
Perf ormance Effects of Disk Subsystem Choices for VAX† Systems
Running 4.2BSD UNIX*

Revised July 27, 1983

Bob Kridle

mt Xinu
2560 9th Street

Suite #312
Berkeley, California 94710

Marshall Kirk McKusick‡

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

Measurements were made of the UNIX file system throughput for various I/O oper-
ations using the most attractive currently available Winchester disks and controllers
attached to both the native busses (SBI/CMI) and the UNIBUS on both VAX 11/780s and
VAX 11/750s. Thetests were designed to highlight the performance of single and dual
drive subsystems operating in the 4.2BSDfast file systemenvironment. Many of the
results of the tests were initially counter-intuitive and revealed several important aspects
of the VAX implementations which were surprising to us.

The hardware used included two Fujitsu 2351A ‘‘Eagle’’ disk drives on each of
two foreign-vendor disk controllers and two DEC RA-81 disk drives on a DEC UDA-50
disk controller. The foreign-vendor controllers were Emulex SC750, SC780 and Systems
Industries 9900 native bus interfaced controllers.The DEC UDA-50 controller is a
UNIBUS interfaced, heavily buffered controller which is the first implementation of a
new DEC storage system architecture, DSA.

One of the most important results of our testing was the correction of several tim-
ing parameters in our device handler for devices with an RH750/RH780 type interface
and having high burst transfer rates.The correction of these parameters resulted in an
increase in performance of over twenty percent in some cases.In addition, one of the
controller manufacturers altered their bus arbitration scheme to produce another increase
in throughput.

†VAX, UNIBUS, and MASSBUS are trademarks of Digital Equipment Corporation.

* UNIX is a trademark of Bell Laboratories.

‡This work was supported under grants from the National Science Foundation under grant MCS80-05144, and
the Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Elec-
tronic System Command under Contract No. N00039-82-C-0235.

Performance -i- Contents

TABLE OF CONTENTS

1. Motivation

2. Equipment
2.1. DECUDA50 disk controller
2.2. Emulex SC750/SC780 disk controllers
2.3. SystemsIndustries 9900 disk controller
2.4. DECRA81 disk drives
2.5. Fujitsu2351A disk drives

3. Methodology

4. Tests

5. Results

6. Conclusions

Acknowledgements

References

Appendix A
A.1. read_8192
A.2. write_4096
A.3. write_8192
A.4. rewrite_8192

Performance -1- Motivation

1. Motivation

These benchmarks were performed for several reasons.Foremost was our desire to obtain guideline
to aid in choosing one the most expensive components of any VAX UNIX configuration, the disk storage
system. Therange of choices in this area has increased dramatically in the last year. DEC has become,
with the introduction of the UDA50/RA81 system, cost competitive in the area of disk storage for the first
time. Emulex’s entry into the VAX 11/780 SBI controller field, the SC780, represented a important choice
for us to examine, given our previous success with their VAX 11/750 SC750 controller and their UNIBUS
controllers. TheFujitsu 2351A Winchester disk drive represents the lowest cost-per-byte disk storage
known to us. In addition, Fujitsu’s reputation for reliability was appealing.The many attractive aspects of
these components justified a more careful examination of their performance aspects under UNIX.

In addition to the direct motivation of developing an effective choice of storage systems, we hoped to
gain more insight into VAX UNIX file system and I/O performance in general.What generic characteris-
tics of I/O subsystems are most important?How important is the location of the controller on the SBI/CMI
versus the UNIBUS? Isextensive buffering in the controller essential or even important? How much can
be gained by putting more of the storage system management and optimization function in the controller as
DEC does with the UDA50?

We also wanted to resolve particular speculation about the value of storage system optimization by a
controller in a UNIX environment. Isthe access optimization as effective as that already provided by the
existing 4.2BSD UNIX device handlers for traditional disks?VMS disk handlers do no seek optimization.
This gives the UDA50 controller an advantage over other controllers under VMS which is not likely to be
as important to UNIX.Are there penalties associated with greater intelligence in the controller?

A third and last reason for evaluating this equipment is comparable to the proverbial mountain
climbers answer when asked why he climbs a particular mountain, ‘‘It was there.’’ I n our case the equip-
ment was there.We were lucky enough to assemble all the desired disks and controllers and get them
installed on a temporarily idle VAX 11/780. This got us started collecting data.Although many of the tests
were later rerun on a variety of other systems, this initial test bed was essential for working out the testing
bugs and getting our feet wet.

