

XML Tutorials for Programmers

Ralf I. Pfeiffer
IBM XML Technology Group

Tutorial 2: Writing XML Documents

What does XML do for data?
If I know HTML, do I know XML?
 Some major differences between HTML and XML
 Some minor differences between HTML and XML
 The best difference between HTML and XML: extensibility with validity
DTDs: a closer look
 Sample DTD: Our Address Book DTD
Creating DTDs and writing valid XML: an interactive example
The XML declaration
Attributes
 Default and required attribute values
 Attribute types
Putting it all together: the complete DTD and XML document
Summary
What's next?

What does XML do for data?

Here's a simple yet telling example. Old friends and contacts have often asked me for my e-mail
address, which they'd lost by changing e-mail software or companies or ISPs. As a programmer I had
little sympathy. Why else did we build our collection of awk and perl conversion scripts, as well as
back-up, text-delimited copies of important data? Then I had the misfortune of having my disk crash,
my company change, and my mail program change. Suddenly, finding myself with an out-of-date
e-mail list, my sympathies changed as well!

I now had a problem. How could I maintain my address book while moving between computers, jobs,
and mail programs? Every mail program uses a different file format for address book information.

Why do we still have this problem so long after the advent of e-mail? After all, e-mail address book
information seems so simple.

Let's look at the following simple address book as defined in an XML document. (This is an
oversimplification, of course. Street addresses and other pieces of information are missing.)

1 of 15 11/19/98 1:22 PM

file:///Untitled

�"[PO YHUVLRQ �����"!

�DGGUHVV%RRN!

�SHUVRQ!

�QDPH!

�IDPLO\!:DOODFH��IDPLO\! �JLYHQ!%RE��JLYHQ!

��QDPH!

�H�PDLO!EZDOODFH#PHJDFRUS�FRP��H�PDLO!

��SHUVRQ!

��DGGUHVV%RRN!

The beauty of XML is that you can easily add or invent tags, and thus extend this grammar to include a
superset of all the data that any address book or address book-managing application would want. You
can even make some tags and attributes optional.

Before the Web existed, there was no real need to make sure all the data on all the desktop islands
was accessible and understandable. In fact, there were some territorial advantages for applications
having proprietary data formats that were obscure and unpublished.

You can easily extrapolate this address book example to another domain, say word processing. How
often have you hunted for an MS Word reader because you received a document in *.doc format?
That's a lot of work just to read a document.

Now, the momentum is toward user choice in applications. For example, at home, users choose their
favorite mail application, browser, and word processor. And at work, they push to have the same
choices and functionality. Plug-and-play is becoming a reality with hardware, with applications, and
now because of XML, with data.

XML is essentially plug-and-play data, or data that defines itself. For many domains, the application
that doesn't parse XML will soon be considered proprietary.

If I know HTML, do I know XML?

You know quite a bit. Almost all of the major constructs in XML are exactly the same as in HTML. The
key difference, besides the ability to invent new tags, is that XML is more strict about certain
constructs. Regrettably, HTML browsers have historically allowed "bad HTML" and have diverged in
their handling of bad code.

However, you can convert an HTML document into a well-formed XML document, and we'll go
through that process here.

The well-formed XML examples are shown in blue. The bad examples are shown in gray. The next
example is parsed by most HTML browsers, but is not well-formed XML.

�2/!

�/,!+70/ DOORZV �%!�,!LPSURSHU QHVWLQJ��%!��,!�

�/,!+70/ DOORZV VWDUW WDJV� ZLWKRXW HQG WDJV� OLNH WKH �%5! WDJ�

�/,!+70/ DOORZV �)217 &2/25 �����&&!DWWULEXWH YDOXHV��)217!

ZLWKRXW TXRWHV�

��2/!

In an HTML browser, the above snippet probably renders just as intended with no complaint from the

2 of 15 11/19/98 1:22 PM

file:///Untitled

browser. But now let's convert it to well-formed XML:

�2/!

�/,!;0/ UHTXLUHV �%!�,!SURSHU QHVWLQJ��,!��%!���/,!

