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Abstract
Transactions provide a useful programming paradigm for maintaining logical consistency, arbitrating con-

current access, and managing recovery. In traditional UNIX systems, the only easy way of using transactions is to
purchase a database system. Such systems are often slow, costly, and may not provide the exact functionality
desired. This paper presents the design, implementation, and performance of LIBTP, a simple, non-proprietary tran-
saction library using the 4.4BSD database access routines (db(3)). On a conventional transaction processing style
benchmark, its performance is approximately 85% that of the database access routines without transaction protec-
tion, 200% that of using fsync(2) to commit modifications to disk, and 125% that of a commercial relational data-
base system.

1. Introduction

Transactions are used in database systems to enable concurrent users to apply multi-operation updates without
violating the integrity of the database. They provide the properties of atomicity, consistency, isolation, and durabil-
ity. By atomicity, we mean that the set of updates comprising a transaction must be applied as a single unit; that is,
they must either all be applied to the database or all be absent. Consistency requires that a transaction take the data-
base from one logically consistent state to another. The property of isolation requires that concurrent transactions
yield results which are indistinguishable from the results which would be obtained by running the transactions
sequentially. Finally, durability requires that once transactions have been committed, their results must be preserved
across system failures [TPCB90].

Although these properties are most frequently discussed in the context of databases, they are useful program-
ming paradigms for more general purpose applications. There are several different situations where transactions
can be used to replace current ad-hoc mechanisms.

One situation is when multiple files or parts of files need to be updated in an atomic fashion. For example, the
traditional UNIX file system uses ordering constraints to achieve recoverability in the face of crashes. When a new
file is created, its inode is written to disk before the new file is added to the directory structure. This guarantees that,
if the system crashes between the two I/O’s, the directory does not contain a reference to an invalid inode. In actu-
ality, the desired effect is that these two updates have the transactional property of atomicity (either both writes are
visible or neither is). Rather than building special purpose recovery mechanisms into the file system or related tools
(e.g. fsck(8)), one could use general purpose transaction recovery protocols after system failure. Any application
that needs to keep multiple, related files (or directories) consistent should do so using transactions. Source code
control systems, such as RCS and SCCS, should use transaction semantics to allow the ‘‘checking in’’ of groups of
related files. In this way, if the ‘‘check-in’’ fails, the transaction may be aborted, backing out the partial ‘‘check-
in’’ leaving the source repository in a consistent state.

A second situation where transactions can be used to replace current ad-hoc mechanisms is in applications
where concurrent updates to a shared file are desired, but there is logical consistency of the data which needs to be
preserved. For example, when the password file is updated, file locking is used to disallow concurrent access. Tran-
saction semantics on the password files would allow concurrent updates, while preserving the logical consistency of
the password database. Similarly, UNIX utilities which rewrite files face a potential race condition between their
rewriting a file and another process reading the file. For example, the compiler (more precisely, the assembler) may
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have to rewrite a file to which it has write permission in a directory to which it does not have write permission.
While the ‘‘.o’’ file is being written, another utility such as nm(1) or ar(1) may read the file and produce invalid
results since the file has not been completely written. Currently, some utilities use special purpose code to handle
such cases while others ignore the problem and force users to live with the consequences.

In this paper, we present a simple library which provides transaction semantics (atomicity, consistency, isola-
tion, and durability). The 4.4BSD database access methods have been modified to use this library, optionally provid-
ing shared buffer management between applications, locking, and transaction semantics. Any UNIX program may
transaction protect its data by requesting transaction protection with the db(3) library or by adding appropriate calls
to the transaction manager, buffer manager, lock manager, and log manager. The library routines may be linked
into the host application and called by subroutine interface, or they may reside in a separate server process. The
server architecture provides for network access and better protection mechanisms.

2. Related Work

There has been much discussion in recent years about new transaction models and architectures
[SPEC88][NODI90][CHEN91][MOHA91]. Much of this work focuses on new ways to model transactions and the
interactions between them, while the work presented here focuses on the implementation and performance of tradi-
tional transaction techniques (write-ahead logging and two-phase locking) on a standard operating system (UNIX).

Such traditional operating systems are often criticized for their inability to perform transaction processing
adequately. [STON81] cites three main areas of inadequate support: buffer management, the file system, and the
process structure. These arguments are summarized in table one. Fortunately, much has changed since 1981. In
the area of buffer management, most UNIX systems provide the ability to memory map files, thus obviating the
need for a copy between kernel and user space. If a database system is going to use the file system buffer cache,
then a system call is required. However, if buffering is provided at user level using shared memory, as in LIBTP,
buffer management is only as slow as access to shared memory and any replacement algorithm may be used. Since
multiple processes can access the shared data, prefetching may be accomplished by separate processes or threads
whose sole purpose is to prefetch pages and wait on them. There is still no way to enforce write ordering other than
keeping pages in user memory and using the fsync(3) system call to perform synchronous writes.

In the area of file systems, the fast file system (FFS) [MCKU84] allows allocation in units up to 64KBytes as
opposed to the 4KByte and 8KByte figures quoted in [STON81]. The measurements in this paper were taken from
an 8KByte FFS, but as LIBTP runs exclusively in user space, there is nothing to prevent it from being run on other
UNIX compatible file systems (e.g. log-structured [ROSE91], extent-based, or multi-block [SELT91]).

