
JFlex User’s Manual
Version 1.3.1, February 20, 2001

Gerwin Klein

Contents

1 Introduction 3
1.1 Design goals . 3
1.2 About this manual . 3

2 Installing and Running JFlex 4
2.1 Installing JFlex . 4

2.1.1 Windows . 4
2.1.2 Unix with tar archive . 4
2.1.3 Linux with RPM . 5

2.2 Running JFlex . 5

3 A simple Example: How to work with JFlex 6
3.1 Code to include . 8
3.2 Options and Macros . 9
3.3 Rules and Actions . 10
3.4 How to get it going . 11

4 Lexical Specifications 12
4.1 User code . 12
4.2 Options and declarations . 12

4.2.1 Class options and user class code . 12
4.2.2 Scanning method . 14
4.2.3 The end of file . 15
4.2.4 Standalone scanners . 16
4.2.5 CUP compatibility . 17
4.2.6 BYacc/J compatibility . 17
4.2.7 Code generation . 17
4.2.8 Character sets . 18

1

4.2.9 Line, character and column counting 19
4.2.10 Obsolete JLex options . 19
4.2.11 State declarations . 20
4.2.12 Macro definitions . 20

4.3 Lexical rules . 21
4.3.1 Syntax . 21
4.3.2 Semantics . 23
4.3.3 How the input is matched . 26
4.3.4 Scanner methods and fields accessible in actions (API) 26

5 Encodings, Platforms and Unicode 28
5.1 The Problem . 29
5.2 Scanning text files . 29
5.3 Scanning binaries . 30

6 A few words on performance 31
6.1 Comparison of JLex and JFlex . 31
6.2 How to write a faster specification . 33

7 Porting Issues 34
7.1 Porting from JLex . 34
7.2 Porting from lex/flex . 35

7.2.1 Basic structure . 36
7.2.2 Macros and Regular Expression Syntax 36
7.2.3 Lexical States . 36
7.2.4 Lexical Rules . 37

8 Working together 37
8.1 JFlex and CUP . 37

8.1.1 CUP version 0.10j . 37
8.1.2 Using existing JFlex/CUP specifications with CUP 0.10j 37
8.1.3 Using older versions of CUP . 38

8.2 JFlex and BYacc/J . 40

9 Bugs and Deficiencies 43
9.1 Deficiencies . 43
9.2 Bugs . 43

10 Copying and License 43

2

1 Introduction

1 Introduction

JFlex is a lexical analyzer generator for Java1 written in Java. It is also a rewrite of the very
useful tool JLex [3] which was developed by Elliot Berk at Princeton University. As Vern
Paxon states for his C/C++ tool flex [11]: They do not share any code though.

1.1 Design goals

The main design goals of JFlex are:

• Full unicode support

• Fast generated scanners

• Fast scanner generation

• Convenient specification syntax

• Platform independence

• JLex compatibility

1.2 About this manual

This manual gives a brief but complete description of the tool JFlex. It assumes, that you
are familiar with the issue of lexical analysis. [2], [1] and [13] provide a good introduction to
this topic.

The next section of this manual describes installation procedures for JFlex. If you never
worked with JLex or just want to compare a JLex and a JFlex scanner specification you
should also read Working with JFlex - an example (section 3). All options and the complete
specification syntax are presented in Lexical specifications (section 4). If you are interested in
performance considerations and comparing JLex vs. JFlex speed, a few words on performance
(section 6) might be just right for you. Those who want to use their old JLex specifications
may want to check out section 7.1 Porting from JLex to avoid possible problems with not
portable or non standard JLex behavior that has been fixed in JFlex. Section 7.2 talks about
porting scanners from the Unix tools lex and flex. Interfacing JFlex scanners with the LALR
parser generators CUP and BYacc/J is explained in working together (section 8). Section 9
Bugs gives a list of currently known active bugs. The manual concludes with notes about
Copying and License (section 10) and references.

1Java is a trademark of Sun Microsystems, Inc., and refers to Sun’s Java programming language. JFlex is
not sponsored by or affiliated with Sun Microsystems, Inc.

3

2 Installing and Running JFlex

2 Installing and Running JFlex

2.1 Installing JFlex

2.1.1 Windows

To install JFlex on Windows 95/98/NT, follow these three steps:

1. Unzip the file you downloaded into the directory you want JFlex in (using something
like WinZip2). If you unzipped it to say C:\, the following directory structure should
be generated:

C:\JFlex\
+--bin\ (start scripts)
+--doc\ (FAQ and this manual)
+--examples\

+--binary\ (scanning binary files)
+--byaccj\ (calculator example for BYacc/J)
+--cup\ (calculator example for cup)
+--java\ (Java 1.1 lexer specification)
+--simple\ (example scanner)
+--standalone\ (a simple standalone scanner)

+--lib\ (the precompiled classes)
+--src\

+--JFlex\ (source code of JFlex)
+--JFlex\gui (source code of JFlex UI classes)
+--java_cup\runtime\ (source code of cup runtime classes)

2. Edit the file bin\jflex.bat (in the example it’s C:\JFlex\bin\jflex.bat) such that

• JAVA HOME contains the directory where your Java JDK is installed (for instance
C:\java) and
• JFLEX HOME the directory that contains JFlex (in the example: C:\JFlex)

3. Include the bin\ directory of JFlex in your path. (the one that contains the start script,
in the example: C:\JFlex\bin).

2.1.2 Unix with tar archive

To install JFlex on a Unix system, follow these two steps:

• Uncompress the archive into a directory of your choice with GNU tar, for instance to
/usr/share:

tar -C /usr/share -xvzf jflex-1.3.1.tar.gz

(The example is for site wide installation. You need to be root for that. User installation
works exactly the same way—just choose a directory where you have write permission)

2http://www.winzip.com

4

2 Installing and Running JFlex

• Make a symbolic link from somewhere in your binary path to bin/jflex, for instance:

ln -s /usr/share/JFlex/bin/jflex /usr/bin/jflex

If the java interpreter is not in your binary path, you need to supply its location in the
script bin/jflex.

You can verify the integrity of the downloaded file with the MD5 checksum available on the
JFlex download page. If you put the checksum file in the same directory as the archive, you
run:

md5sum --check jflex-1.3.1.tar.gz.md5

It should tell you

jflex-1.3.1.tar.gz: OK

2.1.3 Linux with RPM

• become root

• issue
rpm -i jflex-1.3.1-0.rpm

You can verify the integrity of the downloaded rpm file with

rpm --checksig jflex-1.3.1-0.rpm

This requires my pgp public key. If you don’t have it, you can use

rpm --checksig --nopgp jflex-1.3.1-0.rpm

or you can get it from http://www.jflex.de/public-key.asc.

2.2 Running JFlex

You run JFlex with:

jflex <options> <inputfiles>

It is also possible to skip the start script in bin\ and include the file lib\JFlex.jar in your
CLASSPATH environment variable instead.

Then you run JFlex with:

java JFlex.Main <options> <inputfiles>

The input files and options are in both cases optional. If you don’t provide a file name on
the command line, JFlex will pop up a window to ask you for one.

JFlex knows about the following options:

-d <directory>
writes the generated file to the directory <directory>

--skel <file>
uses external skeleton <file>. This is mainly for JFlex maintenance and special low

5

3 A simple Example: How to work with JFlex

level customizations. Use only when you know what you are doing! JFlex comes with a
skeleton file in the src directory that reflects exactly the internal, precompiled skeleton
and can be used with the -skel option.

--nomin
skip the DFA minimization step during scanner generation. This feature is in alpha
status and not extensively tested. Use only when you know what you are doing.

--dot
generate graphviz dot files for the NFA, DFA and minimized DFA. This feature is also
still in alpha status, and not fully implemented yet.

--dump
display transition tables of NFA, initial DFA, and minimized DFA

--verbose or -v
display generation progress messages (enabled by default)

--quiet or -q
display error messages only (no chatter about what JFlex is currently doing)

--time
display time statistics about the code generation process. (Not very accurate)

--help or -h
print a help message explaining options and usage of JFlex.

3 A simple Example: How to work with JFlex

To demonstrate what a lexical specification with JFlex looks like, this section presents a part
of the specification for the Java language. The example does not describe the whole lexical
structure of Java programs, but only a small and simplified part of it (some keywords, some
operators, comments and only two kinds of literals). It also shows how to interface with the
LALR parser generator CUP [8] and therefore uses a class sym (generated by CUP), where
integer constants for the terminal tokens of the CUP grammar are declared. JFlex comes with
a directory examples, where you can find a small standalone scanner that doesn’t need other
tools like CUP to give you a running example. The ”examples” directory also contains a
complete JFlex specification of the lexical structure of Java programs together with the CUP
parser specification for Java 1.1 by C. Scott Ananian, obtained from the CUP [8] website (it
was modified to interface with the JFlex scanner). Both specifications adhere strictly to the
Java Language Specification [7].

