop(). If you wish to use
the timer for applications like ray tracing, then latching the timer after every
10 scanlines or so should ensure that this criteria is met.

Using the C++ interface

Appendix B: Using the Zen Timer 103

If you are using C++, you can use the C++ wrapper classes that provide a
simpler and common interface to all of the timing routines. There are two
classes that are used for this:

LZTimer C++ Class to access the Long Period Zen Timer
ULZTimer C++ Class to access the Ultra Long Period Zen Timer

Each class provides the following member functions:

start() member function

The start() member function is called to start the timer counting. It does not
modify the internal state of the timer at all.

lap() member function

The lap() member function returns the current count since the timer was
started. This count is the total amount of time that the timer has been
running since the last call to reset() or restart(), so it is cumulative. The lap()
member function does not stop the timer, nor does it change the internal
state of the timer.

stop() member function

The stop() member function is called to stop the timer from counting and to
update the internal timer count. The internal timer count is the total amount
of time that the timer has been running since the last call to reset() or
restart() so it is cumulative.

reset() member function

The reset() member function resets the internal state of the timer to a zero
count and no overflow. This should be called to zero the state of the timer
before timing a piece of code. Note that the reset operation is performed
every time that a new instance of one of the timer classes is created.

restart() member function

The restart() member function simply resets the timers internal state to a
zero count and begins timing.

SciTech MGL104

count() member function

The count() member function returns the current timer count, which will be
in fractions of a second. You can use the resolution() member function to
determine how many seconds there are in a count so you can convert it to a
meaningful value. Use this routine if you wish to manipulate and display
the count yourself. If the timer has overflowed while it was timing, this
member function will return a count of 0xFFFFFFFF (-1 long).

overflow() member function

The overflow() member function will return true if the timer has overflowed
while it was counting.

resolution() member function

The resolution() member function returns the number of seconds in a timer
count, so you can convert the count returned by the count() member
function to a time in seconds (or minutes, or whatever). The value returned
is a floating point number, which simplifies the conversion process.

operator << () friend function

This a convenience function that outputs a formatted string to a C++ output
stream that represents the value of the internal timer count in seconds. The
string represents the time to the best accuracy possible with the timer being
used.

Appendix C: Developing for Maximum Compatibility 105

Appendix C: Developing for Maximum
Compatibility

This section contains information relating to developing application
software with maximum compatibility in mind, without sacrificing
performance or features. Although the VBE standard defines how the
specification should work, there are many different flavors of hardware out
in the field. It is very important that you design your application with the
following special cases in mind so that you application will run on the
widest variety of hardware possible.

Note that many of the issues in this section are only related to directly
programming for the VBE 1.2/2.0 interfaces. If you are doing all your
development with the native MGL API, SciTech MGL insulates you from
many of these issues. However some issues such as being aware of the
different types of hardware configurations that will be out there (such as
hardware that cannot do page flipping) affect MGL applications as well.

Provide for Solid Backwards Compatibility

If you are developing your application to take advantage of the latest VBE
2.0 standards, you should ensure that you all provide a good set of
compatibility fallbacks for your application. There will be cases in the field
where your customer may not be able to get a proper VBE 2.0 driver
running on their system, and may not be able to get even a VBE 1.2 driver
working properly. Hence you should always provide support for at least a
standard VGA mode if possible (Mode 13h or ModeX will suffice) or VBE
1.2 support. If you are developing an application that runs in only
SuperVGA modes (640x480 and above) then you should at least ensure that
your application runs properly on systems with only VBE 1.2 drivers
installed.

Although the performance will not be nearly as great with VBE 1.2, a
customer is less likely to be raving mad when they call your tech support
lines if the game at least runs. Once they have the game running and wish to
get more performance, they will spend more time seeking out higher
performance drivers, or will eventually upgrade their graphics card.

SciTech MGL106

Don’t Assume all SVGA Low Res Modes are Available

Also note that on some systems, high performance low resolution graphics
modes are not always available, so you should not develop your game to
rely on the presence of these modes. On some systems modes below 512x384
are not available, so the only available low resolution modes may be the
standard VGA Mode 13h and ModeX modes. Hence if you wish to use low
resolution, high performance graphics modes you should always check to
see if the mode are available, and provide options for the user to select other
modes that may be available (on some systems 200/240 line modes are not
available, but 400/480 line modes are).