Finally, with regard to the process structure, neither context switch time nor scheduling around semaphores
seems to affect the system performance. However, the implementation of semaphores can impact performance
tremendously. This is discussed in more detail in section 4.3.

The Tuxedo system from AT&T is a transaction manager which coordinates distributed transaction commit
from a variety of different local transaction managers. At this time, LIBTP does not have its own mechanism for
distributed commit processing, but could be used as a local transaction agent by systems such as Tuxedo
[ANDR89].
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Buffer Management � Data must be copied between kernel space and user space.

� Buffer pool access is too slow.
� There is no way to request prefetch.
� Replacement is usually LRU which may be suboptimal for databases.
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File System 
 Allocation is done in small blocks (usually 4K or 8K).
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Process Structure  Context switching and message passing are too slow.
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Table One: Shortcomings of UNIX transaction support cited in [STON81].



The transaction architecture presented in [YOUN91] is very similar to that implemented in the LIBTP. While
[YOUN91] presents a model for providing transaction services, this paper focuses on the implementation and per-
formance of a particular system. In addition, we provide detailed comparisons with alternative solutions: traditional
UNIX services and commercial database management systems.

3. Architecture

The library is designed to provide well defined interfaces to the services required for transaction processing.
These services are recovery, concurrency control, and the management of shared data. First we will discuss the
design tradeoffs in the selection of recovery, concurrency control, and buffer management implementations, and
then we will present the overall library architecture and module descriptions.

3.1. Design Tradeoffs

3.1.1. Crash Recovery

The recovery protocol is responsible for providing the transaction semantics discussed earlier. There are a
wide range of recovery protocols available [HAER83], but we can crudely divide them into two main categories.
The first category records all modifications to the database in a separate file, and uses this file (log) to back out or
reapply these modifications if a transaction aborts or the system crashes. We call this set the logging protocols.
The second category avoids the use of a log by carefully controlling when data are written to disk. We call this set
the non-logging protocols.

Non-logging protocols hold dirty buffers in main memory or temporary files until commit and then force these
pages to disk at transaction commit. While we can use temporary files to hold dirty pages that may need to be
evicted from memory during a long-running transaction, the only user-level mechanism to force pages to disk is the
fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it forces all pages of a file to disk,
and transactions that manage more than one file must issue one call per file.

In addition, fsync(2) provides no way to control the order in which dirty pages are written to disk. Since
non-logging protocols must sometimes order writes carefully [SULL92], they are difficult to implement on Unix
systems. As a result, we have chosen to implement a logging protocol.

Logging protocols may be categorized based on how information is logged (physically or logically) and how
much is logged (before images, after images or both). In physical logging, images of complete physical units
(pages or buffers) are recorded, while in logical logging a description of the operation is recorded. Therefore, while
we may record entire pages in a physical log, we need only record the records being modified in a logical log. In
fact, physical logging can be thought of as a special case of logical logging, since the ‘‘records’’ that we log in logi-
cal logging might be physical pages. Since logical logging is both more space-efficient and more general, we have
chosen it for our logging protocol.

In before-image logging, we log a copy of the data before the update, while in after-image logging, we log a
copy of the data after the update. If we log only before-images, then there is sufficient information in the log to
allow us to undo the transaction (go back to the state represented by the before-image). However, if the system
crashes and a committed transaction’s changes have not reached the disk, we have no means to redo the transaction
(reapply the updates). Therefore, logging only before-images necessitates forcing dirty pages at commit time. As
mentioned above, forcing pages at commit is considered too costly.

If we log only after-images, then there is sufficient information in the log to allow us to redo the transaction
(go forward to the state represented by the after-image), but we do not have the information required to undo tran-
sactions which aborted after dirty pages were written to disk. Therefore, logging only after-images necessitates
holding all dirty buffers in main memory until commit or writing them to a temporary file.

Since neither constraint (forcing pages on commit or buffering pages until commit) was feasible, we chose to
log both before and after images. The only remaining consideration is when changes get written to disk. Changes
affect both data pages and the log. If the changed data page is written before the log page, and the system crashes
before the log page is written, the log will contain insufficient information to undo the change. This violates tran-
saction semantics, since some changed data pages may not have been written, and the database cannot be restored to
its pre-transaction state.

The log record describing an update must be written to stable storage before the modified page. This is
write-ahead logging. If log records are safely written to disk, data pages may be written at any time afterwards.
This means that the only file that ever needs to be forced to disk is the log. Since the log is append-only, modified



pages always appear at the end and may be written to disk efficiently in any file system that favors sequential order-
ing (e.g., FFS, log-structured file system, or an extent-based system).

3.1.2. Concurrency Control

The concurrency control protocol is responsible for maintaining consistency in the presence of multiple
accesses. There are several alternative solutions such as locking, optimistic concurrency control [KUNG81], and
timestamp ordering [BERN80]. Since optimistic methods and timestamp ordering are generally more complex and
restrict concurrency without eliminating starvation or deadlocks, we chose two-phase locking (2PL). Strict 2PL is
suboptimal for certain data structures such as B-trees because it can limit concurrency, so we use a special locking
protocol based on one described in [LEHM81].

The B-tree locking protocol we implemented releases locks at internal nodes in the tree as it descends. A lock
on an internal page is always released before a lock on its child is obtained (that is, locks are not coupled [BAY77]
during descent). When a leaf (or internal) page is split, a write lock is acquired on the parent before the lock on the
just-split page is released (locks are coupled during ascent). Write locks on internal pages are released immediately
after the page is updated, but locks on leaf pages are held until the end of the transaction.