/* JFlex example: part of Java 1.0/1.1 language lexer specification */
import java_cup.runtime.*;

%%

6

3 A simple Example: How to work with JFlex

%class Lexer
%unicode
%cup
%line
%column

%{
StringBuffer string = new StringBuffer();

private Symbol symbol(int type) {
return new Symbol(type, yyline, yycolumn);

}
private Symbol symbol(int type, Object value) {

return new Symbol(type, yyline, yycolumn, value);
}

%}

LineTerminator = \r|\n|\r\n
InputCharacter = [^\r\n]
WhiteSpace = {LineTerminator} | [\t\f]

/* comments */
Comment = {TraditionalComment} | {EndOfLineComment} | {DocumentationComment}

TraditionalComment = "/*" [^*] {CommentContent} "*"+ "/"
EndOfLineComment = "//" {InputCharacter}* {LineTerminator}
DocumentationComment = "/**" {CommentContent} "*"+ "/"

CommentContent = ([^*] | *+ [^/*])*

Identifier = [:jletter:] [:jletterdigit:]*

DecIntegerLiteral = 0 | [1-9][0-9]*

%state STRING

%%

/* keywords */
<YYINITIAL> "abstract" { return symbol(sym.ABSTRACT); }
<YYINITIAL> "boolean" { return symbol(sym.BOOLEAN); }
<YYINITIAL> "break" { return symbol(sym.BREAK); }

<YYINITIAL> {
/* identifiers */
{Identifier} { return symbol(sym.IDENTIFIER); }

7

3 A simple Example: How to work with JFlex

/* literals */
{DecIntegerLiteral} { return symbol(sym.INTEGER_LITERAL); }
\" { string.setLength(0); yybegin(STRING); }

/* operators */
"=" { return symbol(sym.EQ); }
"==" { return symbol(sym.EQEQ); }
"+" { return symbol(sym.PLUS); }

/* comments */
{Comment} { /* ignore */ }

/* whitespace */
{WhiteSpace} { /* ignore */ }

}

<STRING> {
\" { yybegin(YYINITIAL);

return symbol(sym.STRINGLITERAL,
string.toString()); }

[^\n\r\"\]+ { string.append(yytext()); }
\\t { string.append(’\t’); }
\\n { string.append(’\n’); }

\\r { string.append(’\r’); }
\\" { string.append(’\"’); }
\\ { string.append(’\’); }

}

/* error fallback */
.|\n { throw new Error("Illegal character <"+

yytext()+">"); }

As with JLex, the specification consists of three parts, divided by %%:

• usercode,

• options and declarations and

• lexical rules.

3.1 Code to include

Let’s take a look at the first section, “user code”: The text up to the first line starting with %%
is copied verbatim to the top of the generated lexer class (before the actual class declaration).
Beside package and import statements there is usually not much to do here.

8

3 A simple Example: How to work with JFlex

3.2 Options and Macros

The second section “options and declarations” is more interesting. It consists of a set of
options, code that is included inside the generated scanner class, lexical states and macro
declarations. Each JFlex option must begin a line of the specification and starts with a %. In
our example the following options are used:

• %class Lexer tells JFlex to give the generated class the name “Lexer” and to write
the code to a file “Lexer.java”.

• %unicode defines the set of characters the scanner will work on.

• %cup switches to CUP compatibility mode to interface with a CUP generated parser.

• %line switches line counting on (the current line number can be accessed via the variable
yyline)

• %column switches column counting on (current column is accessed via yycolumn)

The code included in %{...%} is copied verbatim into the generated lexer class source. Here
you can declare member variables and functions that are used inside scanner actions. In
our example we declare a StringBuffer “string” in which we will store parts of string
literals and two helper functions “symbol” that create java cup.runtime.Symbol objects
with position information of the current token (see section 8.1 JFlex and CUP for how to
interface with the parser generator CUP). As JFlex options, both %{ and %} must begin a
line.

The specification continues with macro declarations. Macros are abbreviations for regular
expressions, used to make lexical specifications easier to read and understand. A macro
declaration consists of a macro identifier followed by =, then followed by the regular expression
it represents. This regular expression may itself contain macro usages. Although this allows
a grammar like specification style, macros are still just abbreviations and not non terminals –
they cannot be recursive or mutually recursive. Cycles in macro definitions are detected and
reported at generation time by JFlex.

Here some of the example macros in more detail:

• LineTerminator stands for the regular expression that matches an ASCII CR, an ASCII
LF or an CR followed by LF.

• InputCharacter stands for all characters that are not a CR or LF.

• TraditionalComment is the expression that matches the string "/*" followed by a
character that is not a * followed by anything that matches the macro CommentContent
followed by any number of * followed by /.

• CommentContent matches zero or more occurrences of any character except a * or any
number of * followed by a character that is not a /

9

3 A simple Example: How to work with JFlex

• Identifier matches each string that starts with a character of class jletter followed
by zero or more characters of class jletterdigit. jletter and jletterdigit are
predefined character classes. jletter includes all characters for which the Java function
Character.isJavaIdentifierStart returns true and jletterdigit all characters for
that Character.isJavaIdentifierPart returns true.

The last part of the second section in our lexical specification is a lexical state declaration:
%state STRING declares a lexical state STRING that can be used in the “lexical rules” part
of the specification. A state declaration is a line starting with %state followed by a space
or comma separated list of state identifiers. There can be more than one line starting with
%state.

3.3 Rules and Actions

The ”lexical rules” section of a JFlex specification contains regular expressions and actions
(Java code) that are executed when the scanner matches the associated regular expression. As
the scanner reads its input, it keeps track of all regular expressions and activates the action
of the expression that has the longest match. Our specification above for instance would
with input ”breaker” match the regular expression for Identifier and not the keyword
”break” followed by the Identifier ”er”, because rule {Identifier} matches more of this
input at once (i.e. it matches all of it) than any other rule in the specification. If two regular
expressions both have the longest match for a certain input, the scanner chooses the action of
the expression that appears first in the specification. In that way, we get for input ”break”
the keyword ”break” and not an Identifier ”break”.

Additional to regular expression matches, one can use lexical states to refine a specification.
A lexical state acts like a start condition. If the scanner is in lexical state STRING, only
expressions that are preceded by the start condition <STRING> can be matched. A start
condition of a regular expression can contain more than one lexical state. It is then matched
when the lexer is in any of these lexical states. The lexical state YYINITIAL is predefined
and is also the state in which the lexer begins scanning. If a regular expression has no start
conditions it is matched in all lexical states.

Since you often have a bunch of expressions with the same start conditions, JFlex allows the
same abbreviation as the Unix tool flex:

<STRING> {
expr1 { action1 }
expr2 { action2 }

}

means that both expr1 and expr2 have start condition <STRING>.

The first three rules in our example demonstrate the syntax of a regular expression preceded
by the start condition <YYINITIAL>.

<YYINITIAL> "abstract" { return symbol(sym.ABSTRACT); }

matches the input ”abstract” only if the scanner is in its start state ”YYINITIAL”. When the
string ”abstract” is matched, the scanner function returns the CUP symbol sym.ABSTRACT.

10

3 A simple Example: How to work with JFlex

If an action does not return a value, the scanning process is resumed immediately after
executing the action.

The rules enclosed in

<YYINITIAL> {
...
}

demonstrate the abbreviated syntax and are also only matched in state YYINITIAL.

Of these rules, one may be of special interest:

\" { string.setLength(0); yybegin(STRING); }

If the scanner matches a double quote in state YYINITIAL we have recognized the start of a
string literal. Therefore we clear our StringBuffer that will hold the content of this string
literal and tell the scanner with yybegin(STRING) to switch into the lexical state STRING.
Because we do not yet return a value to the parser, our scanner proceeds immediately.

In lexical state STRING another rule demonstrates how to refer to the input that has been
matched:

[^\n\r\"]+ { string.append(yytext()); }

The expression [^\n\r\"]+ matches all characters in the input up to the next backslash
(indicating an escape sequence such as \n), double quote (indicating the end of the string),
or line terminator (which must not occur in a string literal). The matched region of the input
is referred to with yytext() and appended to the content of the string literal parsed so far.

The last lexical rule in the example specification is used as an error fallback. It matches any
character in any state that has not been matched by another rule. It doesn’t conflict with any
other rule because it has the least priority (because it’s the last rule) and because it matches
only one character (so it can’t have longest match precedence over any other rule).

3.4 How to get it going

• Install JFlex (see section 2 Installing JFlex)

• If you have written your specification file (or chosen one from the examples directory),
save it (say under the name java-lang.flex).

• Run JFlex with

jflex java-lang.flex

• JFlex should then report some progress messages about generating the scanner and
write the generated code to the directory of your specification file.

• Compile the generated .java file and your own classes. (If you use CUP, generate your
parser classes first)

• That’s it.

11

4 Lexical Specifications

4 Lexical Specifications

As shown above, a lexical specification file for JFlex consists of three parts divided by a single
line starting with %%:

UserCode
%%
Options and declarations
%%
Lexical rules

In all parts of the specification comments of the form /* comment text */ and the Java
style end of line comments starting with // are permitted. JFlex comments do nest - so the
number of /* and */ should be balanced.

4.1 User code

The first part contains user code that is copied verbatim into the beginning of the source file
of the generated lexer before the scanner class is declared. As shown in the example above,
this is the place to put package declarations and import statements. It is possible, but not
considered as good Java programming style to put own helper class (such as token classes) in
this section. They should get their own .java file instead.

4.2 Options and declarations

The second part of the lexical specification contains options to customize your generated
lexer (JFlex directives and Java code to include in different parts of the lexer), declarations of
lexical states and macro definitions for use in the third section “Lexical rules” of the lexical
specification file.

Each JFlex directive must be situated at the beginning of a line and starts with the % character.
Directives that have one or more parameters are described as follows:

%class "classname"

means that you start a line with %class followed by a space followed by the name of the
class for the generated scanner (the double quotes are not to be entered, see the example
specification in section 3).

4.2.1 Class options and user class code

These options regard the name, the constructor and related parts of the generated scanner
class.

• %class "classname"

Tells JFlex to give the generated class the name ”classname” and to write the generated
code to a file ”classname.java”. If the -d <directory> command line option is not
used, the code will be written to the directory where the specification file resides. If no

12

4 Lexical Specifications

%class directive is present in the specification, the generated class will get the name
”Yylex” and will be written to a file ”Yylex.java”. There should be only one %class
directive in a specification.

• %implements "interface 1"[, "interface 2", ..]