Note that systems that do not support high performance SVGA low
resolution modes are few and far between (less than 5% of the installed
base), but you should ensure that your code is ready to handle situations
where the exact modes that you want are not available.

NOTE: SciTech MGL provides support for Standard VGA Mode 13h and
ModeX modes as well as all the VBE 2.0 SuperVGA low resolution modes. If
you are planning on using these modes, you should also plan on supported
Mode13h or ModeX modes as a fallback measure for cases where these low
resolution modes may not be available.

Develop for the Future with Scalability

An important criteria for developing a successful application is to attempt to
obtain maximum performance across a variety of target hardware systems.
You should develop your applications to be as scalable as possible, both in
terms of the resolutions and color depths that are supported. If you can get
your game to run in 320x200x256 linear framebuffer mode, this will
probably provide the absolute maximum performance and compatibility in
the field. However customers with high end systems will be wanting to run
your games at higher resolutions and color depths if possible. Hence you
should also develop your games to be fully scalable in terms of resolutions
and color depths if possible. Even though the performance may not be so
great at 640x480x256 on present day systems, a year from the time that your
game is released it may well be possible to support this mode with enough
speed to run your game.

If you are developing a 3D game that relies heavily on texture mapping and
detailed 3D worlds, you should consider developing the game with multiple
levels of detail for the world and the textures. This will allow customers

Appendix C: Developing for Maximum Compatibility 107

with lower performance machines (like 486/66 VLB systems) to be able to
tune the details of the game down to increase performance. Customers with
high performance systems or with systems that will ship after your game
has been completed can crank up the details and resolution to get a richer
game playing experience.

Include an Option for Rendering to a System Buffer

Cards Affected:
Diamond Viper series (Weitek P9000 and P9100)

One of the main reasons for having an option to render to a system buffer is
for compatibility. It fixes two problems: 1.) Some cards cannot double buffer,
so you will only get one page of video RAM when you query the card. For
example, cards based on the Weitek P9x000 chips (like the Diamond Viper)
only support a single VBE buffer in many modes. In order to make your
software compatible with the Diamond Viper, you need to have an option to
render into system memory. 2.) It will allow you to support cards that may
not have enough video memory to properly double buffer in the modes that
you need. This gives you a fall back so the user with less than the required
RAM can still run your application.

SciTech MGL108

Redistributable Components

Subject to the terms and conditions of the SciTech Software License
Agreement, in addition to any Redistribution Rights granted therein, you
are hereby granted a non-exclusive, royalty-free right to reproduce and
distribute the Components specified below provided that (a) is distributed
as part of and only with your software product; (b) you not suppress, alter
or remove proprietary copyright notices contained therein; and (c) you
indemnify, hold harmless and defend SciTech Software and it’s suppliers
from and against any claims or lawsuits, including attorney’s fees, that arise
or result from the use or distribution of your software product.

The redistributable MGL components are:

MGLLT.DLL (c) 1996-98 SciTech Software, Inc.
MGLFX.DLL (c) 1996-98 SciTech Software, Inc.
MGLLTW.DLL (c) 1996-98 SciTech Software, Inc.
MGLFXW.DLL (c) 1996-98 SciTech Software, Inc.
MGLGM.DLL (c) 1997-98 SciTech Software, Inc.
MGLGLUT.DLL (c) 1997-98 SciTech Software, Inc.
ZTIMER.DLL (c) 1997-98 SciTech Software, Inc.
SGIGL.DLL (c) 1997 Silicon Graphics Inc.
SGIGLU.DLL (c) 1997 Silicon Graphics Inc.
OPENGL95.DLL (c) 1996 Microsoft Corporation.
GLU95.DLL (c) 1996 Microsoft Corporation.
MESAGL.DLL (c) 1997 Brian Paul.
All font files in the SCITECH\FONTS directory, copyrighted by the various
companies listed in the copyright headers in the font files.
All cursor files in the SCITECH\CURSORS directory (c) 1996-98 SciTech
Software.

The redistributable WinDirect components are:

WDIR16.DLL (c) 1995-98 SciTech Software.
WDIR32.DLL (c) 1995-98 SciTech Software.
DVA.386 (c) 1995 Microsoft Corporation.