Since locks are released during descent, the structure of the tree may change above a node being used by
some process. If that process must later ascend the tree because of a page split, any such change must not cause
confusion. We use the technique described in [LEHM81] which exploits the ordering of data on a B-tree page to
guarantee that no process ever gets lost as a result of internal page updates made by other processes.

If a transaction that updates a B-tree aborts, the user-visible changes to the tree must be rolled back. How-
ever, changes to the internal nodes of the tree need not be rolled back, since these pages contain no user-visible data.
When rolling back a transaction, we roll back all leaf page updates, but no internal insertions or page splits. In the
worst case, this will leave a leaf page less than half full. This may cause poor space utilization, but does not lose
user data.

Holding locks on leaf pages until transaction commit guarantees that no other process can insert or delete data
that has been touched by this process. Rolling back insertions and deletions on leaf pages guarantees that no
aborted updates are ever visible to other transactions. Leaving page splits intact permits us to release internal write
locks early. Thus transaction semantics are preserved, and locks are held for shorter periods.

The extra complexity introduced by this locking protocol appears substantial, but it is important for multi-user
execution. The benefits of non-two-phase locking on B-trees are well established in the database literature
[BAY77], [LEHM81]. If a process held locks until it committed, then a long-running update could lock out all other
transactions by preventing any other process from locking the root page of the tree. The B-tree locking protocol
described above guarantees that locks on internal pages are held for extremely short periods, thereby increasing con-
currency.

3.1.3. Management of Shared Data

Database systems permit many users to examine and update the same data concurrently. In order to provide
this concurrent access and enforce the write-ahead logging protocol described in section 3.1.1, we use a shared
memory buffer manager. Not only does this provide the guarantees we require, but a user-level buffer manager is
frequently faster than using the file system buffer cache. Reads or writes involving the file system buffer cache
often require copying data between user and kernel space while a user-level buffer manager can return pointers to
data pages directly. Additionally, if more than one process uses the same page, then fewer copies may be required.

3.2. Module Architecture

The preceding sections described modules for managing the transaction log, locks, and a cache of shared
buffers. In addition, we need to provide functionality for transaction begin, commit, and abort processing, necessi-
tating a transaction manager. In order to arbitrate concurrent access to locks and buffers, we include a process
management module which manages a collection of semaphores used to block and release processes. Finally, in
order to provide a simple, standard interface we have modified the database access routines (db(3)). For the pur-
poses of this paper we call the modified package the Record Manager. Figure one shows the main interfaces and
architecture of LIBTP.
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3.2.1. The Log Manager

The Log Manager enforces the write-ahead logging protocol. Its primitive operations are log, log_commit,
log_read, log_roll and log_unroll. The log call performs a buffered write of the specified log record and returns a
unique log sequence number (LSN). This LSN may then be used to retrieve a record from the log using the
log_read call. The log interface knows very little about the internal format of the log records it receives. Rather, all
log records are referenced by a header structure, a log record type, and a character buffer containing the data to be
logged. The log record type is used to call the appropriate redo and undo routines during abort and commit process-
ing. While we have used the Log Manager to provide before and after image logging, it may also be used for any
of the logging algorithms discussed.

The log_commit operation behaves exactly like the log operation but guarantees that the log has been forced
to disk before returning. A discussion of our commit strategy appears in the implementation section (section 4.2).
Log_unroll reads log records from the log, following backward transaction pointers and calling the appropriate undo
routines to implement transaction abort. In a similar manner, log_roll reads log records sequentially forward, cal-
ling the appropriate redo routines to recover committed transactions after a system crash.

3.2.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU) block cache.
Although the current library provides an LRU cache, it would be simple to add alternate replacement policies as
suggested by [CHOU85] or to provide multiple buffer pools with different policies. Transactions request pages
from the buffer manager and keep them pinned to ensure that they are not written to disk while they are in a logi-
cally inconsistent state. When page replacement is necessary, the Buffer Manager finds an unpinned page and then
checks with the Log Manager to ensure that the write-ahead protocol is enforced.

3.2.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers) which is currently used
to provide two-phase locking and high concurrency B-tree locking. However, the general purpose nature of the lock



manager provides the ability to support a variety of locking protocols. Currently, all locks are issued at the granu-
larity of a page (the size of a buffer in the buffer pool) which is identified by two 4-byte integers (a file id and page
number). This provides the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76]. The current implementation does not support locks at other granularities and does not promote locks;
these are obvious future additions to the system.

If an incoming lock request cannot be granted, the requesting process is queued for the lock and descheduled.
When a lock is released, the wait queue is traversed and any newly compatible locks are granted. Locks are located
via a file and page hash table and are chained both by object and by transaction, facilitating rapid traversal of the
lock table during transaction commit and abort.

The primary interfaces to the lock manager are lock, unlock, and lock_unlock_all. Lock obtains a new lock
for a specific object. There are also two variants of the lock request, lock_upgrade and lock_downgrade, which
allow the caller to atomically trade a lock of one type for a lock of another. Unlock releases a specific mode of lock
on a specific object. Lock_unlock_all releases all the locks associated with a specific transaction.