�/,!;0/ UHTXLUHV HPSW\ WDJV WR EH LGHQWLILHG ZLWK

D WUDLOLQJ VODVK� DV LQ �%5�!���/,!

�/,!;0/ UHTXLUHV �)217 &2/25 ������&&�!TXRWHG DWWULEXWH

YDOXHV��)217!���/,!

��2/!

That's the concept of a well-formed XML document. And next we'll cover the specific requirements for
XML documents, which are also detailed in the W3C XML spec.

Some major differences between HTML and XML

Here are the major differences between HTML and XML.

1. Hierarchical element structure
XML documents must have a strictly hierarchical tag structure. That is, start tags must have
corresponding end tags. In XML vocabulary, a pair of start and end tags is called an element . Any
element must be properly nested within another. As illustrated above, the snippet below is not
well-formed :
�/,!+70/ DOORZV �%!�,!LPSURSHU QHVWLQJ��%!��,!�

But this snippet is well-formed :
�/,!;0/ UHTXLUHV �%!�,!SURSHU QHVWLQJ��,!��%!���/,!

for two reasons:

The <I> start tags imply that I is nested within B, so I should end before B, as in </I>.
The start tag needs a corresponding end tag, .

2. Empty tags
Empty tags are also allowed as elements in XML documents. An empty tag is essentially a start and
end tag in one, and is identified by a trailing slash after the tag name. For example, this HTML is not
well-formed XML:
�/,!+70/ DOORZV VWDUW WDJV� ZLWKRXW HQG WDJV� OLNH

�%5!WDJV���/,!

But this is well-formed XML:
�/,!;0/ UHTXLUHV HPSW\ WDJV WR EH LGHQWLILHG ZLWK D

WUDLOLQJ VODVK� DV LQ �%5�!���/,!

because the
 is an empty tag and includes the required trailing slash,
. In this way, an XML
parser knows immediately not to look for an end tag, because an empty tag is a start and end tag
together as one. A start tag and end tag with no data within them are also sometimes referred to as an
empty tag, but this is not the precise definition. 3. Single root elements
XML documents allow only one root element. This restriction makes it easier to verify that the
document is complete.4. Quoted attribute values

3 of 15 11/19/98 1:22 PM

file:///Untitled

All attribute values must be within single or double quotes.

The following is not well-formed . Note the missing quotes around #9900CC.
�)217 &2/25 �����&&!DWWULEXWH YDOXHV��)217!

But this is well-formed :
�)217 &2/25 ������&&�!TXRWHG DWWULEXWH YDOXHV��)217!

5. Declared entities
All entities must be declared in a DTD. XML entities are analogous to constants in other languages.
Entities can be expanded during processing, like a macro-preprocessing capability, saving error-prone
duplication of common text. We'll cover DTDs later in this tutorial. We won't cover entities any further,
though, since we don't use them in our example. Entities are an important topic, so you may want to
refer to the specification.

Now that you know about well-formed XML documents, you're almost ready to start writing one. There
are just a few other fine points to cover.

Some minor differences between HTML and XML

The final differences that you need to know are as follows.

1. Case sensitivity
XML tags are case-sensitive. For example, this works fine in HTML:
�+�!5HPHPEHU ;0/ LV FDVH�VHQVLWLYH���K�!

But the H1 and h1 are seen as two entirely different tags in XML, so you must use the same case in both
tags. This is correct XML:
�+�!5HPHPEHU ;0/ LV FDVH�VHQVLWLYH���+�!

Tip : Use either upper or lower case for tags. Or use a strict convention, like upper-casing only word
boundaries, which is a common programming practice.
2. Relevant white space
White space in the data between tags is relevant, because XML is a data format. However, within the
markup itself, and also within quoted attribute values, white space is normalized, or removed. For
example, in XML, these two poems are the same:

�SRHP IRUP �IUHH �!

7R ;0/ RU QRW WR ;0/

7KDW LV WKH TXHVWLRQ�

��SRHP!

�SRHP

IRUP �IUHH�!