Glossary 109

Glossary

Bank Switching
Due to limitations of the PC architecture, application software can only access graphics
memory in 64K banks when running in real mode. When application software needs to
modify the image being displayed, it must switch to the bank of memory on the graphics
card that contains the part of the image that it wants to change. Each graphic chip
implements bank switching in a different way, so VESA created the VBE Core standard to
provide a common way to do bank switching. Newer graphics chips fix this problem by
implementing a “linear frame buffer” mode. (see also: Linear Frame Buffer)

BIOS
Acronym for Basic Input Output System. This is the low level code that makes the
graphics card start up and operate correctly. It is normally stored in a non-volatile Read
Only Memory (ROM) chip on the graphics board and it can be upgraded or supplemented
to provide additional functionality with a program like SciTech Display Doctor or a TSR
from the graphics card supplier.

BitBlt
Abbreviation for Bit Block Transfer. It means moving a block of pixels from one area of
memory to another. Since it is the most common function used in graphical applications
and operating systems, it is the primary hardware function available in graphics
accelerators. Much of the performance gained in graphics accelerators is a result of a
hardware BitBlt function.

BPP
Acronym for Bits Per Pixel. It signifies how many colors can be displayed in a particular
graphics mode. 4BPP=16 colors, 8BPP=256 colors, 15BPP=32,768 colors, 16BPP=64,536
colors, 24BPP=16.7 million colors. (see also: Color Depth)

Clipping
Clipping is used to limit the drawing of graphics primitives to a specified area and
stopping them from being drawn into unwanted regions. In SciTech MGL, all primitives
are clipped to a rectangle. Clipping is useful for implementing viewports and windowing
systems to restrict graphics output to specific portions of the display screen.

Clock Chip
Every graphics board has a clock chip that allows it to output varying frequencies to the
display. Clock chips are necessary to create each graphics mode and vary refresh rates.
Each clock chip must be programmed differently. There are several types of clocks used in
typical PC graphics cards. Early graphics cards used “discrete” clocks, which means that
there was a physical component on the graphics board for each frequency required by the
graphics card. Those were replaced by “mask programmable” clock chips that supported
several different frequencies on one component. Most of today’s modern graphics cards
use “fully programmable” clock generators so they allow a wide selection of graphics
modes and refresh rates and are much more flexible. It is now common for clock chip
technology to be included inside the main graphics chip instead of as a separate

SciTech MGL110

component.

Color Depth
This refers to how many colors are being displayed. The higher the color depth, the
greater number of colors. The more colors, the more memory is required on the graphics
card. Generally, the higher the color depth, the more realistic the image displayed and the
more processing power is required to manipulate the image. (see also: BPP)

CRTC
Acronym for Cathode Ray Tube Controller. A standalone or integrated chip that generates
signals (creates the frequencies necessary for an image to be displayed at a certain
resolution) necessary to drive the Cathode Ray Tube (CRT).

DAC
Acronym for Digital to Analog Converter. This is the chip that converts the digital signals
in the graphics chip to the analog signals that a standard super VGA monitor requires.
The DAC chip also generates all of the colors for a graphics chip. Generally, the better the
DAC, the more colors you get.

Device Context
A region where graphics are drawn. It may be on the graphics card in video memory,
exist in offscreen video memory or be in a system memory buffer.

DirectDraw
The graphical API part of Microsoft’s DirectX. It provides more direct access to the video
hardware and memory than is normally available under standard Windows GDI
functions.

DirectX
A family of API’s designed by Microsoft for Windows 95 and Windows NT 4.0 based
games. They allow more direct access to the hardware than would normally be available
under the standard Windows GDI functions.

Discrete Clock
see: Clock Chip.

Double Buffering
This is a programming technique that capitalizes the fact that most graphics cards have
more memory on them then is actually used to display an image. This extra, or “off
screen” memory is used to begin generating the next image so that the user can instantly
see the next frame when it is completed. This way the user does not have to watch each
frame be rendered by the computer. This technique is used extensively in computer games
to produce smooth animation.

DPMI
An acronym for DOS Protected Mode Interface. An interface that allows multiple
protected mode applications to run in the one system and share important resources like
memory and interrupt handlers.