3.2.4. The Process Manager

The Process Manager acts as a user-level scheduler to make processes wait on unavailable locks and pending
buffer cache I/O. For each process, a semaphore is maintained upon which that process waits when it needs to be
descheduled. When a process needs to be run, its semaphore is cleared, and the operating system reschedules it. No
sophisticated scheduling algorithm is applied; if the lock for which a process was waiting becomes available, the
process is made runnable. It would have been possible to change the kernel’s process scheduler to interact more
efficiently with the lock manager, but doing so would have compromised our commitment to a user-level package.

3.2.5. The Transaction Manager

The Transaction Manager provides the standard interface of txn_begin, txn_commit, and txn_abort. It keeps
track of all active transactions, assigns unique transaction identifiers, and directs the abort and commit processing.
When a txn_begin is issued, the Transaction Manager assigns the next available transaction identifier, allocates a
per-process transaction structure in shared memory, increments the count of active transactions, and returns the new
transaction identifier to the calling process. The in-memory transaction structure contains a pointer into the lock
table for locks held by this transaction, the last log sequence number, a transaction state (idle, running, aborting, or
committing), an error code, and a semaphore identifier.

At commit, the Transaction Manager calls log_commit to record the end of transaction and to flush the log.
Then it directs the Lock Manager to release all locks associated with the given transaction. If a transaction aborts,
the Transaction Manager calls on log_unroll to read the transaction’s log records and undo any modifications to
the database. As in the commit case, it then calls lock_unlock_all to release the transaction’s locks.

3.2.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database. We have
modified the the database access routines db(3) [BSD91] to call the log, lock, and buffer managers. In order to pro-
vide functionality to perform undo and redo, the Record Manager defines a collection of log record types and the
associated undo and redo routines. The Log Manager performs a table lookup on the record type to call the
appropriate routines. For example, the B-tree access method requires two log record types: insert and delete. A
replace operation is implemented as a delete followed by an insert and is logged accordingly.

3.3. Application Architectures

The structure of LIBTP allows application designers to trade off performance and protection. Since a large
portion of LIBTP’s functionality is provided by managing structures in shared memory, its structures are subject to
corruption by applications when the library is linked directly with the application. For this reason, LIBTP is
designed to allow compilation into a separate server process which may be accessed via a socket interface. In this
way LIBTP’s data structures are protected from application code, but communication overhead is increased. When
applications are trusted, LIBTP may be compiled directly into the application providing improved performance.
Figures two and three show the two alternate application architectures.

There are potentially two modes in which one might use LIBTP in a server based architecture. In the first, the
server would provide the capability to respond to requests to each of the low level modules (lock, log, buffer, and
transaction managers). Unfortunately, the performance of such a system is likely to be blindingly slow since
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modifying a piece of data would require three or possibly four separate communications: one to lock the data, one to
obtain the data, one to log the modification, and possibly one to transmit the modified data. Figure four shows the
relative performance for retrieving a single record using the record level call versus using the lower level buffer
management and locking calls. The 2:1 ratio observed in the single process case reflects the additional overhead of
parsing eight commands rather than one while the 3:1 ratio observed in the client/server architecture reflects both
the parsing and the communication overheard. Although there may be applications which could tolerate such per-
formance, it seems far more feasible to support a higher level interface, such as that provided by a query language
(e.g. SQL [SQL86]).

Although LIBTP does not have an SQL parser, we have built a server application using the toolkit command
language (TCL) [OUST90]. The server supports a command line interface similar to the subroutine interface
defined in db(3). Since it is based on TCL, it provides control structures as well.

4. Implementation

4.1. Locking and Deadlock Detection

LIBTP uses two-phase locking for user data. Strictly speaking, the two phases in two-phase locking are a
grow phase, during which locks are acquired, and a shrink phase, during which locks are released. No lock may
ever be acquired during the shrink phase. The grow phase lasts until the first release, which marks the start of the
shrink phase. In practice, the grow phase lasts for the duration of a transaction in LIBTP and in commercial data-
base systems. The shrink phase takes place during transaction commit or abort. This means that locks are acquired
on demand during the lifetime of a transaction, and held until commit time, at which point all locks are released.

If multiple transactions are active concurrently, deadlocks can occur and must be detected and resolved. The
lock table can be thought of as a representation of a directed graph. The nodes in the graph are transactions. Edges
represent the waits-for relation between transactions; if transaction A is waiting for a lock held by transaction B,
then a directed edge exists from A to B in the graph. A deadlock exists if a cycle appears in the graph. By conven-
tion, no transaction ever waits for a lock it already holds, so reflexive edges are impossible.

A distinguished process monitors the lock table, searching for cycles. The frequency with which this process
runs is user-settable; for the multi-user tests discussed in section 5.1.2, it has been set to wake up every second, but
more sophisticated schedules are certainly possible. When a cycle is detected, one of the transactions in the cycle is
nominated and aborted. When the transaction aborts, it rolls back its changes and releases its locks, thereby break-
ing the cycle in the graph.
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4.2. Group Commit

Since the log must be flushed to disk at commit time, disk bandwidth fundamentally limits the rate at which
transactions complete. Since most transactions write only a few small records to the log, the last page of the log will
be flushed once by every transaction which writes to it. In the naive implementation, these flushes would happen
serially.