Performance -2- Equipment

2. Equipment

Various combinations of the three manufacturers disk controllers, and two pairs of Winchester disk
drives were tested on both VAX 11/780 and VAX 11/750 CPUs. The Emulex and Systems Industries disk
controllers were interfaced to Fujitsu 2351A ‘‘Eagle’’ 404 Megabyte disk drives. TheDEC UDA50 disk
controller was interfaced to two DEC RA81 456 Megabyte Winchester disk drives. All three controllers
were tested on the VAX 780 although only the Emulex and DEC controllers were benchmarked on the VAX
11/750. SystemsIndustries makes a VAX 11/750 CMI interface for their controller, but we did not have
time to test this device. Inaddition, not all the storage systems were tested for two drive throughput. Each
of the controllers and disk drives used in the benchmarks is described briefly below.

2.1. DECUDA50 disk controller

This is a new controller design which is part of a larger, long range storage architecture referred to as
‘‘ DSA’’ o r Digital StorageArchetecture. Animportant aspect of DSA is migrating a large part of the stor-
age management previously handled in the operating system to the storage system. Thus, the UDA50 is a
much more intelligent controller than previous interfaces like the RH750 or RH780.The UDA50 handles
all error correction.It also deals with most of the physical storage parameters.Typically, system software
requests a logical block or sequence of blocks.The physical locations of these blocks, their head, track,
and cylinder indices, are determined by the controller. The UDA50 also orders disk requests to maximize
throughput where possible, minimizing total seek and rotational delays.Where multiple drives are attached
to a single controller, the UDA50 can interleave simultaneous data transfers from multiple drives.

The UDA50 is a UNIBUS implementation of a DSA controller. It contains 52 sectors of internal
buffering to minimize the effects of a slow UNIBUS such as the one on the VAX-11/780. Thisbuffering
also minimizes the effects of contention with other UNIBUS peripherals.

2.2. EmulexSC750/SC780 disk controllers

These two models of the same controller interface to the CMI bus of a VAX 11/750 and the SBI bus
of a 11/VAX 780, respectively. To the operating system, they emulate either an RH750 or and RH780.The
controllers install in the MASSBUS locations in the CPU cabinets and operate from the VAX power
suplies. They provide an ‘‘SMD’’ or StorageModuleDrive interface to the disk drives. Althougha large
number of disk drives use this interface, we tested the controller exclusively connected to Fujitsu 2351A
disks.

The controller ws first implemented for the VAX-11/750 as the SC750 model several years ago.
Although the SC780 was introduced more recently, both are stable products with no bugs known to us.

2.3. SystemIndustries 9900 disk controller

This controller is an evolution of the S.I. 9400 first introduced as a UNIBUS SMD interface. The
9900 has been enhanced to include an interface to the VAX 11/780 native bus, the SBI.It has also been
upgraded to operate with higher data rate drives such as the Fujitsu 2351As we used in this test.The con-
troller is contained in its own rack-mounted drawer with an integral power supply. The interface to the
SMD is a four module set which mounts in a CPU cabinet slot normally occupied by an RH780.The SBI
interface derives power from the VAX CPU cabinet power supplies.

2.4. DECRA81 disk drives

The RA81 is a rack-mountable 456 Megabyte (formatted) Winchester disk drive manufactured by
DEC. It includes a great deal of technology which is an integral part of the DECDSA scheme. Thenovel
technology includes a serial packet based communications protocol with the controller over a pair of mini-
coaxial cables.The physical characteristics of the RA81 are shown in the table below:

Performance -3- Equipment

DEC RA81 Disk Drive Characteristics

Peak Transfer Rate 2.2 Mbytes/sec.
Rotational Speed 3,600 RPM
Data Sectors/Track 51
Logical Cylinders 1,248
Logical Data Heads 14
Data Capacity 456 Mbytes
Minimum Seek Time 6milliseconds
Av erage Seek Time 28milliseconds
Maximum Seek Time 52milliseconds

2.5. Fujitsu 2351A disk drives

The Fujitsu 2351A disk drive is a Winchester disk drive with an SMD controller interface. Fujitsu
has developed a very good reputation for reliable storage products over the last several years.The 2351A
has the following physical characteristics:

Fujitsu 2351A Disk Drive Characteristics

Peak Transfer Rate 1.859 Mbytes/sec.
Rotational Speed 3,961 RPM
Data Sectors/Track 48
Cylinders 842
Data Heads 20
Data Capacity 404 Mbytes
Minimum Seek Time 5milliseconds
Av erage Seek Time 18milliseconds
Maximum Seek Time 35milliseconds

Performance -4- Methodology

3. Methodology

Our goal was to evaluate the performance of the target peripherals in an environment as much like
our 4.2BSD UNIX systems as possible.There are two basic approaches to creating this kind of test envi-
ronment. Thesemight be termed theindirectand thedirectapproach. Theapproach used by DEC in pro-
ducing most of the performance data on the UDA50/RA81 system under VMS is what we term the indirect
approach. We chose to use the direct approach.