7R ;0/ RU QRW WR ;0/

7KDW LV WKH TXHVWLRQ�

��SRHP!

But this poem is different:

4 of 15 11/19/98 1:22 PM

file:///Untitled

�SRHP IRUP �IUHH�!

7R ;0/ RU

QRW WR ;0/

7KDW LV WKH TXHVWLRQ�

��SRHP!

Notice that whitespace including newlines within the data between start and end tags is relevant.
However, leading and trailing whitespace inside quoted attribute values is normalized, or removed. For
example form="free " is reduced to form="free". The rules of normalization are somewhat complex, so you
may want to refer to the specification regarding attribute value normalization for the details.

(Technical point : Even though the parser normalizes whitespace within tags, the files when re-parsed
will create the same DOM representation, and so data integrity is maintained.)

The specification provides more detail on white-space as well.

3. Character encoding
XML allows you to specify different character set encodings. The encoding must be identified within
the <?xml ?> declaration as an encoding="UTF-8" attribute. An XML processor is required to support 'UTF-8'

and 'UTF-16'. For example:
�"[PO YHUVLRQ
���
 HQFRGLQJ
87)��
 "!

The IBM XML Parser for Java (XML4J) supports the following encodings:

US-ASCII
UCS-2
UCS-4
UTF-8
UTF-16
Shift_JIS
EUC-JP
ISO-2022-JP
Big5
GB2312
ISO-8859-1 through ISO-8859-9

4. Special reserved characters
Several characters are part of the syntactic structure of XML and will not be interpreted as themselves
if simply placed within an XML document. You must substitute a special character sequence called an
predefined entity by XML. More about entities later.

5 of 15 11/19/98 1:22 PM

file:///Untitled

Reserved character Predefined entity to use instead

� 	OW�

	 	DPS�

! 	JW�

 	DSRV�

� 	TXRW�

Only the "<" char seems to be automatically interpreted by most HTML browsers as the start of a
markup tag, although the HTML specification may be stricter.

The best difference between HTML and XML: extensibility with validity

Probably the best difference between HTML and XML is this: you can extend XML by creating new
tags that make sense for your data.

If you do create new tags, you must define, or constrain, them by writing grammar rules , which the
tags must obey. Also called a Document Type Declaration (DTD), these grammar rules are defined
in the XML specification. They specify:

Which tags are allowed within certain other tags
Which tags and attributes are optional

With regard to a DTD, an XML document can do any of the following:

Refer to a DTD, using a URI.
Include a DTD inline as part of the XML document.
Omit a DTD altogether. Without a DTD, an XML document can be checked for
well-formedness, but not for validity.

An XML document is valid if its content conforms to the rules in its DTD. Validity allows an application
to make sure the XML data is complete, is formatted properly, and has appropriate attribute values. It
also allows an application to construct valid XML that conforms to that DTD, which is a very powerful
feature.

For example, the IBM XML Parser for Java (XML4J) can:

Ensure that end-users cannot create invalid XML data
Help users build XML documents by showing what is valid at any given point

Currently the IBM Parser is the only one implementing this powerful capability. More on this later in
"Tutorial 3: Parsing XML Using Java."

DTDs: a closer look

Again, a DTD is a grammar that describes what tags and attributes are valid in an XML document, and

6 of 15 11/19/98 1:22 PM

file:///Untitled

in what context they are valid.

Grammars for languages are often described in an EBNF, or Extended Backus-Naur Form. The XML
specification itself uses EBNF to define the allowable XML constructs. EBNF uses production rules
where the left side represents a construct, and the right side says what that construct can contain.

Whew, that's a lot of abstract language. Let's look at some examples from our Address Book. For
instance, in EBNF, we could use the following rule to say that a person must contain a name, and
optionally, an e-mail address.

SHUVRQ �� �QDPH H�PDLO
�

The DTD equivalent element declaration looks like:

��(/(0(17 SHUVRQ �QDPH� H�PDLO
�!

This DTD statement declares an element called person, which must consist of a name and an
optional e-mail.