LIBTP uses group commit [DEWI84] in order to amortize the cost of one synchronous disk write across
multiple transactions. Group commit provides a way for a group of transactions to commit simultaneously. The
first several transactions to commit write their changes to the in-memory log page, then sleep on a distinguished
semaphore. Later, a committing transaction flushes the page to disk, and wakes up all its sleeping peers. The point
at which changes are actually written is determined by three thresholds. The first is the group threshold and defines
the minimum number of transactions which must be active in the system before transactions are forced to participate
in a group commit. The second is the wait threshold which is expressed as the percentage of active transactions
waiting to be committed. The last is the logdelay threshold which indicates how much unflushed log should be
allowed to accumulate before a waiting transaction’s commit record is flushed.

Group commit can substantially improve performance for high-concurrency environments. If only a few tran-
sactions are running, it is unlikely to improve things at all. The crossover point is the point at which the transaction
commit rate is limited by the bandwidth of the device on which the log resides. If processes are trying to flush the
log faster than the log disk can accept data, then group commit will increase the commit rate.

4.3. Kernel Intervention for Synchronization

Since LIBTP uses data in shared memory (e.g. the lock table and buffer pool) it must be possible for a process
to acquire exclusive access to shared data in order to prevent corruption. In addition, the process manager must put
processes to sleep when the lock or buffer they request is in use by some other process. In the LIBTP implementa-
tion under Ultrix 4.02, we use System V semaphores to provide this synchronization. Semaphores implemented in
this fashion turn out to be an expensive choice for synchronization, because each access traps to the kernel and
�����������������������������������������������������������������������

2 Ultrix and DEC are trademarks of Digital Equipment Corporation.



executes atomically there.

On architectures that support atomic test-and-set, a much better choice would be to attempt to obtain a spin-
lock with a test-and-set, and issue a system call only if the spinlock is unavailable. Since virtually all semaphores in
LIBTP are uncontested and are held for very short periods of time, this would improve performance. For example,
processes must acquire exclusive access to buffer pool metadata in order to find and pin a buffer in shared memory.
This semaphore is requested most frequently in LIBTP. However, once it is acquired, only a few instructions must
be executed before it is released. On one architecture for which we were able to gather detailed profiling informa-
tion, the cost of the semaphore calls accounted for 25% of the total time spent updating the metadata. This was
fairly consistent across most of the critical sections.

In an attempt to quantify the overhead of kernel synchronization, we ran tests on a version of 4.3BSD-Reno
which had been modified to support binary semaphore facilities similar to those described in [POSIX91]. The
hardware platform consisted of an HP300 (33MHz MC68030) workstation with 16MBytes of main memory, and a
600MByte HP7959 SCSI disk (17 ms average seek time). We ran three sets of comparisons which are summarized
in figure five. In each comparison we ran two tests, one using hardware spinlocks and the other using kernel call
synchronization. Since the test was run single-user, none of the the locks were contested. In the first two sets of
tests, we ran the full transaction processing benchmark described in section 5.1. In one case we ran with both the
database and log on the same disk (1 Disk) and in the second, we ran with the database and log on separate disks (2
Disk). In the last test, we wanted to create a CPU bound environment, so we used a database small enough to fit
completely in the cache and issued read-only transactions. The results in figure five express the kernel call syn-
chronization performance as a percentage of the spinlock performance. For example, in the 1 disk case, the kernel
call implementation achieved 4.4 TPS (transactions per second) while the semaphore implementation achieved 4.6
TPS, and the relative performance of the kernel synchronization is 96% that of the spinlock (100 * 4.4 / 4.6). There
are two striking observations from these results:

� even when the system is disk bound, the CPU cost of synchronization is noticeable, and
� when we are CPU bound, the difference is dramatic (67%).

4.4. Transaction Protected Access Methods

The B-tree and fixed length recno (record number) access methods have been modified to provide transaction
protection. Whereas the previously published interface to the access routines had separate open calls for each of the
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Figure 5: Kernel Overhead for System Call Synchronization. The performance of the kernel call synchronization is expressed as a percentage

of the spinlock synchronization performance. In disk bound cases (1 Disk and 2 Disks), we see that 4-6% of the performance is lost due to kernel

calls while in the CPU bound case, we have lost 67% of the performance due to kernel calls.



access methods, we now have an integrated open call with the following calling conventions:

DB *dbopen (const char *file, int flags, int mode, DBTYPE type,
int dbflags, const void *openinfo)

where file is the name of the file being opened, flags and mode are the standard arguments to open(2), type is one of
the access method types, dbflags indicates the mode of the buffer pool and transaction protection, and openinfo is
the access method specific information. Currently, the possible values for dbflags are DB_SHARED and DB_TP
indicating that buffers should be kept in a shared buffer pool and that the file should be transaction protected.

The modifications required to add transaction protection to an access method are quite simple and localized.

1. Replace file open with buf_open.
2. Replace file read and write calls with buffer manager calls (buf_get, buf_unpin).
3. Precede buffer manager calls with an appropriate (read or write) lock call.
4. Before updates, issue a logging operation.
5. After data have been accessed, release the buffer manager pin.
6. Provide undo/redo code for each type of log record defined.

The following code fragments show how to transaction protect several updates to a B-tree.3 In the unprotected case,
an open call is followed by a read call to obtain the meta-data for the B-tree. Instead, we issue an open to the buffer
manager to obtain a file id and a buffer request to obtain the meta-data as shown below.

char *path;
int fid, flags, len, mode;

/* Obtain a file id with which to access the buffer pool */
fid = buf_open(path, flags, mode);

/* Read the meta data (page 0) for the B-tree */
if (tp_lock(fid, 0, READ_LOCK))

return error;
meta_data_ptr = buf_get(fid, 0, BF_PIN, &len);

The BF_PIN argument to buf_get indicates that we wish to leave this page pinned in memory so that it is not
swapped out while we are accessing it. The last argument to buf_get returns the number of bytes on the page that
were valid so that the access method may initialize the page if necessary.