The indirect approach used by DEC involves two steps. First,the environment in which performance
is to be evaluated is parameterized.In this case, the disk I/O characteristics of VMS were measured as to
the distribution of various sizes of accesses and the proportion of reads and writes.This parameterization
of typical I/O activity was termed a ‘‘vax mix.’’ T he second stage involves simulating this mixture of I/O
activities with the devices to be tested and noting the total volume of transactions processed per unit time
by each system.

The problems encountered with this indirect approach often have to do with the completeness and
correctness of the parameterization of the context environment. For example, the ‘‘vax mix’’ model con-
structed for DECs tests uses a random distribution of seeks to the blocks read or written.It is not likely that
any real system produces a distribution of disk transfer locations which is truly random and does not exhibit
strong locality characteristics.

The methodology chosen by us is direct in the sense that it uses the standard structured file system
mechanism present in the 4.2BSD UNIX operating system to create the sequence of locations and sizes of
reads and writes to the benchmarked equipment.We simply create, write, and read files as they would be
by user’s activities. Thedisk space allocation and disk cacheing mechanism built into UNIX is used to pro-
duce the actual device reads and writes as well as to determine their size and location on the disk.We mea-
sure and compare the rate at which theseuser filescan be written, rewritten, or read.

The advantage of this approach is the implicit accuracy in testing in the same environment in which
the peripheral will be used.Although this system does not account for the I/O produced by some paging
and swapping, in our memory rich environment these activities account for a relatively small portion of the
total disk activity.

A more significant disadvantage to the direct approach is the occasional difficulty we have in
accounting for our measured results.The apparently straight-forward activity of reading or writing a logi-
cal file on disk can produce a complex mixture of disk traffic. File I/O is supported by a file management
system that buffers disk traffic through an internal cache, which allows writes to ba handled asyn-
chronously. Reads must be done synchronously, howev er this restriction is moderated by the use of read-
ahead. Smallchanges in the performance of the disk controller subsystem can result in large and unex-
pected changes in the file system performance, as it may change the characteristics of the memory con-
tention experienced by the processor.

Performance -5- Tests

4. Tests

Our battery of tests consists of four programs, read_8192, write_8192, write_4096 and rewrite_8192
originally written by [McKusick83] to evaluate the performance of the new file system in 4.2BSD.These
programs all follow the the same model and are typified by read_8192 shown here.

#define BUFSIZ 8192
main(argc, argv)
char **argv;
{

char buf[BUFSIZ];
int i, j;

j = open(argv[1], 0);
for (i = 0; i < 1024; i++)

read(j, buf, BUFSIZ);
}

The remaining programs are included in appendix A.

These programs read, write with two different blocking factors, and rewrite logical files in structured
file system on the disk under test.The write programs create new files while the rewrite program over-
writes an existing file. Each of these programs represents an important segment of the typical UNIX file
system activity with the read program representing by far the largest class and the rewrite the smallest.

A blocking factor of 8192 is used by all programs except write_4096.This is typical of most 4.2BSD
user programs since a standard set of I/O support routines is commonly used and these routines buffer data
in similar block sizes.

For each test run, a empty eight Kilobyte block file system was created in the target storage system.
Then each of the four tests was run and timed.Each test was run three times; the first to clear out any use-
ful data in the cache, and the second two to insure that the experiment had stablized and was repeatable.
Each test operated on eight Megabytes of data to insure that the cache did not overly influence the results.
Another file system was then initialized using a basic blocking factor of four Kilobytes and the same tests
were run again and timed.A command script for a run appears as follows:

#!/bin/csh
set time=2
echo "8K/1K file system"
newfs /dev/rhp0g eagle
mount /dev/hp0g /mnt0
mkdir /mnt0/foo
echo "write_8192 /mnt0/foo/tst2"
rm -f /mnt0/foo/tst2
write_8192 /mnt0/foo/tst2
rm -f /mnt0/foo/tst2
write_8192 /mnt0/foo/tst2
rm -f /mnt0/foo/tst2
write_8192 /mnt0/foo/tst2
echo "read_8192 /mnt0/foo/tst2"
read_8192 /mnt0/foo/tst2
read_8192 /mnt0/foo/tst2
read_8192 /mnt0/foo/tst2
umount /dev/hp0g