 Type Element
Declaration Element Content Model

� � (/(0(17 SHUVRQ �QDPH� H�PDLO
� !

Let's try to avoid reading the specification for now. Instead, refer to the following table for the symbols
and special names used in DTD element rules. The characters A and B represent an element or an
expression found in the Element Content Model.

Element
definition What it means

$"
Matches A or nothing; optional A.

$� Matches one or more occurrences of A.

$
 Matches zero or more occurrences of A.

$ _ % Matches A or B but not both.

$ � %
Matches A followed by B, in that order.

�$� %��
Matches one or more occurrences of (A followed by B).
Parentheses are a grouping mechanism; the expression inside
parentheses is treated as a unit.

�3&'7 Keyword matches string data in the current character encoding.

That's enough information for the moment. Please feel free to refer to this table as we continue. Next
let's build on our Address Book example.

Sample DTD: Our Address Book DTD

7 of 15 11/19/98 1:22 PM

file:///Untitled

So far, the entire DTD for our simple Address Book is:

�"[PO HQFRGLQJ �87)���"!

��(/(0(17 DGGUHVV%RRN �SHUVRQ��!

��(/(0(17 SHUVRQ �QDPH�H�PDLO
�!

��(/(0(17 QDPH �IDPLO\� JLYHQ�!

��(/(0(17 IDPLO\ ��3&'7�!

��(/(0(17 JLYHQ ��3&'7�!

��(/(0(17 H�PDLO ��3&'7�!

Note that in the DTD, we may also specify the <?xml encoding="UTF-8"?> expression. However, if we do so,
we must also include the encoding in the DTD.

This DTD says that our addressBook is composed of one or more people, where each person has a
name, and optional e-mail address. The name is composed of a family name, and a given name. And the
content of each of these is UTF-8 string data.

Creating DTDs and writing valid XML: an interactive example

Let's have some fun. If you return to the tutorial on the XML Web site, you can edit the interactive
examples that follow in this section. In each case, when you click the Parse button, you will invoke the
IBM Parser and get a result. Sometimes we have intentionally planted errors, so watch out!

If our address book DTD has a filename of ab0.dtd , we may refer to this DTD from an XML document
as follows.

If we introduce a second person into our address book, our document is no longer valid . What error
have we made?

8 of 15 11/19/98 1:22 PM

file:///Untitled

1. Click Parse to have XML4J parse the document against the ab0.dtd DTD and show the error.
2. See if you can fix the error and Parse the document again.

Instead of referring to a DTD via a URI (filename, url...), you may simply include the DTD inline as part
of your XML document. The example below illustrates this.

The XML declaration

In XML documents and in external DTD documents (in fact, in all external documents), the XML

9 of 15 11/19/98 1:22 PM

file:///Untitled

declaration is optional, yet recommended . If included, the XML declaration is the first thing in an XML
document. As shown in some of the previous examples, it looks like this:

 XML Version Encoding
� " [PO YHUVLRQ
���
 HQFRGLQJ
87)��
 " !

If you do include the XML declaration in your XML document, you must follow some simple rules:

<?xml is required as the first characters of the document, with no preceding spaces.
The version attribute is required .
In an external document, such as a DTD, the encoding attribute is required , and the version is
optional (will be inherited from the document).

The XML declaration rules are simpler than they appear in the specification. These rules exist so that
XML processors can interpret the XML document correctly. The first few characters specify the
character encoding of the file (8- or 16-bit characters, ASCII or EBCDIC) well enough so that a
processor can read the rest of the first line, including the "encoding ='xxxx'" attribute. The version is
specified so that the XML language may evolve gracefully without breaking existing XML documents.
Also, because the XML language is designed to be completely international from the start, any
external document that is referenced may have a different encoding.

Attributes

Let's say we want to add an attribute, called gender to the element person. (Sometimes the name alone
doesn't tell you the gender of the person.)

The basic DTD rule for an attribute declaration follows a structure similar to that of element .