Next, consider inserting a record on a particular page of a B-tree. In the unprotected case, we read the page,
call _bt_insertat, and write the page. Instead, we lock the page, request the buffer, log the change, modify the page,
and release the buffer.

int fid, len, pageno; /* Identifies the buffer */
int index; /* Location at which to insert the new pair */
DBT *keyp, *datap; /* Key/Data pair to be inserted */
DATUM *d; /* Key/data structure to insert */

/* Lock and request the buffer */
if (tp_lock(fid, pageno, WRITE_LOCK))

return error;
buffer_ptr = buf_get(fid, pageno, BF_PIN, &len);

/* Log and perform the update */
log_insdel(BTREE_INSERT, fid, pageno, keyp, datap);
_bt_insertat(buffer_ptr, d, index);
buf_unpin(buffer_ptr);

Succinctly, the algorithm for turning unprotected code into protected code is to replace read operations with lock
and buf_get operations and write operations with log and buf_unpin operations.

�����������������������������������������������������������������������
3 The following code fragments are examples, but do not define the final interface. The final interface will be determined after LIBTP has

been fully integrated with the most recent db(3) release from the Computer Systems Research Group at University of California, Berkeley.



5. Performance

In this section, we present the results of two very different benchmarks. The first is an online transaction pro-
cessing benchmark, similar to the standard TPCB, but has been adapted to run in a desktop environment. The
second emulates a computer-aided design environment and provides more complex query processing.

5.1. Transaction Processing Benchmark

For this section, all performance numbers shown except for the commercial database system were obtained on
a DECstation 5000/200 with 32MBytes of memory running Ultrix V4.0, accessing a DEC RZ57 1GByte disk drive.
The commercial relational database system tests were run on a comparable machine, a Sparcstation 1+ with
32MBytes memory and a 1GByte external disk drive. The database, binaries and log resided on the same device.
Reported times are the means of five tests and have standard deviations within two percent of the mean.

The test database was configured according to the TPCB scaling rules for a 10 transaction per second (TPS)
system with 1,000,000 account records, 100 teller records, and 10 branch records. Where TPS numbers are
reported, we are running a modified version of the industry standard transaction processing benchmark, TPCB. The
TPCB benchmark simulates a withdrawal performed by a hypothetical teller at a hypothetical bank. The database
consists of relations (files) for accounts, branches, tellers, and history. For each transaction, the account, teller, and
branch balances must be updated to reflect the withdrawal and a history record is written which contains the account
id, branch id, teller id, and the amount of the withdrawal [TPCB90].

Our implementation of the benchmark differs from the specification in several aspects. The specification
requires that the database keep redundant logs on different devices, but we use a single log. Furthermore, all tests
were run on a single, centralized system so there is no notion of remote accesses. Finally, we calculated throughput
by dividing the total elapsed time by the number of transactions processed rather than by computing the response
time for each transaction.

The performance comparisons focus on traditional Unix techniques (unprotected, using flock(2) and using
fsync(2)) and a commercial relational database system. Well-behaved applications using flock(2) are guaranteed
that concurrent processes’ updates do not interact with one another, but no guarantees about atomicity are made.
That is, if the system crashes in mid-transaction, only parts of that transaction will be reflected in the after-crash
state of the database. The use of fsync(2) at transaction commit time provides guarantees of durability after system
failure. However, there is no mechanism to perform transaction abort.

5.1.1. Single-User Tests

These tests compare LIBTP in a variety of configurations to traditional UNIX solutions and a commercial
relational database system (RDBMS). To demonstrate the server architecture we built a front end test process that
uses TCL [OUST90] to parse database access commands and call the database access routines. In one case
(SERVER), frontend and backend processes were created which communicated via an IP socket. In the second case
(TCL), a single process read queries from standard input, parsed them, and called the database access routines. The
performance difference between the TCL and SERVER tests quantifies the communication overhead of the socket.
The RDBMS implementation used embedded SQL in C with stored database procedures. Therefore, its
configuration is a hybrid of the single process architecture and the server architecture. The graph in figure six shows
a comparison of the following six configurations:

LIBTP Uses the LIBTP library in a single application.
TCL Uses the LIBTP library in a single application, requires query parsing.
SERVER Uses the LIBTP library in a server configuration, requires query parsing.
NOTP Uses no locking, logging, or concurrency control.
FLOCK Uses flock(2) for concurrency control and nothing for durability.
FSYNC Uses fsync(2) for durability and nothing for concurrency control.
RDBMS Uses a commercial relational database system.