8bit DAC
An 8bit DAC allows the color palette to be selected from a range of 16.7 million colors
rather than the usual 256k colors available in 6bit DAC mode. The 8bit DAC allows the

Glossary 111

256 color modes to display a full range of 256 grayscales, while the 6-bit mode only allows
a selection of 64 grayscales.

Firmware
This is low-level code that sits between application software and hardware. It is generally
stored in non-volatile ROM, but it can be updated with programs from disk, such as
SciTech Display Doctor. In a graphics card, firmware is know as a VGA ROM BIOS.

Frame Buffer
This is the memory where a computer image is stored. This memory is usually located on
the graphics card and is completely separate from the computer system’s main memory.
When you are looking at an image displayed on a computer screen, you are viewing the
actual image stored in the frame buffer.

GDI
An acronym for Graphics Device Interface. It is the set of functions from within Windows
that perform all graphics output. GDI is very restrictive in the types of primitives that it
supports, and as such complex graphics applications may run slowly using GDI drawing
functions.

Glyph
A small monochrome Bitmap or a character from a graphical font.

GUI
An acronym for Graphical User Interface. It provides support for windowed operations,
such as scrolling, maximizing and minimizing.

Hardware Cursor
A mouse cursor drawn with hardware. It is more stable because the application does not
have to attempt to draw the pointer on top of the image that is being generated, but the
icon is usually monochromatic.

Horizontal Sync Polarity
see: Sync Polarity.

Interlaced
Interlacing is a technique whereby the monitor displays every even line of pixels and then
goes back and displays the odd line of pixels in the next pass. Interlacing can result in
significant flicker perception and most users prefer a non-interlaced display for this
reason. Interlacing does enable higher resolution display on many monitors and it is
useful for stereo glasses, where the image needs to be split between the left and right eye
to produce a 3D effect.

Linear Frame Buffer
This is a high performance replacement for bank switching whereby all of the graphics
memory can be accessed in one contiguous block of memory. In order to use linear frame
buffer mode, a graphics chip must support it, must be running VBE 2.0 or other
specialized driver and must be running in protected mode. Using a linear frame buffer
requires protected mode access because the computer maps the graphics memory into the
system memory address space and in order to do this, it must have access to more than
the 640K that it would get in “real mode.”

SciTech MGL112

LSB
An acronym for Least Significant Bit. In rounding it is the bit that would make the least
error if it were dropped. (i.e. the 2 in 1,000,002)

Mask
A mask is a numerical (usually binary) pattern that covers or controls some other type of
data. A mask can prevent certain bits from being modified, colors from changing or
provide the pattern for an overlay. There is a bit to bit correlation between items in the
mask and the data to which the mask is applied.

MSB
An acronym for Most Significant Bit. In rounding it is the bit that would make the most
error if it were dropped. (i.e. the 1 in 1,000,002)

Multibuffering
Takes the double buffering concept one step further and allows three or more hidden
display images. Multibuffering is used to increase the frame rate in applications by
allowing the application to generate images at the maximum rate possible. (see also:
Double Buffering)

Non-Interlaced
see: Interlaced.

Off Screen Memory
Graphics cards have a dedicated memory buffer separate from the main system memory.
Typically, there is more graphics memory available than is required to actually display an
image. This is known as off screen memory and it is used by high-performance
applications as a place to store the next image to be displayed or other images that require
frequent access. (see also: Frame Buffer)

Packed Pixel
The bits for the image are stored contiguously in memory (packed together) rather than
being grouped in planes. Older style EGA/VGA graphics modes are planar and
complicated to program, while newer style SuperVGA modes for 8+ bits per pixel color
depths are always packed pixel formats and very easy to program.

Page Flipping
(see also: Double Buffering)

PCI
Acronym for Peripheral Component Interconnect. A local bus specification, developed by
Intel, that allows high bandwidth peripherals such as graphics cards to run at maximum
performance.

Pixels
A pixel is an individual dot of light that the graphics card can turn on or off or change the
color. A monitor can display many thousands of pixels. The more pixels, the more defined
a computer image becomes. Generally, as the number of pixels displayed increases, the
performance of the computer decreases, thus many computer games run in lower
resolutions with a higher (more realistic) color depth.