Makes the generated class implement the specified interfaces. If more than one %imple-
ments directive is present, all the specified interfaces will be implemented.

• %extends "classname"

Makes the generated class a subclass of the class “classname”. There should be only
one %extends directive in a specification.

• %public

Makes the generated class public (the class is only accessible in its own package by
default).

• %final

Makes the generated class final.

• %abstract

Makes the generated class abstract.

• %{
...
%}

The code enclosed in %{ and %} is copied verbatim into the generated class. Here you
can define your own member variables and functions in the generated scanner. As all
options, both %{ and %} must start a line in the specification. If more than one class
code directive %{...%} is present, the code is concatenated in order of appearance in
the specification.

• %init{
...
%init}

The code enclosed in %init{ and %init} is copied verbatim into the constructor of
the generated class. Here, member variables declared in the %{...%} directive can be
initialized. If more than one initializer option is present, the code is concatenated in
order of appearance in the specification.

• %initthrow{
"exception1"[, "exception2", ...]
%initthrow}

or (on a single line) just

%initthrow "exception1" [, "exception2", ...]

Causes the specified exceptions to be declared in the throws clause of the constructor. If
more than one %initthrow{ ... %initthrow} directive is present in the specification,
all specified exceptions will be declared.

13

4 Lexical Specifications

• %scanerror "exception"

Causes the generated scanner to throw an instance of the specified exception in case
of an internal error (default is java.lang.Error). Note that this exception is only for
internal scanner errors. With usual specifications it should never occur (i.e. if there
is an error fallback rule in the specification and only the documented scanner API is
used).

• %buffer "size"

Set the initial size of the scan buffer to the specified value (decimal, in bytes). The
default value is 16384.

• %include "filename"

Replaces the %include verbatim with the specified file. This feature is still experimental.
It works, but error reporting can be strange if a syntax error occurs on the last token
in the included file.

4.2.2 Scanning method

This section shows how the scanning method can be customized. You can redefine the name
and return type of the method and it is possible to declare exceptions that may be thrown
in one of the actions of the specification. If no return type is specified, the scanning method
will be declared as returning values of class Yytoken.

• %function "name"

Causes the scanning method to get the specified name. If no %function directive is
present in the specification, the scanning method gets the name “yylex”. This directive
overrides settings of the %cup switch. Please note that the default name of the scanning
method with the %cup switch is next token. Overriding this name might lead to the
generated scanner being implicitly declared as abstract, because it does not provide
the method next token of the interface java cup.runtime.Scanner. It is of course
possible to provide a dummy implemention of that method in the class code section, if
you still want to override the function name.

• %integer
%int

Both cause the scanning method to be declared as of Java type int. Actions in the
specification can then return int values as tokens. The default end of file value under
this setting is YYEOF, which is a public static final int member of the generated
class.

• %intwrap

Causes the scanning method to be declared as of the Java wrapper type Integer.
Actions in the specification can then return Integer values as tokens. The default end
of file value under this setting is null.

14

4 Lexical Specifications

• %type "typename"

Causes the scanning method to be declared as returning values of the specified type.
Actions in the specification can then return values of typename as tokens. The de-
fault end of file value under this setting is null. If typename is not a subclass of
java.lang.Object, you should specify another end of file value using the %eofval{
... %eofval} directive or the <<EOF>> rule. The %type directive overrides settings of
the %cup switch.

• %yylexthrow{
"exception1"[, "exception2", ...]
%yylexthrow}

or (on a single line) just

%yylexthrow "exception1" [, "exception2", ...]

The exceptions listed inside %yylexthrow{ ... %yylexthrow} will be declared in the
throws clause of the scanning method. If there is more than one %yylexthrow{ ...
%yylexthrow} clause in the specification, all specified exceptions will be declared.

4.2.3 The end of file

There is always a default value that the scanning method will return when the end of file has
been reached. You may however define a specific value to return and a specific piece of code
that should be executed when the end of file is reached.

The default end of file values depends on the return type of the scanning method:

• For %integer, the scanning method will return the value YYEOF, which is a public
static final int member of the generated class.

• For %intwrap,

• no specified type at all, or a

• user defined type, declared using %type, the value is null.

• In CUP compatibility mode, using %cup, the value is

new java cup.runtime.Symbol(sym.EOF)

User values and code to be executed at the end of file can be defined using these directives:

• %eofval{
...
%eofval}

The code included in %eofval{ ... %eofval} will be copied verbatim into the scanning
method and will be executed each time when the end of file is reached (this is possible
when the scanning method is called again after the end of file has been reached). The
code should return the value that indicates the end of file to the parser. There should
be only one %eofval{ ... %eofval} clause in the specification. The %eofval{ ...

15

4 Lexical Specifications

%eofval} directive overrides settings of the %cup switch and %byaccj switch. As of
version 1.2 JFlex provides a more readable way to specify the end of file value using the
<<EOF>> rule (see also section 4.3.2).

• %eof{
...
%eof}

The code included in %{eof ...%eof} will be executed exactly once, when the end of
file is reached. The code is included inside a method void yy do eof() and should
not return any value (use %eofval{...%eofval} or <<EOF>> for this purpose). If more
than one end of file code directive is present, the code will be concatenated in order of
appearance in the specification.

• %eofthrow{
"exception1"[,"exception2", ...]
%eofthrow}

or (on a single line) just

%eofthrow "exception1" [, "exception2", ...]

The exceptions listed inside %eofthrow{...%eofthrow} will be declared in the throws
clause of the method yy do eof() (see %eof for more on that method). If there is more
than one %eofthrow{...%eofthrow} clause in the specification, all specified exceptions
will be declared.

• %eofclose

Causes JFlex to close the input stream at the end of file. The code yyclose() is ap-
pended to the method yy do eof() (together with the code specified in %eof{...%eof})
and the exception java.io.IOException is declared in the throws clause of this method
(together with those of %eofthrow{...%eofthrow})

4.2.4 Standalone scanners

• %debug

Creates a main function in the generated class that expects the name of an input file on
the command line and then runs the scanner on this input file by printing each returned
token to the Java console until the end of file is reached.

• %standalone

Creates a main function in the generated class that expects the name of an input file on
the command line and then runs the scanner on this input file. The values returned by
the scanner are ignored, but any unmatched text is printed to the Java console instead
(as the C/C++ tool flex does, if run as standalone program). To avoid having to use
an extra token class, the scanning method will be declared as having default type int,
not YYtoken (if there isn’t any other type explicitly specified). This is in most cases
irrelevant, but could be useful to know when making another scanner standalone for
some purpose. You should also consider using the %debug directive, if you just want to
be able to run the scanner without a parser attached for testing etc.

16

4 Lexical Specifications

4.2.5 CUP compatibility

You may also want to read section 8.1 JFlex and CUP if you are interested in how to interface
your generated scanner with CUP.

• %cup

The %cup directive enables the CUP compatibility mode and is equivalent to the fol-
lowing set of directives:

%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol
%eofval{

return new java_cup.runtime.Symbol(sym.EOF);
%eofval}
%eofclose

4.2.6 BYacc/J compatibility

You may also want to read section 8.2 JFlex and BYacc/J if you are interested in how to
interface your generated scanner with Byacc/J.

• %byacc

The %byacc directive enables the BYacc/J compatibility mode and is equivalent to the
following set of directives:

%integer
%eofval{

return 0;
%eofval}
%eofclose

4.2.7 Code generation

The following options define what kind of lexical analyzer code JFlex will produce. %pack is
the default setting and will be used, when no code generation method is specified.

• %switch

With %switch JFlex will generate a scanner that has the DFA hard coded into a nested
switch statement. This method gives a good deal of compression in terms of the size of
the compiled .class file while still providing very good performance. If your scanner
gets to big though (say more than about 200 states) performance may vastly degenerate
and you should consider using one of the %table or %pack directives. If your scanner gets
even bigger (about 300 states), the Java compiler javac could produce corrupted code,
that will crash when executed or will give you an java.lang.VerifyError when checked

17

4 Lexical Specifications

by the virtual machine. This is due to the size limitation of 64 KB of Java methods
as described in the Java Virtual Machine Specification [10]. In this case you will be
forced to use the %pack directive, since %switch usually provides more compression of
the DFA table than the %table directive.

• %table

The %table direction causes JFlex to produce a classical table driven scanner that
encodes its DFA table in an array. In this mode, JFlex only does a small amount of
table compression (see [6], [12], [1] and [13] for more details on the matter of table
compression) and uses the same method that JLex did up to version 1.2.1. See section
6 performance of this manual to compare these methods. The same reason as above
(64 KB size limitation of methods) causes the same problem, when the scanner gets too
big. This is, because the virtual machine treats static initializers of arrays as normal
methods. You will in this case again be forced to use the %pack directive to avoid the
problem.

• %pack

%pack causes JFlex to compress the generated DFA table and to store it in one or more
string literals. JFlex takes care that the strings are not longer than permitted by the
class file format. The strings have to be unpacked when the first scanner object is
created and initialized. After unpacking the internal access to the DFA table is exactly
the same as with option %table — the only extra work to be done at runtime is the
unpacking process which is quite fast (not noticeable in normal cases). It is in time
complexity proportional to the size of the expanded DFA table, and it is static, i.e. it
is done only once for a certain scanner class — no matter how often it is instantiated.
Again, see section 6 performance on the performance of these scanners With %pack,
there should be practically no limitation to the size of the scanner. %pack is the default
setting and will be used when no code generation method is specified.

4.2.8 Character sets

• %7bit

Causes the generated scanner to use an 7 bit input character set (character codes 0-127).
Because this is the default value in JLex, JFlex also defaults to 7 bit scanners. If an
input character with a code greater than 127 is encountered in an input at runtime, the
scanner will throw an ArrayIndexOutofBoundsException. Not only because of this,
you should consider using the %unicode directive. See also section 5 for information
about character encodings.