Performance -6- Results

5. Results

The following tables indicate the results of our test runs.Note that each table contains results for
tests run on two varieties of 4.2BSD file systems.The first set of results is always for a file system with a
basic blocking factor of eight Kilobytes and a fragment size of 1 Kilobyte. The second sets of measure-
ments are for file systems with a four Kilobyte block size and a one Kilobyte fragment size.The values in
parenthesis indicate the percentage of CPU time used by the test program.In the case of the two disk arm
tests, the value in parenthesis indicates the sum of the percentage of the test programs that were run.
Entries of ‘‘n. m.’’ i ndicate this value was not measured.

4.2BSD File Systems Tests -VAX 11/750

Logically Sequential Transfers
from an8K/1K 4.2BSD File System (Kbytes/sec.)

Test Emulex SC750/Eagle UDA50/RA81

1 Drive 2Drives 1Drive 2Drives

read_8192 490(69%) 620(96%) 310(44%) 520(65%)
write_4096 380(99%) 370(99%) 370(97%) 360(98%)
write_8192 470(99%) 470(99%) 320(71%) 410(83%)
rewrite_8192 650(99%) 620(99%) 310(50%) 450(70%)

Logically Sequential Transfers
from 4K/1K 4.2BSD File System (Kbytes/sec.)

Test Emulex SC750/Eagle UDA50/RA81

1 Drive 2Drives 1Drive 2Drives

read_8192 300(60%) 400(84%) 210(42%) 340(77%)
write_4096 320(98%) 320(98%) 220(67%) 290(99%)
write_8192 340(98%) 340(99%) 220(65%) 310(98%)
rewrite_8192 450(99%) 450(98%) 230(47%) 340(78%)

Note that the rate of write operations on the VAX 11/750 are ultimately CPU limited in some cases.
The write rates saturate the CPU at a lower bandwidth than the reads because they must do disk allocation
in addition to moving the data from the user program to the disk.The UDA50/RA81 saturates the CPU at a
lower transfer rate for a given operation than the SC750/Eagle because it causes more memory contention
with the CPU.We do not know if this contention is caused by the UNIBUS controller or the UDA50.

The following table reports the results of test runs on a VAX 11/780 with 4 Megabytes of main mem-
ory.

Performance -7- Results

4.2BSD File Systems Tests -VAX 11/780

Logically Sequential Transfers
from an8K/1K 4.2BSD File System (Kbytes/sec.)

Test Emulex SC780/Eagle UDA50/RA81 Sys.Ind. 9900/Eagle

1 Drive 2Drives 1Drive 2Drives 1Drive 2Drives

read_8192 560(70%) 480(58%) 360(45%) 540(72%) 340(41%) 520(66%)
write_4096 440(98%) 440(98%) 380(99%) 480(96%) 490(96%) 440(84%)
write_8192 490(98%) 490(98%) 220(58%)* 480(92%) 490(80%) 430(72%)
rewrite_8192 760(100%) 560(72%) 220(50%)* 180(52%)* 490(60%) 520(62%)

Logically Sequential Transfers
from an4K/1K 4.2BSD File System (Kbytes/sec.)

Test Emulex SC780/Eagle UDA50/RA81 Sys.Ind. 9900/Eagle

1 Drive 2Drives 1Drive 2Drives 1Drive 2Drives

read_8192 490(77%) 370(66%) n.m. n.m. 200(31%) 370(56%)
write_4096 380(98%) 370(98%) n.m. n.m. 200(46%) 370(88%)
write_8192 380(99%) 370(97%) n.m. n.m. 200(45%) 320(76%)
rewrite_8192 490(87%) 350(66%) n.m. n.m. 200(31%) 300(46%)

* the operation of the hardware was suspect during these tests.

The dropoff in reading and writing rates for the two drive SC780/Eagle tests are probably due to the
file system using insufficient rotational delay for these tests.We hav enot fully investigated these times.

The following table compares data rates on VAX 11/750s directly with those of VAX 11/780s using
the UDA50/RA81 storage system.

4.2BSD File Systems Tests -DEC UDA50 - 750 vs. 780

Logically Sequential Transfers
from an8K/1K 4.2BSD File System (Kbytes/sec.)