Primitive

Glossary 113

A primitive is the smallest component that can be used to build larger complex objects. In
SciTech MGL graphics primitives form the building blocks of all graphics output, and
includes things such as pixels, lines, rectangle, ellipses and polygons. All other
complicated shapes and objects can be broken down into a number of smaller graphics
primitives, and those primitives can be used to drawn the objects on the graphics screen.

Protected Mode
Normally a PC can access 640K of RAM. By going into protected mode, software has full
access to all of the memory in a computer system. The problem with protected mode is
that when running in protected mode, the software no longer has access to some of the
computer’s resources. This is why VBE 2.0 was created; software can jump down to “real
mode” get the information from VBE and switch back to protected mode. Before VBE 2.0,
an application had to do that each time that it wanted to access the graphics card. With
VBE 2.0, it only has to do it at initialization time, so VBE 2.0 is much faster then earlier
versions of VBE.

Real Mode
This is the opposite of protected mode. In this mode of operation, a software application
can only access 640K of RAM. If an application runs in real mode, it can only access the
graphics card using bank switching. In order to access VBE, an application must be in real
mode, therefore protected mode applications will switch to real mode, access VBE, then
switch back to protected mode to continue executing. With VBE 2.0, this only has to
happen when the application starts up, not every time it accesses graphics memory.

Refresh Rate
An image on a display that appears constant is actually repainting (refreshing) many
times per second. The refresh rate is measured in how many times the screen is updated
per second, or hertz (Hz). For instance, a typical display refreshes the screen 60 times per
second, or 60Hz. The reason that a display image appears constant is that the graphics
card is repainting the screen faster than your eye can perceive. If the screen does not
refresh fast enough, a person will perceive flicker and may experience headaches. There
are many other factors that contribute to the perception of flicker including: ambient
lighting, screen size, display brightness (and other screen adjustments) and if the image
being displayed has a bright background (like many Windows applications). There is no
“best” refresh rate, but it is generally agreed that refresh rates between 70 and 90Hz are in
the best range for most people in most computer applications. Refresh rates lower than
70Hz can result in eye strain and headaches, higher refresh rates can result in decreased
graphics performance and little or no ergonomic benefit.

Resolution
This refers to the number of pixels that are displayed on the screen. For instance, 1024x768
means that 1024 pixels are displayed across and 768 pixels are displayed down for a total
of 786,432 pixels.

ROM
Acronym for Read Only Memory. This is a chip where the BIOS is stored on a graphics
card.

Software Cursor
A cursor that is created using software instead of hardware. It can be multicolored but it

SciTech MGL114

may flicker if the image that it is displayed on is rapidly changing.

SVGA
Acronym for Super VGA. The original IBM Video Graphics Array, or VGA card had
limited ability to display graphics. Quickly, other manufacturers enhanced the original
design of IBM’s VGA, while still maintaining compatibility with IBM’s original VGA card.
These enhanced cards have come to be known collectively as “Super VGA” cards.

Sync Polarity
Polarity, horizontal and vertical, are the signals that the monitor uses to identify a
particular mode. They were defined when IBM first introduced the VGA and can be sent
via either the horizontal or vertical sync lines in a standard VGA cable. Generally, they are
only useful for modes that are less than 640x480 in size, but they can be useful to allow
monitors to differentiate between two different modes.

Thunk
This is when an application changes from protected mode back to real mode. Thunking
will slow down an application considerably. By minimizing thunking, VBE 2.0 will
dramatically increase the performance of a graphics application.

TSR
Acronym for Terminate and Stay Resident program. This is a program that runs, loads
itself into memory and then allows the user to run other programs. TSR’s have gotten a
bad name because many early applications tried to be TSR’s and they conflicted with
many other applications. Low level drivers like UniVBE or mouse drivers are also TSR’s.
Since they operate at a very low level, they almost never conflict with applications.

Tuple
A set of three values. Tuple is usually used in the context of color values such as RGB and
HSV (i.e. an RGB tuple is the set of three components that make up the RGB color; Red,
Green and Blue).

UniVBE
The Universal VESA BIOS Extension 2.0 driver that comes with the SciTech Display
Doctor suite. UniVBE enables much of the functionality of SciTech Display Doctor.
UniVBE is a trademark of SciTech Software

Vertical Retrace
The point at which the gun drawing the screen travels from the bottom back to the top of
the display in order to start drawing the next page. When the application is creating
pages faster than the monitor can display them, flickering and noise may occur. By
enabling Wait for Vertical Retrace, the next page is not displayed until the application
receives a signal that the vertical retrace has occurred and the hardware is ready to accept
the next page.