 Type Element Attribute
declaration Attribute definition

� � $77/,67 SHUVRQ JHQGHU �PDOH_IHPDOH� �,03/,(' !

The (male|female) expression is an enumerated type, and #IMPLIED is a keyword designating that this
attribute is optional.

In the following interactive example, the DTD rule is included for the gender attribute. Can you add the
gender attribute to the XML part for both people?

10 of 15 11/19/98 1:22 PM

file:///Untitled

Default and required attribute values

Let's say we want the gender attribute to default to "unknown". We could express this by adding unknown to
the enumerated list, and appending the "unknown" literal in the DTD rule like so:

 Type Element Attribute
declaration Attribute definition

� � $77/,67 SHUVRQ JHQGHU �PDOH_IHPDOH_XQNQRZQ� �XQNQRZQ� !

Now, the gender attribute is still optional in the XML part, but if unspecified, it will default to "unknown".

Alternatively, if we want to require the existence of the gender attribute, we use the keyword #REQUIRED,
like so:

 Type Element Attribute
declaration Attribute definition

� � $77/,67 SHUVRQ JHQGHU �PDOH_IHPDOH_XQNQRZQ� �5(48,5(' !

Now, the gender attribute must be present with one of the valid values, within every person tag.

And, finally, what if we wanted to say that if an attribute is present, it is always assigned a particular
fixed value? That's possible, too, by using the keyword #FIXED.

To understand the finer points of attribute defaults, you may want to refer to the specification.

Attribute types

11 of 15 11/19/98 1:22 PM

file:///Untitled

In our previous examples, we've seen the enumerated type of attribute, where the possible attributes
are enumerated in a list, delimited with the "|" (or) symbol and surrounded by parentheses. The two
other types are the CDATA (character data) type and the tokenized types.

Use the CDATA type when you want to refer to any character data, potentially even data containing
markup. However, certain markup symbols like "<" are not allowed within attributes. So, if you
declared an attribute for an element form, say an attribute called method, you could ensure its value was
always 'POST', like so:

 Type Element Attribute
declarationB Attribute definition

� � $77/,67 IRUP PHWKRG &'$7$ �),;('
3267
 !

Use the tokenized attribute types to represent a fixed set of keyword types with special meanings.
Often, we want to uniquely identify instances of a certain element, so it has an attribute with a value
that must be unique. In our Address Book example, it would be helpful to be able to uniquely identify
and refer to a person, even people with the same name and similar data. This is done using a
tokenized attribute type called ID.

The ID attribute type in the following example, plus the #REQUIRED keyword ensures that every person

must have an id attribute whose value is unique within the document.

��$77/,67 SHUVRQ LG ,' �5(48,5('!

Now that we can ensure the uniqueness of element attribute values, we can refer to them. The next
tokenized type, called IDREF, does just that.

Each IDREF attribute is required to match an ID attribute on some element in the XML document.
Similarly, attribute values of type IDREFS must contain whitespace-delimited ID values in the
document. So, let's define the ability for a person to link to his or her manager and/or subordinates:

��(/(0(17 OLQN (037<!

��$77/,67 OLQN

PDQDJHU ,'5() �,03/,('

VXERUGLQDWHV ,'5()6 �,03/,('!

Notice how we declared an EMPTY link element, which can contain attributes that refer to other
people.

For details on attribute types, see the specification.

Putting it all together - the complete DTD and XML document

Our complete addressBook DTD, ab.dtd , has been defined as follows:

12 of 15 11/19/98 1:22 PM

file:///Untitled

�"[PO HQFRGLQJ �87)���"!

��(/(0(17 DGGUHVV%RRN �SHUVRQ��!

��(/(0(17 SHUVRQ �QDPH�HPDLO
�OLQN"�!

��$77/,67 SHUVRQ LG ,' �5(48,5('!

��$77/,67 SHUVRQ JHQGHU �PDOH_IHPDOH� �,03/,('!

��(/(0(17 QDPH ��3&'7_IDPLO_JLYHQ�
!

��(/(0(17 IDPLO\ ��3&'7�!

��(/(0(17 JLYHQ ��3&'7�!