• %full
%8bit

Both options cause the generated scanner to use an 8 bit input character set (character
codes 0-255). If an input character with a code greater than 255 is encountered in
an input at runtime, the scanner will throw an ArrayIndexOutofBoundsException.
Note that even if your platform uses only one byte per character, the Unicode value
of a character may still be greater than 255. If you are scanning text files, you should

18

4 Lexical Specifications

consider using the %unicode directive. See also section 5 for more information about
character encodings.

• %unicode
%16bit

Both options cause the generated scanner to use the full 16 bit Unicode input character
set (character codes 0-65535). There will be no runtime overflow when using this set
of input characters. %unicode does not mean that the scanner will read two bytes at a
time. What is read and what constitutes a character depends on the runtime platform.
See also section 5 for more information about character encodings.

• %caseless
%ignorecase

This option causes JFlex to handle all characters and strings in the specification as if
they were specified in both uppercase and lowercase form. This enables an easy way
to specify a scanner for a language with case insensitive keywords. The string ”break”
in a specification is for instance handled like the expression ([bB][rR][eE][aA][kK]).
The %caseless option does not change the matched text and does not effect char-
acter classes. So [a] still only matches the character a and not A, too. Which
letters are uppercase and which lowercase letters, is defined by the Unicode stan-
dard and determined by JFlex with the Java methods Character.toUpperCase and
Character.toLowerCase.

4.2.9 Line, character and column counting

• %char

Turns character counting on. The int member variable yychar contains the number of
characters (starting with 0) from the beginning of input to the beginning of the current
token.

• %line

Turns line counting on. The int member variable yyline contains the number of lines
(starting with 0) from the beginning of input to the beginning of the current token.

• %column

Turns column counting on. The int member variable yycolumn contains the number
of characters (starting with 0) from the beginning of the current line to the beginning
of the current token.

4.2.10 Obsolete JLex options

• %notunix

This JLex option is obsolete in JFlex but still recognized as valid directive. It used to
switch between W95 and Unix kind of line terminators (\r\n and \n) for the $ operator
in regular expressions. JFlex always recognizes both styles of platform dependent line
terminators.

19

4 Lexical Specifications

• %yyeof

This JLex option is obsolete in JFlex but still recognized as valid directive. In JLex it
declares a public member constant YYEOF. JFlex declares it in any case.

4.2.11 State declarations

State declarations have the following from:

%state "state identifier" [, "state identifier", ...]

There may be more than one line of state declarations, each starting with %state. State
identifiers are letters followed by a sequence of letters, digits or underscores. State identifiers
can be separated by whitespace or comma.

The sequence

%state STATE1
%state STATE3, XYZ, STATE 10
%state ABC STATE5

declares the set of identifiers STATE1, STATE3, XYZ, STATE 10, ABC, STATE5 as lexical
states.

4.2.12 Macro definitions

A macro definition has the form

macroidentifier = regular expression

That means, a macro definition is a macro identifier (letter followed by a sequence of letters,
digits or underscores), that can later be used to reference the macro, followed by optional
whitespace, followed by an ”=”, followed by optional whitespace, followed by a regular ex-
pression (see section 4.3 lexical rules for more information about regular expressions).

Each macro must fit on a single line.

The regular expression on the right hand side must be well formed and must not contain the
^, / or $ operators. Differently to JLex, macros are not just pieces of text that are
expanded by copying - they are parsed and must be well formed.

This is a feature. It eliminates some very hard to find bugs in lexical specifications (such
like not having parentheses around more complicated macros - which is not necessary with
JFlex). See section 7.1 Porting from JLex for more details on the problems of JLex style
macros.

Since it is allowed to have macro usages in macro definitions, it is possible to use a grammar
like notation to specify the desired lexical structure. Macros however remain just abbrevia-
tions of the regular expressions they represent. They are not non terminals of a grammar and
cannot be used recursively in any way. JFlex detects cycles in macro definitions and reports
them at generation time. JFlex also warns you about macros that have been defined but
never used in the “lexical rules” section of the specification.

20

4 Lexical Specifications

4.3 Lexical rules

The “lexical rules” section of an JFlex specification contains a set of regular expressions
and actions (Java code) that are executed when the scanner matches the associated regular
expression.

4.3.1 Syntax

The syntax of the ”lexical rules” section is described by the following BNF grammar (terminal
symbols are enclosed in ’quotes’):

LexicalRules ::= Rule+
Rule ::= [StateList] [’^’] RegExp [LookAhead] Action

| [StateList] ’<<EOF>>’ Action
| StateGroup

StateGroup ::= StateList ’{’ Rule+ ’}’
StateList ::= ’<’ Identifier (’,’ Identifier)* ’>’
LookAhead ::= ’$’ | ’/’ RegExp
Action ::= ’{’ JavaCode ’}’ | ’|’

RegExp ::= RegExp ’|’ RegExp
| RegExp RegExp
| ’(’ RegExp ’)’
| (’!’|’~’) RegExp
| RegExp (’*’|’+’|’?’)
| RegExp "{" Number ["," Number] "}"
| ’[’ [’^’] (Character|Character’-’Character)* ’]’
| PredefinedClass
| ’{’ Identifier ’}’
| ’"’ StringCharacter+ ’"’
| Character

PredefinedClass ::= ’[:jletter:]’
| ’[:jletterdigit:]’
| ’[:letter:]’
| ’[:digit:]’
| ’[:uppercase:]’
| ’[:lowercase:]’
| ’.’

The grammar uses the following terminal symbols:

• JavaCode
a sequence of BlockStatements as described in the Java Language Specification [7],
section 14.2.

• Number
a non negative decimal integer.

21

4 Lexical Specifications

• Identifier
a letter [a-zA-Z] followed by a sequence of zero or more letters, digits or underscores
[a-zA-Z0-9_]

• Character
an escape sequence or any unicode character that is not one of these meta characters:

| () { } [] < > \ . * + ? ^ $ / . " ~ !

• StringCharacter
an escape sequence or any unicode character that is not one of these meta characters:

\ "

• An escape sequence

– \n \r \t \f \b

– a \x followed by two hexadecimal digits [a-fA-F0-9] (denoting a standard ASCII
escape sequence),

– a \u followed by four hexadecimal digits [a-fA-F0-9] (denoting an unicode escape
sequence),

– a backslash followed by a three digit octal number from 000 to 377 (denoting a
standard ASCII escape sequence), or

– a backslash followed by any other unicode character that stands for this character.

Please note that the \n escape sequence stands for the ASCII LF character - not for the end of
line. If you would like to match the line terminator, you should use the expression \r|\n|\r\n
if you want the Java conventions, or \r|\n|\r\n|\u2028|\u2029|\u000B|\u000C|\u0085 if
you want to be fully Unicode compliant (see also [5]).

As of version 1.1 of JFlex the whitespace characters " " (space) and "\t" (tab) can be used
to improve the readability of regular expressions. They will be ignored by JFlex. In character
classes and strings however, whitespace characters keep standing for themselves (so the string
" " still matches exactly one space character and [\n] still matches an ASCII LF or a space
character).

JFlex applies the following standard operator precedences in regular expression (from highest
to lowest):

• unary postfix operators (’*’, ’+’, ’?’, {n}, {n,m})

• unary prefix operators (’!’, ’~’)

• concatenation (RegExp::= RegExp Regexp)

• union (RegExp::= RegExp ’|’ RegExp)

So the expression a | abc | !cd* for instance is parsed as (a|(abc)) | ((!c)(d*)).

22

4 Lexical Specifications

4.3.2 Semantics

This section gives an informal description of which text is matched by a regular expression
(i.e. an expression described by the RegExp production of the grammar presented above).

A regular expression that consists solely of

• a Character matches this character.

• a character class ’[’ (Character|Character’-’Character)* ’]’ matches any char-
acter in that class. A Character is to be considered an element of a class, if it is listed
in the class or if its code lies within a listed character range Character’-’Character.
So [a0-3\n] for instance matches the characters

a 0 1 2 3 \n

If the list of characters is empty (i.e. just []), the expression matches nothing at all
(the empty set), not even the empty string. This may be useful in combination with
the negation operator ’!’.

• a negated character class ’[^’ (Character|Character’-’Character)* ’]’ matches
all characters not listed in the class. If the list of characters is empty (i.e. [^]), the
expression matches any character of the input character set.

• a string ’"’ StringCharacter+ ’" ’ matches the exact text enclosed in double quotes.
All meta characters but \ and " loose their special meaning inside a string. See also
the %ignorecase switch.

• a macro usage ’{’ Identifier ’}’ matches the input that is matched by the right
hand side of the macro with name ”Identifier”.

• a predefined character class matches any of the characters in that class. There are the
following predefined character classes:

. contains all characters but \n.

All other predefined character classes are defined in the Unicode specification or the
Java Language Specification and determined by Java functions of class java.lang.Cha-
racter.

[:jletter:] isJavaIdentifierStart()
[:jletterdigit:] isJavaIdentifierPart()
[:letter:] isLetter()
[:digit:] isDigit()
[:uppercase:] isUpperCase()
[:lowercase:] isLowerCase()

They are especially useful when working with the unicode character set.