Vertical Sync Polarity
see: Sync Polarity.

VBE
VESA BIOS Extension. This is an extension of the BIOS defined in the original IBM VGA
card. VESA added new functionality to the BIOS to provide software developers access to

Glossary 115

new features that have been added to SVGA cards. There are several VBE modules that
address new features that have been added over the years.

VBE/AF
VESA BIOS Extension/Acceleration Functions. This is a proposal within the VESA
Software Standards Committee to standardize common acceleration functions available
on most hardware today. Some of the functions supported in the standard are access to
hardware cursors, Bit Block Transfers (BitBlt), off screen sprites, hardware panning and
drawing. This proposal has the potential to dramatically increase the baseline
performance of games, operating systems and other applications.

VBE/PM
VESA BIOS Extension/Power Management - This is a module of VBE that allows
applications to issue standard calls to a SVGA card to power down the monitor. VBE/PM
allows operating system and application vendors a standard interface to control the
monitor. Without VBE/PM a screen saver would be required with special software for
every graphic card on the market.

VESA
The Video Electronics Standards Association is an organization that was formed in 1989 to
standardize graphics and display hardware and device interfaces. It has over 200 member
companies from the display, graphics chip, graphics board, system and software
companies. They can be reached at: Video Electronics Standards Association, 2150 North
First Street, Suite 440, San Jose, CA 95131. (408) 435-0333, (408) 435-8225 FAX

Viewport
The currently active drawing region of the a device context (like the graphics display). A
full graphics display may be 640x480 pixels, while you can have a 320x480 pixel viewport
in the center of the screen which would restrict all MGL output to the smaller 320x480
rectangle. When a viewport is active, the logical (0,0) coordinate is mapped to the upper
left corner of the viewport. This allows code to be written to draw an object and then, the
object can be moved around on the screen simply by changing the position of the currently
active viewport.

Virtual Linear Frame Buffer
A virtual linear frame buffer uses the 386+ processors ‘memory management unit’
(MMU) to emulate a linear frame buffer in software on a standard banked framebuffer
device. When the drawing application draws into an area that falls outside of the currently
active bank (or 64Kb region of video memory that is currently mapped in by the graphics
hardware), the processor raises a page fault exception which is handled by SciTech MGL
to automatically re-map the new region of video memory for the graphics card and make
it active for drawing.

VL-Bus
Acronym for VESA Local Bus. A local bus specification, developed by VESA, that allows
high bandwidth peripherals such as graphics cards to run at maximum performance.

WinDirect
A SciTech API that allows direct access to the hardware and video memory for
applications running in Windows 3.x or 95.

SciTech MGL116

WinG
An API developed by MS to allow you to Blt efficiently in Windows 3.x.

XY Coordinate System
The Cartesian Coordinate system that is used to define where primitives are drawn on the
screen. In SciTech MGL the origin is in the upper left hand corner and the positive
directions are down and to the right. This is different than the standard Cartesian
Coordinate system where the origin is in the lower left and the positive directions are up
and to the right.

Index 117

Index

_
__cdecl calling convention, 30

8
8bit DAC, 110

A
ALT-ENTER, 55, 82
ALT-TAB, 48
Assembling

32-bit code, 20
AUTOEXEC.BAT, 16

B
Bank Switching, 109
BIOS, 109, 113
BitBLT, 109
bitmaps

blting sprites from offscreen memory, 69
loading, 50
storing in offscreen DCs, 68

Blt (Bit Block Transfer), 51
Borland C++

debugging, 26, 27, 28
BPP, 109

C
Clipping, 109
Clock Chip, 109
color depth, 60, 110
compiler configuration, 9
CreateDIBSection, 2
CRTC, 110