��(/(0(17 HPDLO ��3&'7�!

��(/(0(17 OLQN (037<!

��$77/,67 OLQN

PDQDJHU ,'5() �,03/,('

VXERUGLQDWHV ,'5()6 �,03/,('!

Now, your final XML challenge, if you choose to accept it, is to start with the addressBook XML
document below, where we left off, and express the fact that Claire is the manager of Bob, and that
Bob is a subordinate of Claire. Give it a try below, and hopefully our Parser will help you correct any
errors.

Does your XML document look something like this? (Note how the link element attributes refer to the
contents of an id attribute in the document.)

13 of 15 11/19/98 1:22 PM

file:///Untitled

<?xml version="1.0"?>
<!DOCTYPE addressBook SYSTEM "ab.dtd">
<addressBook>
 <person id="B.WALLACE" gender="male">
 <name>
 <family>Wallace</family> <given>Bob</given>
 </name>
 <email>bwallace@megacorp.com</email>
 <link manager="C.TUTTLE"/>
 </person>

 <person id="C.TUTTLE" gender="female">
 <name>
 <family>Tuttle</family> <given>Claire</given>
 </name>
 <email>ctuttle@megacorp.com</email>
 <link subordinates="B.WALLACE"/>
 </person>
</addressBook>

Summary

In this tutorial, we have compared and contrasted XML with another markup language that most of us
are familiar with, HTML. As you have seen, due to their common heritage (both are simplified subsets
of SGML), someone with a cursory knowlege of HTML syntax is instantly conversant in XML syntax.
Indeed in one sense there is actually less syntax to learn, since when writing XML you make up your
own tags, or use a tagset defined by a DTD in your problem domain.

The DTD (grammar) syntax takes a little getting used to for someone coming from HTML. The good
news is that in the near future, you will be able to express the grammar of an XML document by writing
the grammar itself in XML in another document. These XML grammars, called schemas, already exist
as W3C proposals, but they have not settled completely and are beyond the scope of this tutorial.

Remember that the key differences between HTML and XML are:

In XML, your tags must be properly nested so they are strictly hierarchical; one must be
completely inside another.
In XML, standalone tags, called empty tags, must have a trailing slash before the closing
angle-bracket.
An XML document must have a single root element, which surrounds all others.
In XML, attribute values must be quoted.
XML markup tags are case sensitive.
Whitespace is relevant between start and end tags.
XML is extensible and uses a Document Type Declaration (DTD) to define the allowable
grammar rules for tags and attributes.

By now it may have occurred to you that since HTML and XML are so similar in structure, and since
XML is extensible, that HTML could be represented in XML! Well, by applying the constraints listed
above to HTML, you can express HTML in XML. In fact, various Document Type Declarations (DTDs)
have been written that express the grammar rules of HTML, with varying degrees of "strictness".

In fact, many HTML editors and layout tools are already outputting HTML that observes much of the
XML constraints listed above. Now tools, applications, and parsers that understand XML can
understand HTML as well. Watch for tools that convert HTML to XML, and XML to HTML.

If you are a programmer interested in creating XML tools, or in XML-enabling your applications, please

14 of 15 11/19/98 1:22 PM

file:///Untitled

stay tuned for the next tutorial installment, "Parsing XML Using Java."

What's next?

That's enough XML to make anyone dangerous. Now it's time to take a break before the next task:
processing XML documents using Java and the IBM XML Parser for Java.

In the tutorial you have just completed, some important topics have been intentionally omitted. You
can read about them in the XML specification as you need them:

Encoding, Internationalization and Languages
Entities: Internal and External, the constants and macro-processing of XML
Processing Instructions - allow documents to contain instructions for applications

Now that you know how to write a valid XML document, the next tutorial will show you how to write a
Java program to invoke the IBM XML Parser for Java and manipulate the structure of your address
book with the DOM API.

If the next tutorial, "Parsing XML Using Java," isn't available as you read this, please check back very
soon.

15 of 15 11/19/98 1:22 PM

file:///Untitled