If a and b are regular expressions, then

23

4 Lexical Specifications

a | b (union)

is the regular expression, that matches all input that is matched by a or by b.

a b (concatenation)

is the regular expression, that matches the input matched by a followed by the input
matched by b.

a* (kleene closure)

matches zero or more repetitions of the input matched by a

a+ (iteration)

is equivalent to aa*

a? (option)

matches the empty input or the input matched by a

!a (negation)

matches everything but the strings matched by a. Use with care: the construction
of !a involves an additional, possibly exponential NFA to DFA transformation on the
NFA for a. Note that with negation and union you also have (by applying DeMorgan)
intersection and set difference: the intersection of a and b is !(!a|!b), the expression
that matches everything of a not matched by b is !(!a|b)

~a (upto)

matches everything up to the first occurrence of a text matched by a. The expression
~a is equivalent to !([^]* a [^]*) a. A traditional C-style comment is matched by
"/*" ~"*/"

a{n} (repeat)

is equivalent to n times the concatenation of a. So a{4} for instance is equivalent to
the expression a a a a. The decimal integer n must be positive.

a{n,m} is equivalent to at least n times and at most m times the concatenation of a. So a{2,4}
for instance is equivalent to the expression a a a? a?. Both n and m are non negative
decimal integers and m must not be smaller than n.

(a) matches the same input as a.

In a lexical rule, a regular expression r may be preceded by a ’^’ (the beginning of line
operator). r is then only matched at the beginning of a line in the input. A line begins after
each occurrence of \r|\n|\r\n|\u2028|\u2029|\u000B|\u000C|\u0085 (see also [5]) and at
the beginning of input. The preceding line terminator in the input is not consumed and can
be matched by another rule.

In a lexical rule, a regular expression r may be followed by a lookahead expression. A
lookahead expression is either a ’$’ (the end of line operator) or a ’/’ followed by an arbitrary
regular expression. In both cases the lookahead is not consumed and not included in the

24

4 Lexical Specifications

matched text region, but it is considered while determining which rule has the longest match
(see also 4.3.3 How the input is matched).

In the ’$’ case r is only matched at the end of a line in the input. The end of a line is
denoted by the regular expression \r|\n|\r\n|\u2028|\u2029|\u000B|\u000C|\u0085. So
a$ is equivalent to a / \r|\n|\r\n|\u2028|\u2029|\u000B|\u000C|\u0085.This is a bit
different to the situation described in [5]: since in JFlex $ is a true trailing context, the end
of file does not count as end of line.

For arbitrary lookahead (also called trailing context) the expression is matched only when
followed by input that matches the trailing context. Unfortunately the lookahead expression is
not really arbitrary: In a rule r1 / r2, either the text matched by r1 must have a fixed length
(e.g. if r1 is a string) or the beginning of the trailing context r2 must not match the end of r1.
So for example "abc" / "a"|"b" is ok because "abc" has a fixed length, "a"|"ab" / "x"*
is ok because no prefix of "x"* matches a postfix of "a"|"ab", but "x"|"xy" / "yx" is not
possible, because the postfix "y" of "x"|"xy" is also a prefix of "yx". JFlex will report such
cases at generation time. The algorithm JFlex currently uses for matching trailing context
expressions is the one described in [1] (leading to the deficiencies mentioned above).

As of version 1.2, JFlex allows lex/flex style <<EOF>> rules in lexical specifications. A rule

[StateList] <<EOF>> { some action code }

is very similar to the %eofval directive (section 4.2.3). The difference lies in the optional
StateList that may precede the <<EOF>> rule. The action code will only be executed when
the end of file is read and the scanner is currently in one of the lexical states listed in
StateList. The same StateGroup (see section 4.3.3 How the input is matched) and prece-
dence rules as in the “normal” rule case apply (i.e. if there is more than one <<EOF>> rule
for a certain lexical state, the action of the one appearing earlier in the specification will be
executed). <<EOF>> rules override settings of the %cup and %byaccj options and should not
be mixed with the %eofval directive.

An Action consists either of a piece of Java code enclosed in curly braces or is the special |
action. The | action is an abbreviation for the action of the following expression.

Example:

expression1 |
expression2 |
expression3 { some action }

is equivalent to the expanded form

expression1 { some action }
expression2 { some action }
expression3 { some action }

They are useful when you work with trailing context expressions. The expression a | (c /
d) | b is not syntactically legal, but can easily be expressed using the | action:

a |

25

4 Lexical Specifications

c / d |
b { some action }

4.3.3 How the input is matched

When consuming its input, the scanner determines the regular expression that matches the
longest portion of the input (longest match rule). If there is more than one regular expression
that matches the longest portion of input (i.e. they all match the same input), the generated
scanner chooses the expression that appears first in the specification. After determining the
active regular expression, the associated action is executed. If there is no matching regular
expression, the scanner terminates the program with an error message (if the %standalone
directive has been used, the scanner prints the unmatched input to java.lang.System.out
instead and resumes scanning).

Lexical states can be used to further restrict the set of regular expressions that match the
current input.

• A regular expression can only be matched when its associated set of lexical states include
the currently active lexical state of the scanner or if the set of associated lexical states
is empty.

• The currently active lexical state of the scanner can be changed from within an action
of a regular expression using the method yybegin().

• The scanner starts in lexical state YYINITIAL, which is always declared by default.

• The set of lexical states associated with a regular expression is calculated as follows:

The set of lexical states of a rule of the form

StateList RegExp Action

is the union of the set of all states listed in StateList and the set of lexical states of the
enclosing StateGroup, or just the set of all states in StateList, if there is no enclosing
StateGroup.

The set of lexical states of a state group of the form

StateList "{" Rule+ "}"

is the union of the set of all states listed in StateList and the set of lexical states of the
enclosing StateGroup, or just the set of all states in StateList, if there is no enclosing
StateGroup.

In short: lexical states cumulate over StateGroups.

• Lexical states are declared and used as Java int constants in the generated class under
the same name as they are used in the specification.

4.3.4 Scanner methods and fields accessible in actions (API)

Generated methods and member fields in JFlex scanners are prefixed with yy to indicate
that they are generated and to avoid name conflicts with user code copied into the class.

26

4 Lexical Specifications

Since user code is part of the same class, JFlex has no language means like the private
modifier to indicate which members and methods are internal and which ones belong to the
API. Instead, JFlex follows a naming convention: everything with an underscore after the yy
prefix like yy startRead is to be considered internal and subject to change without notice
between JFlex releases. Methods and members of the generated class that do not contain an
underscore belong to the API that the scanner class provides to users in action code of the
specification. They will be remain stable and supported between JFlex releases as long as
possible.

Currently, the API consists of the following methods and member fields:

• String yytext()
returns the matched input text region

• int yylength()
returns the length of the matched input text region (does not require a String object
to be created)

• int yycharat(int pos)
returns the character at position pos from the matched text. It is equivalent to
yytext().charAt(pos), but faster. pos must be a value from 0 to yylength()-1.

• void yyclose()
closes the input stream. All subsequent calls to the scanning method will return the
end of file value

• void yyreset(java.io.Reader reader)
closes the current input stream, and resets the scanner to read from a new input stream.
All internal variables are reset, the old input stream cannot be reused (content of the
internal buffer is discarded and lost). The lexical state is set to YY INITIAL.

• void yypushStream(java.io.Reader reader)
Stores the current input stream on a stack, and reads from a new stream. Lexical state,
line, char, and column counting remain untouched. The current input stream can be
restored with yypopstream (usually in an <<EOF>> action).

A typical example for this are include files in style of the C preprocessor. The corre-
sponding JFlex specification could look somewhat like that:

"#include" {FILE} { yypushStream(new FileReader(getFile(yytext()))); }
..
<<EOF>> { if (yymoreStreams()) yypopStream(); else return EOF; }

This method is only available in the skeleton file skeleton.nested. You can find it in
the src directory of the JFlex distribution.

• void yypopStream()
Closes the current input stream and continues to read from the one on top of the stream
stack.

This method is only available in the skeleton file skeleton.nested. You can find it in
the src directory of the JFlex distribution.

27

5 Encodings, Platforms and Unicode

• boolean yymoreStreams()
Returns true iff there are still streams for yypopStream left to read from on the stream
stack.

This method is only available in the skeleton file skeleton.nested. You can find it in
the src directory of the JFlex distribution.

• int yystate()
returns the current lexical state of the scanner.

• void yybegin(int lexicalState)
enters the lexical state lexicalState

• void yypushback(int number)
pushes number characters of the matched text back into the inputstream. They will be
read again in the next call of the scanning method. The number of characters to be
read again must not be greater than the length of the matched text. The pushed back
characters will after the call of yypushback not be included in yylength and yytext().
Please note that in Java strings are unchangeable, i.e. an action code like

String matched = yytext();
yypushback(1);
return matched;

will return the whole matched text, while

yypushback(1);
return yytext();

will return the matched text minus the last character.

• int yyline
contains the current line of input (starting with 0, only active with the %line directive)

• int yychar
contains the current character count in the input (starting with 0, only active with the
%char directive)

• int yycolumn
contains the current column of the current line (starting with 0, only active with the
%column directive)

5 Encodings, Platforms and Unicode

This section tries to shed some light on the issues of Unicode and encodings, cross platform
scanning, and how to deal with binary data. My thanks go to Stephen Ostermiller for his
input on this topic.

28

5 Encodings, Platforms and Unicode

5.1 The Problem

Before we dive straight into details, let’s take a look at what the problem is. The problem
is Java’s platform independence when you want to use it. For scanners the interesting part
about platform independence is character encodings and how they are handled.