The results show that LIBTP, both in the procedural and parsed environments, is competitive with a commer-
cial system (comparing LIBTP, TCL, and RDBMS). Compared to existing UNIX solutions, LIBTP is approximately
15% slower than using flock(2) or no protection but over 80% better than using fsync(2) (comparing LIBTP,
FLOCK, NOTP, and FSYNC).
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5.1.2. Multi-User Tests

While the single-user tests form a basis for comparing LIBTP to other systems, our goal in multi-user testing
was to analyze its scalability. To this end, we have run the benchmark in three modes, the normal disk bound
configuration (figure seven), a CPU bound configuration (figure eight, READ-ONLY), and lock contention bound
(figure eight, NO_FSYNC). Since the normal configuration is completely disk bound (each transaction requires a
random read, a random write, and a sequential write4) we expect to see little performance improvement as the mul-
tiprogramming level increases. In fact, figure seven reveals that we are able to overlap CPU and disk utilization
slightly producing approximately a 10% performance improvement with two processes. After that point, perfor-
mance drops off, and at a multi-programming level of 4, we are performing worse than in the single process case.

Similar behavior was reported on the commercial relational database system using the same configuration.
The important conclusion to draw from this is that you cannot attain good multi-user scaling on a badly balanced
system. If multi-user performance on applications of this sort is important, one must have a separate logging device
and horizontally partition the database to allow a sufficiently high degree of multiprogramming that group commit
can amortize the cost of log flushing.

By using a very small database (one that can be entirely cached in main memory) and read-only transactions,
we generated a CPU bound environment. By using the same small database, the complete TPCB transaction, and no
fsync(2) on the log at commit, we created a lock contention bound environment. The small database used an
account file containing only 1000 records rather than the full 1,000,000 records and ran enough transactions to read
the entire database into the buffer pool (2000) before beginning measurements. The read-only transaction consisted
of three database reads (from the 1000 record account file, the 100 record teller file, and the 10 record branch file).
Since no data were modified and no history records were written, no log records were written. For the contention
bound configuration, we used the normal TPCB transaction (against the small database) and disabled the log flush.
Figure eight shows both of these results.

The read-only test indicates that we barely scale at all in the CPU bound case. The explanation for that is that
even with a single process, we are able to drive the CPU utilization to 96%. As a result, that gives us very little
room for improvement, and it takes a multiprogramming level of four to approach 100% CPU saturation. In the
case where we do perform writes, we are interested in detecting when lock contention becomes a dominant perfor-
mance factor. Contention will cause two phenomena; we will see transactions queueing behind frequently accessed
data, and we will see transaction abort rates increasing due to deadlock. Given that the branch file contains only ten
�����������������������������������������������������������������������

4 Although the log is written sequentially, we do not get the benefit of sequentiality since the log and database reside on the same disk.
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records, we expect contention to become a factor quickly and the NO-FSYNC line in figure eight demonstrates this
dramatically. Each additional process causes both more waiting and more deadlocking. Figure nine shows that in
the small database case (SMALL), waiting is the dominant cause of declining performance (the number of aborts
increases less steeply than the performance drops off in figure eight), while in the large database case (LARGE),
deadlocking contributes more to the declining performance.

Deadlocks are more likely to occur in the LARGE test than in the SMALL test because there are more oppor-
tunities to wait. In the SMALL case, processes never do I/O and are less likely to be descheduled during a transac-
tion. In the LARGE case, processes will frequently be descheduled since they have to perform I/O. This provides a
window where a second process can request locks on already locked pages, thus increasing the likelihood of build-
ing up long chains of waiting processes. Eventually, this leads to deadlock.

5.2. The OO1 Benchmark

The TPCB benchmark described in the previous section measures performance under a conventional transac-
tion processing workload. Other application domains, such as computer-aided design, have substantially different
access patterns. In order to measure the performance of LIBTP under workloads of this type, we implemented the
OO1 benchmark described in [CATT91].

The database models a set of electronics components with connections among them. One table stores parts
and another stores connections. There are three connections originating at any given part. Ninety percent of these
connections are to nearby parts (those with nearby ids) to model the spatial locality often exhibited in CAD applica-
tions. Ten percent of the connections are randomly distributed among all other parts in the database. Every part
appears exactly three times in the from field of a connection record, and zero or more times in the to field. Parts
have x and y locations set randomly in an appropriate range.



The intent of OO1 is to measure the overall cost of a query mix characteristic of engineering database applica-
tions. There are three tests:

� Lookup generates 1,000 random part ids, fetches the corresponding parts from the database, and calls a null
procedure in the host programming language with the parts’ x and y positions.

� Traverse retrieves a random part from the database and follows connections from it to other parts. Each of
those parts is retrieved, and all connections from it followed. This procedure is repeated depth-first for seven
hops from the original part, for a total of 3280 parts. Backward traversal also exists, and follows all connec-
tions into a given part to their origin.

� Insert adds 100 new parts and their connections.

The benchmark is single-user, but multi-user access controls (locking and transaction protection) must be
enforced. It is designed to be run on a database with 20,000 parts, and on one with 200,000 parts. Because we have
insufficient disk space for the larger database, we report results only for the 20,000 part database.

5.2.1. Implementation

The LIBTP implementation of OO1 uses the TCL [OUST90] interface described earlier. The backend
accepts commands over an IP socket and performs the requested database actions. The frontend opens and executes
a TCL script. This script contains database accesses interleaved with ordinary program control statements. Data-
base commands are submitted to the backend and results are bound to program variables.

The parts table was stored as a B-tree indexed by id. The connection table was stored as a set of fixed-length
records using the 4.4BSD recno access method. In addition, two B-tree indices were maintained on connection
table entries. One index mapped the from field to a connection record number, and the other mapped the to field to a
connection record number. These indices support fast lookups on connections in both directions. For the traversal
tests, the frontend does an index lookup to discover the connected part’s id, and then does another lookup to fetch
the part itself.