Test VAX 11/750 UNIBUS VAX 11/780 UNIBUS

1 Drive 2Drives 1Drive 2Drives

read_8192 310(44%) 520(84%) 360(45%) 540(72%)
write_4096 370(97%) 360(100%) 380(99%) 480(96%)
write_8192 320(71%) 410(96%) 220(58%)* 480(92%)
rewrite_8192 310(50%) 450(80%) 220(50%)* 180(52%)*

Logically Sequential Transfers
from an4K/1K 4.2BSD File System (Kbytes/sec.)

Test VAX 11/750 UNIBUS VAX 11/780 UNIBUS

1 Drive 2Drives 1Drive 2Drives

read_8192 210(42%) 342(77%) n.m. n.m.
write_4096 215(67%) 294(99%) n.m. n.m.
write_8192 215(65%) 305(98%) n.m. n.m.
rewrite_8192 227(47%) 336(78%) n.m. n.m.

* the operation of the hardware was suspect during these tests.

The higher throughput available on VAX 11/780s is due to a number of factors. Thelarger main
memory size allows a larger file system cache.The block allocation routines run faster, raising the upper
limit on the data rates in writing new files.

Performance -8- Results

The next table makes the same comparison using an Emulex controller on both systems.

4.2BSD File Systems Tests -Emulex - 750 vs. 780

Logically Sequential Transfers
from an8K/1K 4.2BSD File System (Kbytes/sec.)

Test VAX 11/750 CMI Bus VAX 11/780 SBI Bus

1 Drive 2Drives 1Drive 2Drives

read_8192 490(69%) 620(96%) 560(70%) 480(58%)
write_4096 380(99%) 370(99%) 440(98%) 440(98%)
write_8192 470(99%) 470(99%) 490(98%) 490(98%)
rewrite_8192 650(99%) 620(99%) 760(100%) 560(72%)

Logically Sequential Transfers
from an4K/1K 4.2BSD File System (Kbytes/sec.)

Test VAX 11/750 CMI Bus VAX 11/780 SBI Bus

1 Drive 2Drives 1Drive 2Drives

read_8192 300(60%) 400(84%) 490(77%) 370(66%)
write_4096 320(98%) 320(98%) 380(98%) 370(98%)
write_8192 340(98%) 340(99%) 380(99%) 370(97%)
rewrite_8192 450(99%) 450(98%) 490(87%) 350(66%)

The following table illustrates the evolution of our testing process as both hardware and software
problems effecting the performance of the Emulex SC780 were corrected.The software change was sug-
gested to us by George Goble of Purdue University.

The 4.2BSD handler for RH750/RH780 interfaced disk drives contains several constants which to
determine how much time is provided between an interrupt signaling the completion of a positioning com-
mand and the subsequent start of a data transfer operation. These lead times are expressed as sectors of
rotational delay. If they are too small, an extra complete rotation will often be required between a seek and
subsequent read or write operation.The higher bit rate and rotational speed of the 2351A Fujitsu disk
drives required increasing these constants.

The hardware change involved allowing for slightly longer delays in arbitrating for cycles on the SBI
bus by starting the bus arbitration cycle a little further ahead of when the data was ready for transfer.
Finally we had to increase the rotational delay between consecutive blocks in the file because the higher
bandwidth from the disk generated more memory contention, which slowed down the processor.

Performance -9- Results

4.2BSD File Systems Tests -Emulex SC780 Disk Controller Evolution

Logically Sequential Transfers
from an8K/1K 4.2BSD File System (Kbytes/sec.)

Test InadequateSearch Lead OK Search Lead OK Search Lead
Initial SBI Arbitration Init SBI Arb. Improved SBI Arb.

1 Drive 2Drives 1Drive 2Drives 1Drive 2Drives

read_8192 320 370 440(60%) n.m. 560 (70%) 480 (58%)
write_4096 250 270 300(63%) n.m. 440 (98%) 440 (98%)
write_8192 250 280 340(60%) n.m. 490 (98%) 490 (98%)
rewrite_8192 250 290 380(48%) n.m. 760(100%) 560(72%)

Logically Sequential Transfers
from an4K/1K 4.2BSD File System (Kbytes/sec.)

Test InadequateSearch Lead OK Search Lead OK Search Lead
Initial SBI Arbitration Init SBI Arb. Improved SBI Arb.