If a program reads a file from disk, it gets a stream of bytes. In earlier times, when the grass
was green, and the world was much simpler, everybody knew that the byte value 65 is, of
course, an A. It was no problem to see which bytes meant which characters (actually these
times never existed, but anyway). The normal Latin alphabet only has 26 characters, so 7
bits or 128 distinct values should surely be enough to map them, even if you allow yourself
the luxury of upper and lower case. Nowadays, things are different. The world suddenly grew
much larger, and all kinds of people wanted all kinds of special characters, just because they
use them in their language and writing. This is were the mess starts. Since the 128 distinct
values were already filled up with other stuff, people began to use all 8 bits of the byte,
and extended the byte/character mappings to fit their need, and of course everybody did it
differently. Some people for instance may have said “let’s use the value 213 for the German
character ä”. Others may have found that 213 should much rather mean é, because they
didn’t need German and wrote French instead. As long as you use your program and data
files only on one platform, this is no problem, as all know what means what, and everything
gets used consistently.

Now Java comes into play, and wants to run everywhere (once written, that is) and now there
suddenly is a problem: how do I get the same program to say ä to a certain byte when it runs
in Germany and maybe é when it runs in France? And also the other way around: when I
want to say é on the screen, which byte value should I send to the operating system?

Java’s solution to this is to use Unicode internally. Unicode aims to be a superset of all known
character sets and is therefore a perfect base for encoding things that might get used all over
the world. To make things work correctly, you still have to know where you are and how to
map byte values to Unicode characters and vice versa, but the important thing is, that this
mapping is at least possible (you can map Kanji characters to Unicode, but you cannot map
them to ASCII or iso-latin-1).

5.2 Scanning text files

Scanning text files is the standard application for scanners like JFlex. Therefore it should
also be the most convenient one. Most times it is.

The following scenario works like a breeze: You work on a platform X, write your lexer
specification there, can use any obscure Unicode character in it as you like, and compile the
program. Your users work on any platform Y (possibly but not necessarily something different
from X), they write their input files on Y and they run your program on Y. No problems.

Java does this as follows: If you want to read anything in Java that is supposed to contain
text, you use a FileReader or some InputStream together with an InputStreamReader.
InputStreams return the raw bytes, the InputStreamReader converts the bytes into Unicode
characters with the platform’s default encoding. If a text file is produced on the same platform,
the platform’s default encoding should do the mapping correctly. Since JFlex also uses readers
and Unicode internally, this mechanism also works for the scanner specifications. If you write

29

5 Encodings, Platforms and Unicode

an A in your text editor and the editor uses the platform’s encoding (say A is 65), then Java
translates this into the logical Unicode A internally. If a user writes an A on a completely
different platform (say A is 237 there), then Java also translates this into the logical Unicode
A internally. Scanning is performed after that translation and both match.

Note that because of this mapping from bytes to characters, you should always use the
%unicode switch in you lexer specification if you want to scan text files. %8bit may not be
enough, even if you now that your platform only uses one byte per character. The encoding
Cp1252 used on many Windows machines for instance knows 256 characters, but the character
´ with Cp1252 code \x92 has the Unicode value \u2019, which is larger than 255 and which
would make your scanner throw an ArrayIndexOutOfBoundsException if it is encountered.

So for the usual case you don’t have to do anything but use the %unicode switch in your lexer
specification.

Things may break when you produce a text file on platform X and consume it on a different
platform Y. Let’s say you have a file written on a Windows PC using the encoding Cp1252.
Then you move this file to a Linux PC with encoding ISO 8859-1 and there you want to
run your scanner on it. Java now thinks the file is encoded in ISO 8859-1 (the platform’s
default encoding) while it really is encoded in Cp1252. For most characters Cp1252 and
ISO 8859-1 are the same, but for the byte values \x80 to \x9f they disagree: ISO 8859-1 is
undefined there. You can fix the problem by telling Java explicitly which encoding to use.
When constructing the InputStreamReader, you can give the encoding as argument. The
line

Reader r = new InputStreamReader(input, "Cp1252");

will do the trick.

Of course the encoding to use can also come from the data itself: for instance, when you
scan a HTML page, it may have embedded information about its character encoding in the
headers.

More information about encodings, which ones are supported, how they are called, and how
to set them may be found in the official Java documentation in the chapter about internation-
alization. The link http://java.sun.com/j2se/1.3/docs/guide/intl/ leads to an online
version of this for Sun’s JDK 1.3.

5.3 Scanning binaries

Scanning binaries is both easier and more difficult than scanning text files. It’s easier because
you want the raw bytes and not their meaning, i.e. you don’t want any translation. It’s more
difficult because it’s not so easy to get “no translation” when you use Java readers.

The problem (for binaries) is that JFlex scanners are designed to work on text. There-
fore the interface is the Reader class (there is a constructor for InputStream instances,
but it’s just there for convenience and wraps an InputStreamReader around it to get char-
acters, not bytes). You can still get a binary scanner when you write your own custom
InputStreamReader class that does explicitly no translation, but just copies byte values to
character codes instead. It sounds quite easy, and actually it is no big deal, but there are a
few little pitfalls on the way. In the scanner specification you can only enter positive character

30

6 A few words on performance

codes (for bytes that is \x00 to \xFF). Java’s byte type on the other hand is a signed 8 bit
integer (-128 to 127), so you have to convert them properly in your custom Reader. Also, you
should take care when you write your lexer spec: if you use text in there, it gets interpreted
by an encoding first, and what scanner you get as result might depend on which platform
you run JFlex on when you generate the scanner (this is what you want for text, but for
binaries it gets in the way). If you are not sure, or if the development platform might change,
it’s probably best to use character code escapes in all places, since they don’t change their
meaning.

To illustrate these points, the example in examples/binary contains a very small binary
scanner that tries to detect if a file is a Java class file. For that purpose it looks if the file
begins with the magic number \xCAFEBABE.

6 A few words on performance

This section gives some empirical results about the speed of JFlex generated scanners in
comparison to those generated by JLex, compares a JFlex scanner with a handwritten one,
and presents some tips on how to make your specification produce a faster scanner.

6.1 Comparison of JLex and JFlex

Scanners generated by the tool JLex are quite fast. It was however possible to further improve
the performance of generated scanners using JFlex. The following table shows the results
that were produced by the scanner specification of a small toy programming language (in fact
the example from the JLex website). The scanner was generated using JLex and all three
different JFlex code generation methods. Then it was run on a W98 system using JDK 1.2.2
with different sample inputs of that toy programming language. All test runs were made
under the same conditions on an otherwise idle machine. The values presented in the table
denote the time from the first call to the scanning method to returning the EOF value and
the speedup in percent.

KB JIT JLex %switch speedup %table speedup %pack speedup
496 symwjit 476 ms 475 ms 0,2 % 473 ms 0.6 % 475 ms 0.2 %
187 symwjit 172 ms 171 ms 0,6 % 170 ms 1.2 % 170 ms 1.2 %
93 symwjit 86 ms 85 ms 1.2 % 85 ms 1.2 % 83 ms 3.6 %

496 none 3995 ms 3526 ms 13.3 % 3626 ms 10.2 % 3620 ms 10.4 %
187 none 1623 ms 1331 ms 21.9 % 1367 ms 18.7 % 1367 ms 18.7 %
93 none 805 ms 660 ms 22.0 % 678 ms 18.7 % 678 ms 18.7 %

Since the scanning time of the lexical analyzer examined in the table above includes lexical
actions that often need to create new object instances, another table shows the execution time
for the same specification with empty lexical actions to compare the pure scanning engines.

31

6 A few words on performance

KB JIT JLex %switch speedup %table speedup %pack speedup
496 symwjit 157 ms 123 ms 27.6 % 120 ms 30.8 % 121 ms 29.8 %
187 symwjit 67 ms 49 ms 36.7 % 47 ms 42.6 % 48 ms 39.6 %
93 symwjit 34 ms 26 ms 30.8 % 25 ms 36.0 % 24 ms 41.7 %

496 none 2858 ms 2316 ms 23.4 % 2392 ms 19.5 % 2394 ms 19.4 %
187 none 1197 ms 895 ms 33.7 % 922 ms 29.8 % 922 ms 29.8 %
93 none 601 ms 447 ms 34.5 % 460 ms 30.7 % 461 ms 30.4 %

Execution time of single instructions depends on the platform and the implementation of the
Java Virtual Machine the program is executed on. Therefore the tables above cannot be used
as a reference to which code generation method of JFlex is the right one to choose in general.
The following table was produced by the same lexical specification and the same input on a
Linux system using JDK 1.1.8 with the tya JIT compiler.

With actions:

KB JIT JLex %switch speedup %table speedup %pack speedup
496 tya 1061 ms 870 ms 22.0 % 895 ms 18.5 % 880 ms 20.6 %
187 tya 414 ms 310 ms 33.5 % 317 ms 30.6 % 312 ms 32.7 %
93 tya 204 ms 152 ms 34.2 % 156 ms 30.8 % 153 ms 33.3 %

496 none 2859 ms 2438 ms 17.3 % 2521 ms 13.4 % 2517 ms 13.6 %
187 none 1185 ms 928 ms 27.7 % 953 ms 24.3 % 955 ms 24.1 %
93 none 588 ms 459 ms 28.1 % 472 ms 24.6 % 471 ms 24.8 %

Without actions:

KB JIT JLex %switch speedup %table speedup %pack speedup
496 tya 485 ms 293 ms 65.5 % 311 ms 55.9 % 308 ms 57.5 %
187 tya 214 ms 117 ms 82.9 % 122 ms 75.4 % 123 ms 74.0 %
93 tya 108 ms 59 ms 83.1 % 61 ms 77.0 % 61 ms 77.0 %

496 none 1809 ms 1294 ms 39.8 % 1365 ms 32.5 % 1368 ms 32.2 %
187 none 796 ms 506 ms 57.3 % 532 ms 49.6 % 533 ms 49.3 %
93 none 399 ms 263 ms 51.7 % 277 ms 44.0 % 266 ms 50.0 %

Although all JFlex scanners were faster than those generated by JLex, slight differences
between JFlex code generation methods show up when compared to the run on the W98
system.