5.2.2. Performance Measurements for OO1

We compare LIBTP’s OO1 performance to that reported in [CATT91]. Those results were collected on a Sun
3/280 (25 MHz MC68020) with 16 MBytes of memory and two Hitachi 892MByte disks (15 ms average seek time)
behind an SMD-4 controller. Frontends ran on an 8MByte Sun 3/260.

In order to measure performance on a machine of roughly equivalent processor power, we ran one set of tests
on a standalone MC68030-based HP300 (33MHz MC68030). The database was stored on a 300MByte HP7959
SCSI disk (17 ms average seek time). Since this machine is not connected to a network, we ran local tests where the
frontend and backend run on the same machine. We compare these measurements with Cattell’s local Sun 3/280
numbers.

Because the benchmark requires remote access, we ran another set of tests on a DECstation 5000/200 with
32M of memory running Ultrix V4.0 and a DEC 1GByte RZ57 SCSI disk. We compare the local performance of
OO1 on the DECstation to its remote performance. For the remote case, we ran the frontend on a DECstation 3100
with 16 MBytes of main memory.

The databases tested in [CATT91] are
 INDEX, a highly-optimized access method package developed at Sun Microsystems.
! OODBMS, a beta release of a commercial object-oriented database management system.
" RDBMS, a UNIX-based commercial relational data manager at production release. The OO1 implementation

used embedded SQL in C. Stored procedures were defined to reduce client-server traffic.

Table two shows the measurements from [CATT91] and LIBTP for a local test on the MC680x0-based
hardware. All caches are cleared before each test. All times are in seconds.

Table two shows that LIBTP outperforms the commercial relational system, but is slower than OODBMS and
INDEX. Since the caches were cleared at the start of each test, disk throughput is critical in this test. The single
SCSI HP drive used by LIBTP is approximately 13% slower than the disks used in [CATT91] which accounts for
part of the difference.

OODBMS and INDEX outperform LIBTP most dramatically on traversal. This is because we use index look-
ups to find connections, whereas the other two systems use a link access method. The index requires us to examine
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Table 2: Local MC680x0 Performance of Several
Systems on OO1.

Table 3: Local vs. Remote Performance of
LIBTP on OO1.
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two disk pages, but the links require only one, regardless of database size. Cattell reports that lookups using B-trees
instead of links makes traversal take twice as long in INDEX. Adding a link access method to db(3) or using the
existing hash method would apparently be a good idea.

Both OODBMS and INDEX issue coarser-granularity locks than LIBTP. This limits concurrency for multi-
user applications, but helps single-user applications. In addition, the fact that LIBTP releases B-tree locks early is a
drawback in OO1. Since there is no concurrency in the benchmark, high-concurrency strategies only show up as
increased locking overhead. Finally, the architecture of the LIBTP implementation was substantially different from
that of either OODBMS or INDEX. Both of those systems do the searches in the user’s address space, and issue
requests for pages to the server process. Pages are cached in the client, and many queries can be satisfied without
contacting the server at all. LIBTP submits all the queries to the server process, and receives database records back;
it does no client caching.

The RDBMS architecture is much closer to that of LIBTP. A server process receives queries and returns
results to a client. The timing results in table two clearly show that the conventional database client/server model is
expensive. LIBTP outperforms the RDBMS on traversal and insertion. We speculate that this is due in part to the
overhead of query parsing, optimization, and repeated interpretation of the plan tree in the RDBMS’ query executor.

Table three shows the differences between local and remote execution of LIBTP’s OO1 implementation on a
DECstation. We measured performance with a populated (warm) cache and an empty (cold) cache. Reported times
are the means of twenty tests, and are in seconds. Standard deviations were within seven percent of the mean for
remote, and two percent of the mean for local.

The 20ms overhead of TCP/IP on an Ethernet entirely accounts for the difference in speed. The remote
traversal times are nearly double the local times because we do index lookups and part fetches in separate queries.
It would make sense to do indexed searches on the server, but we were unwilling to hard-code knowledge of OO1
indices into our LIBTP TCL server. Cold and warm insertion times are identical since insertions do not benefit from
caching.

One interesting difference shown by table three is the cost of forward versus backward traversal. Wht BoTj
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stricter guarantees (atomicity, consistency, isolation, and durability). If the data to be protected are already format-
ted (i.e. use one of the database access methods), then adding transaction protection requires no additional complex-
ity, but incurs a performance penalty of approximately 15%.

In comparison with commercial database systems, the tradeoffs are more complex. LIBTP does not currently
support a standard query language. The TCL-based server process allows a certain ease of use which would be
enhanced with a more user-friendly interface (e.g. a windows based query-by-form application), for which we have
a working prototype. When accesses do not require sophisticated query processing, the TCL interface is an ade-
quate solution. What LIBTP fails to provide in functionality, it makes up for in performance and flexibility. Any
application may make use of its record interface or the more primitive log, lock, and buffer calls.

Future work will focus on overcoming some of the areas in which LIBTP is currently deficient and extending
its transaction model. The addition of an SQL parser and forms front end will improve the system’s ease of use and
make it more competitive with commercial systems. In the long term, we would like to add generalized hierarchical
locking, nested transactions, parallel transactions, passing of transactions between processes, and distributed commit
handling. In the short term, the next step is to integrate LIBTP with the most recent release of the database access
routines and make it freely available via anonymous ftp.
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