D
DAC, 110
debugging, 72
DEC Alpha, 5

Device Context, 110
device contexts

Blting, 50
creating, 48
current, 48
directly accessing hardware surface, 65
drawing on, 50
drawing to memory DCs, 62
drawing to stretched DC, 63
linear, 68
memory, 60
offscreen, 68
rectangular, 68
repainting, 63
windowed, 60

device drivers
forcing use of, 47
registering, 46

Direct Sound, 55
DirectDraw, 2, 110
DirectX, 3, 110
dirty regions, 81
Discrete Clock, 110
Display Doctor, 3
display modes

changing on the fly, 55
display surfaces

color information, 67
DMAKE, 12

compilation targets, 18
options, 19

DOS-VARS.BAT, 16
Double Buffering, 110
double-buffering, 64
DPMI, 110
drawing surfaces

accessing directly, 4

E
environment variables

SCITECH, 16
SCITECH_LIB, 16

events
KEYDOWN, 28
KEYREPEAT, 28

SciTech MGL118

KEYUP, 28
subclassing windows, 54
using MGL event handlers, 52
WM_PAINT, 63

EVT_asciiCode, 52
EVT_DBLCLK, 53
EVT_getNext, 52
EVT_KEYDOWN, 52
EVT_LEFTBUT, 53
EVT_MOUSEMOVE, 52
EVT_RIGHTBUT, 53

F
Firmware, 111
Fixed/Floating Point transform library, 7
focus, 48
Frame Buffer, 111
framebuffers

linear, 66
virtual linear, 66

full screen
rendering, 3

G
Game Framework, 3, 4, 74

accessing the entire palette, 84
activation callback, 81
and OpenGL, 84
callbacks, 77
draw callback, 80
finding supported graphics modes, 83
initializing drivers, 74
keyboard callbacks, 77
logic callback, 79
mode filter callback, 82
mode switch callback, 81
mouse callbacks, 78
order of callbacks, 77
palette, 84
pre-mode switch callback, 82
setting graphics mode, 83
using your own windows, 85

Game Framworks
events, 79

GDI, 111
GetMemoryBitmapDepth, 61
Glyph, 111
GM_cleanup, 77

GM_findMode, 83
GM_init, 75, 76
GM_initSysPall, 84
GM_mainLoop, 77
GM_realizePalette, 84
GM_registerMainWindow, 85
GM_setAppActivate, 77
GM_setDrawFunc, 77
GM_setDriverOptions, 74, 75
GM_setGameLogicFunc, 77
GM_setKeyDownFunc, 77
GM_setKeyRepeatFunc, 78
GM_setKeyUpFunc, 78
GM_setMode, 83
GM_setModeFilterFunc, 82
GM_setModeSwitchFunc, 77
GM_setMouseDownFunc, 77, 79
GM_setMouseUpFunc, 79
GM_setPalette, 84
GM_setPreModeSwitchFunc, 82
GM_setSuspendAppCallback, 77
GM_startOpenGL, 85
GM_swapDirtyBuffers, 80
grDETECT, 46
GUI, 111

H
Hardware acceleration, 5
Hardware and Software Requirements, 9
Hardware Cursor, 111
Horizontal Sync Polarity, 111

I
identity palette, 61
identity palettes, 49
installation, 9
Interlaced, 111

K
keyboard problems

and Borland C++, 28

L
loadBitmapIntoMemDC, 50
LSB, 112
LZTimerCount, 101

Index 119

LZTimerLap, 101
LZTimerOff, 101
LZTimerOn, 101

M
Makefile Utilities, 12
Mask, 112
MegaVision GUI library, 6
MESA, 3
MGL

configuring, 22
destroying on exit, 56
dynamic linking, 28
redistributable components, 96
windowed mode sample, 57

MGL Plus Pack, 11
MGL_availablePages, 64
MGL_bitBltCoord, 52
MGL_bitBltLin, 69
MGL_changeDisplayMode, 55
MGL_checkIdentityPalette, 46, 49
MGL_clearDevice, 49, 80
MGL_createDisplayDC, 48, 55, 64
MGL_createMemoryDC, 61
MGL_createOffscreenDC, 68
MGL_destroyDC, 55
MGL_doubleBuffer, 64
MGL_ellipseCoord, 80
MGL_enumerateDrivers, 95
MGL_exit, 52
MGL_fatalError, 83
MGL_fillEllipseCoord, 80
MGL_freeRegion, 80
MGL_getBitsPerPixel, 51
MGL_getPalette, 61
MGL_getPixelCoord, 50
MGL_glChooseVisual, 91
MGL_glCreateContext, 92
MGL_glDeleteContext, 94
MGL_glMakeCurrent, 85, 93
MGL_glRealizePalette, 94
MGL_glSetDriver, 95
MGL_glSetPalette, 94
MGL_glSetVisual, 85, 91
MGL_glSwapBuffers, 93
MGL_init, 46