The following table compares a handwritten scanner for the Java language obtained from
the website of CUP with the JFlex generated scanner for Java that comes with JFlex in the
examples directory. They were tested on different .java files on a Linux JDK 1.1.8 and the
tya JIT compiler.

32

6 A few words on performance

lines KB JIT handwritten scanner JFlex generated scanner
19050 496 tya 8.08 s 1.10 s 635 % faster
6350 165 tya 2.69 s 0.36 s 647 % faster
1270 33 tya 533 ms 73 ms 630 % faster

19050 496 no 12.49 s 4.25 s 193 % faster
6350 165 no 4.16 s 1.37 s 203 % faster
1270 33 no 0.83 s 0.27 s 207 % faster

As you can see, the generated scanner is up to 6 times faster than the handwritten one. One
example of a handwritten scanner that is considerably slower than the equivalent generated
one is surely no proof for all generated scanners being faster than handwritten. It is clearly
impossible to prove something like that, since you could always write the generated scanner
by hand. From a software engineering point of view however, there is no excuse for writing
a scanner by hand since this task takes more time, is more difficult and therefore more error
prone than writing a compact, readable and easy to change lexical specification. (I’d like to
add, that I do not think, that the handwritten scanner from the CUP website used here in
the test is stupid or badly written or anything like that. I actually think, Scott did a great
job with it, and that for learning about lexers it is quite valuable to study it or even to write
a similar one for oneself.)

6.2 How to write a faster specification

Although JFlex generated scanners show good performance without special optimizations,
there are some heuristics that can make a lexical specification produce an even faster scanner.
Those are (roughly in order of performance gain):

• Avoid rules that require backtracking

From the C/C++ flex [11] manpage: “Getting rid of backtracking is messy and often
may be an enormous amount of work for a complicated scanner.” Backtracking is
introduced by the longest match rule and occurs for instance on this set of expressions:

"averylongkeyword"
.

With input "averylongjoke" the scanner has to read all charcters up to ’j’ to decide
that rule . should be matched. All characters of "verylong" have to be read again
for the next matching process. Backtracking can be avoided in general by adding error
rules that match those error conditions

"av"|"ave"|"avery"|"averyl"|..

While this is impractical in most scanners, there is still the possibility to add a “catch
all” rule for a lengthy list of keywords

"keyword1" { return symbol(KEYWORD1); }
..
"keywordn" { return symbol(KEYWORDn); }
[a-z]+ { error("not a keyword"); }

33

7 Porting Issues

Most programming language scanners already have a rule like this for some kind of
variable length identifiers.

• Avoid line and column counting

It costs multiple additional comparisons per input character and the matched text has
to be rescanned for counting. In most scanners it is possible to do the line counting in
the specification by incrementing yyline each time a line terminator has been matched.
Column counting could also be included in actions. This will be faster, but can in some
cases become quite messy.

• Avoid lookahead expressions and the end of line operator ’$’

The trailing context will first have to be read and then (because it is not to be consumed)
read again.

• Avoid the beginning of line operator ’^’

It costs multiple additional comparisons per match. In some cases one extra lookahead
character is needed (when the last character read is \r the scanner has to read one
character ahead to check if the next one is an \n or not).

• Match as much text as possible in a rule.

One rule is matched in the innermost loop of the scanner. After each action some
overhead for setting up the internal state of the scanner is necessary.

Note that writing more rules in a specification does not make the generated scanner slower
(except when you have to switch to another code generation method because of the larger
size).

The two main rules of optimization apply also for lexical specifications:

1. don’t do it

2. (for experts only) don’t do it yet

Some of the performance tips above contradict a readable and compact specification style.
When in doubt or when requirements are not or not yet fixed: don’t use them - the specifi-
cation can always be optimized in a later state of the development process.

7 Porting Issues

7.1 Porting from JLex

JFlex was designed to read old JLex specifications unchanged and to generate a scanner which
behaves exactly the same as the one generated by JLex with the only difference of being faster.

This works as expected on all well formed JLex specifications.

Since the statement above is somewhat absolute, let’s take a look at what “well formed”
means here. A JLex specification is well formed, when it

34

7 Porting Issues

• generates a working scanner with JLex

• doesn’t contain the unescaped characters ! and ~

They are operators in JFlex while JLex treats them as normal input characters. You
can easily port such a JLex specification to JFlex by replacing every ! with \! and
every ~ with \~ in all regular expressions.

• has only complete regular expressions surrounded by parentheses in macro definitions

This may sound a bit harsh, but could otherwise be a major problem – it can also
help you find some disgusting bugs in your specification that didn’t show up in the first
place. In JLex, a right hand side of a macro is just a piece of text, that is copied to the
point where the macro is used. With this, some weird kind of stuff like

macro1 = ("hello"
macro2 = {macro1})*

was possible (with macro2 expanding to ("hello")*). This is not allowed in JFlex
and you will have to transform such definitions. There are however some more subtle
kinds of errors that can be introduced by JLex macros. Let’s consider a definition like
macro = a|b and a usage like {macro}*. This expands in JLex to a|b* and not to the
probably intended (a|b)*.

JFlex uses always the second form of expansion, since this is the natural form of thinking
about abbreviations for regular expressions.

Most specifications shouldn’t suffer from this problem, because macros often only con-
tain (harmless) character classes like alpha = [a-zA-Z] and more dangerous definitions
like

ident = {alpha}({alpha}|{digit})*

are only used to write rules like

{ident} { .. action .. }

and not more complex expressions like

{ident}* { .. action .. }

where the kind of error presented above would show up.

7.2 Porting from lex/flex

This section tries to give an overview of activities and possible problems when porting a
lexical specification from the C/C++ tools lex and flex [11] available on most Unix systems
to JFlex.

Most of the C/C++ specific features are naturally not present in JFlex, but most “clean”
lex/flex lexical specifications can be ported to JFlex without very much work.

This section is by far not complete and is based mainly on a survey of the flex man page and
very little personal experience. If you do engage in any porting activity from lex/flex to JFlex

35

7 Porting Issues

and encounter problems, have better solutions for points presented here or have just some tips
you would like to share, please do contact me via email: Gerwin Klein <lsf@jflex.de>. I
will incorporate your experiences in this manual (with all due credit to you, of course).

7.2.1 Basic structure

A lexical specification for flex has the following basic structure:

definitions
%%
rules
%%
user code

The user code section usually contains some C code that is used in actions of the rules part
of the specification. For JFlex most of this code will have to be included in the class code
%{..%} directive in the options and declarations section (after translating the C code to
Java, of course).

7.2.2 Macros and Regular Expression Syntax

The definitions section of a flex specification is quite similar to the options and decla-
rations part of JFlex specs.

Macro definitions in flex have the form:

<identifier> <expression>

To port them to JFlex macros, just insert a = between <identifier> and <expression>.

The syntax and semantics of regular expressions in flex are pretty much the same as in JFlex.
A little attention is needed for some escape sequences present in flex (such as \a) that are
not supported in JFlex. These escape sequences should be transformed into their octal or
hexadecimal equivalent.

Another point are predefined character classes. Flex offers the ones directly supported by
C, JFlex offers the ones supported by Java. These classes will sometimes have to be listed
manually (if there is need for this feature, it may be implemented in a future JFlex version).

7.2.3 Lexical States

Flex supports two kinds of lexical states or start conditions: inclusive states declared with %s
and exclusive states declared using %x.

JFlex only supports inclusive lexical states (for which the %s just has to be replaced by
%state).

36

8 Working together

7.2.4 Lexical Rules

Since flex is mostly Unix based, the ’^’ (beginning of line) and ’$’ (end of line) operators, con-
sider the \n character as only line terminator. This should usually cause not much problems,
but you should be prepared for occurrences of \r or \r\n or one of the characters \u2028,
\u2029, \u000B, \u000C, or \u0085. They are considered to be line terminators in Unicode
and therefore may not be consumed when ^ or $ is present in a rule.

The trailing context algorithm of flex is better than the one used in JFlex. Therefore lookahead
expressions could cause major headaches. JFlex will issue an error message at generation time,
if it cannot generate a scanner for a certain lookahead expression. (sorry, I have no more tips
here on that yet. If anyone knows how the flex lookahead algorithm works (or any better one)
and can be efficiently implemented, again: please contact me).

8 Working together

8.1 JFlex and CUP

One of the main design goals of JFlex was to make interfacing with the free Java parser
generator CUP [8] as easy as possibly. This has been done by giving the %cup directive a
special meaning. An interface however always has two sides. This section concentrates on
the CUP side of the story.

8.1.1 CUP version 0.10j

Since CUP version 0.10j, this has been simplified greatly by the new CUP scanner interface
java cup.runtime.Scanner. JFlex lexers now implement this interface automatically when
then %cup switch is used. There are no special parser code, init code or scan with options
any more that you have to provide in your CUP parser specification. You can just concentrate
on your grammar.

If your generated Lexer has the class name Scanner, the parser is started from the a main
program like this:

...
try {

parser p = new parser(new Scanner(new FileReader(fileName)));
Object result = p.parse().value;

}
catch (Exception e) {

...

8.1.2 Using existing JFlex/CUP specifications with CUP 0.10j

If you already have an existing specification and you would like to upgrade both JFlex and
CUP to their newest version, you will probably have to adjust your specification.

37

8 Working together

The main difference between the %cup switch in JFlex 1.2.1 and lower, and the current JFlex
version is, that JFlex scanners now automatically implement the java cup.runtime.Scanner
interface. This means, that the scanning function now changes its name from yylex() to
next token().

The main difference from older CUP versions to 0.10j is, that CUP now has a default con-
structor that accepts a java cup.runtime.Scanner as argument and that uses this scanner
as default (so no scan with code is necessary any more).