1 Drive 2Drives 1Drive 2Drives 1Drive 2Drives

read_8192 200 220 280 n.m. 490(77%) 370(66%)
write_4096 180 190 300 n.m. 380(98%) 370(98%)
write_8192 180 200 320 n.m. 380(99%) 370(97%)
rewrite_8192 190 200 340 n.m. 490(87%) 350(66%)

Performance -10- Conclusions

6. Conclusions

Peak available throughput is only one criterion in most storage system purchasing decisions.Most of
the VAX UNIX systems we are familiar with are not I/O bandwidth constrained.Nevertheless, an adequate
disk bandwidth is necessary for good performance and especially to preserve snappy response time.All of
the disk systems we tested provide more than adequate bandwidth for typical VAX UNIX system applica-
tion. Perhapsin some I/O-intensive applications such as image processing, more consideration should be
given to the peak throughput available. Inmost situations, we feel that other factors are more important in
making a storage choice between the systems we tested.Cost, reliability, availability, and support are some
of these factors. Thematurity of the technology purchased must also be weighed against the future value
and expandability of newer technologies.

Tw o important conclusions about storage systems in general can be drawn from these tests.The first
is that buffering can be effective in smoothing the the effects of lower bus speeds and bus contention.Even
though the UDA50 is located on the relatively slow UNIBUS, its performance is similar to controllers
located on the faster processor busses. However, the SC780 with only one sector of buffering shows that
little buffering is needed if the underlying bus is fast enough.

Placing more intelligence in the controller seems to hinder UNIX system performance more than it
helps. Ourprofiling tests have indicated that UNIX spends about the same percentage of time in the SC780
driver and the UDA50 driver (about 10-14%).Normally UNIX uses a disk sort algorithm that separates
reads and writes into two seek order queues.The read queue has priority over the write queue, since reads
cause processes to block, while writes can be done asynchronously. This is particularly useful when gener-
ating large files, as it allows the disk allocator to read new disk maps and begin doing new allocations while
the blocks allocated out of the previous map are written to disk.Because the UDA50 handles all block
ordering, and because it keeps all requests in a single queue, there is no way to force the longer seek needed
to get the next disk map.This disfunction causes all the writes to be done before the disk map read, which
idles the disk until a new set of blocks can be allocated.

The additional functionality of the UDA50 controller that allows it to transfer simultaneously from
two drives at once tends to make the two drive transfer tests run much more effectively. Tuning for the sin-
gle drive case works more effectively in the two drive case than when controllers that cannot handle simul-
taneous transfers are used.

Acknowledgements
We thank Paul Massigilia and Bill Grace of Digital Equipment Corp for helping us run our disk tests

on their UDA50/RA81. We also thank Rich Notari and Paul Ritkowski of Emulex for making their
machines available to us to run our tests of the SC780/Eagles.Dan McKinster, then of Systems Industries,
arranged to make their equipment available for the tests.We appreciate the time provided by Bob Gross,
Joe Wolf, and Sam Leffler on their machines to refine our benchmarks.Finally we thank our sponsors, the
National Science Foundation under grant MCS80-05144, and the Defense Advance Research Projects
Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command under Con-
tract No. N00039-82-C-0235.

References

[McKusick83] M.McKusick, W. Joy, S. Leffler, R. Fabry, ‘‘A Fast File System for UNIX’’, ACM
Tr ansactions on Computer Systems 2, 3. pp 181-197, August 1984.

Performance -11- Appendix A

Appendix A

read_8192

#define BUFSIZ 8192
main(argc, argv)
char **argv;
{

char buf[BUFSIZ];
int i, j;

j = open(argv[1], 0);
for (i = 0; i < 1024; i++)

read(j, buf, BUFSIZ);
}

write_4096

#define BUFSIZ 4096
main(argc, argv)
char **argv;
{

char buf[BUFSIZ];
int i, j;

j = creat(argv[1], 0666);
for (i = 0; i < 2048; i++)

write(j, buf, BUFSIZ);
}

write_8192

#define BUFSIZ 8192
main(argc, argv)
char **argv;
{

char buf[BUFSIZ];
int i, j;

j = creat(argv[1], 0666);
for (i = 0; i < 1024; i++)

write(j, buf, BUFSIZ);
}

Performance -12- Appendix A

rewrite_8192

#define BUFSIZ 8192
main(argc, argv)
char **argv;
{

char buf[BUFSIZ];
int i, j;

j = open(argv[1], 2);
for (i = 0; i < 1024; i++)

write(j, buf, BUFSIZ);
}