in windowed modes, 58
MGL_loadCursor, 69
MGL_makeCurrentDC, 46, 48

MGL_memcpy, 69
MGL_optimizeRegion, 80
MGL_packColor, 67
MGL_realizePalette, 61
MGL_registerAllDispDrivers, 46
MGL_registerAllMemDrivers(), 46
MGL_registerAllOpenGLDrivers, 90
MGL_registerEventProc, 54
MGL_registerFullScreenWindow, 56
MGL_setActivePage, 65
MGL_setColorCI, 80
MGL_setCursor, 69
MGL_setPalette, 61
MGL_setSuspendAppCallback, 46
MGL_setVisualPage, 65
MGL_sizex, 50
MGL_sizey, 50
MGL_stretchBLT, 63
MGL_surfaceAccessType, 66
MGL_swapBuffers, 65
MGL_transBltCoord, 50
MGL_transBltLin, 69
MGL_unionRegionRect, 80
MGL_unpackColor, 67
MGL_unregisterAllDrivers, 46
MGLCPP.LIB, 26
MGRAPH.H, 25
MGRAPH.HPP, 26
MKSETUP.EXE, 12
mouse cursor

double-buffered cursors, 69
drawing, 51
using custom cursors, 69

mouse events
trapping, 51

MS_drawCursor, 70
MS_obscure, 51
MS_setCursorColor, 51, 69
MSB, 112
Multi-Buffering, 112
Multiple Buffering, 65

N
Non-Interlaced, 112

O
Off Screen Memory, 112
OpenGL, 3

SciTech MGL120

choosing visual, 90
creating rendering contexts, 91
deleting a rendering context, 94
forcing a specific driver, 95
forcing a specific implementation, 94
fullscreen OpenGL, 90
listing drivers, 95
MGLVisual structure, 91
programming hardware palette, 94
registering hardware drivers, 90
resizing display buffers, 93
swapping buffers, 93

P
Packed Pixel, 112
page flipping, 64, 112

implementing, 64
palette

changing and realizing, 61
static vs. no_static, 61

PCI, 112
Pixels, 112
Primitive, 113
Protected Mode, 113

Q
Query Performance Counter, 100
Quick2D rendering library, 7
Quick3D rendering library, 7
QuickModeler 3D modeling library, 8

R
RDTSC instruction, 100
Real Mode, 113
Refresh Rate, 113
register based parameter passing, 11
Resolution, 113
ROM, 113

S
sample programs, 31
SetSystemPaletteUse, 61
SPR_bitmap type, 88
SPR_draw, 89
SPR_mgrAddOpaqueBitmap, 88
SPR_mgrAddTransparentBitmap, 88

SPR_mgrInit, 87
SPR_mgrReloadHW, 89
Sprite Manager, 74, 87

adding an opaque bitmap, 88
adding bitmaps, 88
drawing a sprite, 88
initializing, 87
reloading hardware, 89

stack based parameter passing, 11
STARTMGL.BAT, 15
SuperVGA, 66
SVGA, 114
Sync Polarity, 114

T
Techniques Class Library, 8, 11
Thunk, 114
transparency

destination, 51
source, 51

TrueColor, 60
TSR, 114
Tuple, 114

U
Ultra Long Period Zen Timer, 102
ULZElapsedTime, 102
ULZReadTime, 102
unified event queue, 52
UniVBE, 114

V
VBE, 115
VBE/AF, 3, 115
VBE/PM, 115
Vertical Retrace, 114
Vertical Sync Polarity, 114
VESA, 115
Viewport, 115
Vitual Linear Frame Buffer, 115
VL-Bus, 115

W
Watcom C++, 30
WD_DEACTIVATE, 49
WD_REACTIVATE, 49

Index 121

WinDirect, 3, 96, 116
windowed environment

rendering, 2
windows

setting icon and window caption, 56
WinG, 116

Z
Zen Timer, 100
ZTimerInit, 101