If you have an existing CUP specification, it will probably look somewhat like this:

parser code {:
Lexer lexer;

public parser (java.io.Reader input) {
lexer = new Lexer(input);

}
:};

scan with {: return lexer.yylex(); :};

To upgrade to CUP 0.10j, you could change it to look like this:

parser code {:
public parser (java.io.Reader input) {

super(new Lexer(input));
}

:};

If you do not mind to change the method that is calling the parser, you could remove the
constructor entirely (and if there is nothing else in it, the whole parser code section as well,
of course). The calling main procedure would then construct the parser as shown in the
section above.

The JFlex specification does not need to be changed.

8.1.3 Using older versions of CUP

For people, who like or have to use older versions of CUP, the following section explains “the
old way”. Please note, that the standard name of the scanning function with the %cup switch
is not yylex(), but next token().

If you have a scanner specification that begins like this:

package PACKAGE;
import java_cup.runtime.*; /* this is convenience, but not necessary */

%%

38

8 Working together

%class Lexer
%cup
..

then it matches a CUP specification starting like

package PACKAGE;

parser code {:
Lexer lexer;

public parser (java.io.Reader input) {
lexer = new Lexer(input);

}
:};

scan with {: return lexer.next_token(); :};

..

This assumes that the generated parser will get the name parser. If it doesn’t, you have to
adjust the constructor name.

The parser can then be started in a main routine like this:

..
try {

parser p = new parser(new FileReader(fileName));
Object result = p.parse().value;

}
catch (Exception e) {

..

If you want the parser specification to be independent of the name of the generated scanner,
you can instead write an interface Lexer

public interface Lexer {
public java_cup.runtime.Symbol next_token() throws java.io.IOException;

}

change the parser code to:

package PACKAGE;

parser code {:
Lexer lexer;

39

8 Working together

public parser (Lexer lexer) {
this.lexer = lexer;

}
:};

scan with {: return lexer.next_token(); :};

..

tell JFlex about the Lexer interface using the %implements directive:

..
%class Scanner /* not Lexer now since that is our interface! */
%implements Lexer
%cup
..

and finally change the main routine to look like

...
try {

parser p = new parser(new Scanner(new FileReader(fileName)));
Object result = p.parse().value;

}
catch (Exception e) {

...

If you want to improve the error messages that CUP generated parsers produce, you can also
override the methods report error and report fatal error in the “parser code” section
of the CUP specification. The new methods could for instance use yyline and yycolumn
(stored in the left and right members of class java cup.runtime.Symbol) to report error
positions more conveniently for the user. The lexer and parser for the Java language in the
examples/java directory of the JFlex distribution use this style of error reporting. These
specifications also demonstrate the techniques above in action.

8.2 JFlex and BYacc/J

JFlex has builtin support for the Java extension BYacc/J [9] by Bob Jamison to the classical
Berkeley Yacc parser generator. This section describes how to interface BYacc/J with JFlex.
It builds on many helpful suggestions and comments from Larry Bell.

Since Yacc’s architecture is a bit different from CUP’s, the interface setup also works in a
slightly different manner. BYacc/J expects a function int yylex() in the parser class that
returns each next token. Semantic values are expected in a field yylval of type parserval
where “parser” is the name of the generated parser class.

For a small calculator example, one could use a setup like the following on the JFlex side:

40

8 Working together

%%

%byaccj

%{
/* store a reference to the parser object */
private parser yyparser;

/* constructor taking an additional parser object */
public Yylex(java.io.Reader r, parser yyparser) {

this(r);
this.yyparser = yyparser;

}
%}

NUM = [0-9]+ ("." [0-9]+)?
NL = \n | \r | \r\n

%%

/* operators */
"+" |
..
"(" |
")" { return (int) yycharat(0); }

/* newline */
{NL} { return parser.NL; }

/* float */
{NUM} { yyparser.yylval = new parserval(Double.parseDouble(yytext()));

return parser.NUM; }

The lexer expects a reference to the parser in its constructor. Since Yacc allows direct use of
terminal characters like ’+’ in its specifications, we just return the character code for single
char matches (e.g. the operators in the example). Symbolic token names are stored as public
static int constants in the generated parser class. They are used as in the NL token above.
Finally, for some tokens, a semantic value may have to be communicated to the parser. The
NUM rule demonstrates that bit.

A matching BYacc/J parser specification could look like this:

%{
import java.io.*;

%}

%token NL /* newline */
%token <dval> NUM /* a number */

41

8 Working together

%type <dval> exp

%left ’-’ ’+’
..
%right ’^’ /* exponentiation */

%%

..

exp: NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
..
| exp ’^’ exp { $$ = Math.pow($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }
;

%%
/* a reference to the lexer object */
private Yylex lexer;

/* interface to the lexer */
private int yylex () {

int yyl_return = -1;
try {

yyl_return = lexer.yylex();
}
catch (IOException e) {

System.err.println("IO error :"+e);
}
return yyl_return;

}

/* error reporting */
public void yyerror (String error) {

System.err.println ("Error: " + error);
}

/* lexer is created in the constructor */
public parser(Reader r) {

lexer = new Yylex(r, this);
}

/* that’s how you use the parser */
public static void main(String args[]) throws IOException {

parser yyparser = new parser(new FileReader(args[0]));

42

9 Bugs and Deficiencies

yyparser.yyparse();
}

Here, the customized part is mostly in the user code section: We create the lexer in the
constructor of the parser and store a reference to it for later use in the parser’s int yylex()
method. This yylex in the parser only calls int yylex() of the generated lexer and passes
the result on. If something goes wrong, it returns -1 to indicate an error.

Runnable versions of the specifications above are located in the examples/byaccj directory
of the JFlex distribution.

9 Bugs and Deficiencies

9.1 Deficiencies

The trailing context algorithm described in [1] and used in JFlex is incorrect. It does not
work, when a postfix of the regular expression matches a prefix of the trailing context and
the length of the text matched by the expression does not have a fixed size. JFlex will report
these cases as errors at generation time.

9.2 Bugs

As of February 20, 2001, no bugs have been reported for JFlex version 1.3.1. All bugs reported
for earlier versions have been fixed.

If you find new ones, please report them by email to Gerwin Klein <lsf@jflex.de>.

Please check the FAQ and currently known bugs at the JFlex website3 before reporting a new
bug.

10 Copying and License

JFlex is free software, published under the terms of the GNU General Public License4.

There is absolutely NO WARRANTY for JFlex, its code and its documentation.

The code generated by JFlex inherits the copyright of the specification it was produced from.
If it was your specification, you may use the generated code without restriction.

See the file COPYRIGHT for more information.

3http://www.jflex.de/
4http://www.fsf.org/copyleft/gpl.html

43

References

References

[1] A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools, 1986

[2] A. W. Appel, Modern Compiler Implementation in Java: basic techniques, 1997

[3] E. Berk, JLex: A lexical analyser generator for Java,
http://www.cs.princeton.edu/~appel/modern/java/JLex/

[4] K. Brouwer, W. Gellerich,E. Ploedereder, Myths and Facts about the Efficient Imple-
mentation of Finite Automata and Lexical Analysis, in: Proceedings of the 7th Inter-
national Conference on Compiler Construction (CC ’98), 1998

[5] M. Davis, Unicode Regular Expression Guidelines, Unicode Technical Report #18, 2000
http://www.unicode.org/unicode/reports/tr18/tr18-5.1.html

[6] P. Dencker, K. Dürre, J. Henft, Optimization of Parser Tables for portable Compilers,
in: ACM Transactions on Programming Languages and Systems 6(4), 1984

[7] J. Gosling, B. Joy, G. Steele, The Java Language Specifcation, 1996,
http://www.javasoft.com/docs/books/jls/

[8] S. E. Hudson, CUP LALR Parser Generator for Java,
http://www.cs.princeton.edu/~appel/modern/java/CUP/

[9] B. Jamison, BYacc/J,
http://troi.lincom-asg.com/~rjamison/byacc/

[10] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 1996,
http://www.javasoft.com/docs/books/vmspec/

[11] V. Paxon, flex - The fast lexical analyzer generator, 1995

[12] R. E. Tarjan, A. Yao, Storing a Sparse Table, in: Communications of the ACM 22(11),
1979

[13] R. Wilhelm, D. Maurer, Übersetzerbau, Berlin 19972

44

	Introduction
	Design goals
	About this manual

	Installing and Running JFlex
	Installing JFlex
	Windows
	Unix with tar archive
	Linux with RPM

	Running JFlex

	A simple Example: How to work with JFlex
	Code to include
	Options and Macros
	Rules and Actions
	How to get it going

	Lexical Specifications
	User code
	Options and declarations
	Class options and user class code
	Scanning method
	The end of file
	Standalone scanners
	CUP compatibility
	BYacc/J compatibility
	Code generation
	Character sets
	Line, character and column counting
	Obsolete JLex options
	State declarations
	Macro definitions

	Lexical rules
	Syntax
	Semantics
	How the input is matched
	Scanner methods and fields accessible in actions (API)

	Encodings, Platforms and Unicode
	The Problem
	Scanning text files
	Scanning binaries

	A few words on performance
	Comparison of JLex and JFlex
	How to write a faster specification

	Porting Issues
	Porting from JLex
	Porting from lex/flex
	Basic structure
	Macros and Regular Expression Syntax
	Lexical States
	Lexical Rules

	Working together
	JFlex and CUP
	CUP version 0.10j
	Using existing JFlex/CUP specifications with CUP 0.10j
	Using older versions of CUP

	JFlex and BYacc/J

	Bugs and Deficiencies
	Deficiencies
	Bugs

	Copying and License

