
A Pageable Memory Based Filesystem

Marshall Kirk McKusick

Michael J. Karels

Keith Bostic

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, California 94720

email: mckusick@cs.Berkeley.EDU
telephone: 415-642-4948

ABSTRACT

This paper describes the motivations for memory-based filesystems.It compares
techniques used to implement them and describes the drawbacks of using dedicated mem-
ory to support such filesystems.To avoid the drawbacks of using dedicated memory, it
discusses building a simple memory-based filesystem in pageable memory. It details the
performance characteristics of this filesystem and concludes with areas for future work.

Introduction

This paper describes the motivation for and implementation of a memory-based filesystem.
Memory-based filesystems have existed for a long time; they hav egenerally been marketed as
RAM disks or sometimes as software packages that use the machine’s general purpose mem-
ory.[White1980a]

A RAM disk is designed to appear like any other disk peripheral connected to a machine.It
is normally interfaced to the processor through the I/O bus and is accessed through a device driver
similar or sometimes identical to the device driver used for a normal magnetic disk.The device
driver sends requests for blocks of data to the device and the requested data is then DMA’ed to or
from the requested block.Instead of storing its data on a rotating magnetic disk, the RAM disk
stores its data in a large array of random access memory or bubble memory. Thus, the latency of
accessing the RAM disk is nearly zero compared to the 15-50 milliseconds of latency incurred
when access rotating magnetic media.RAM disks also have the benefit of being able to transfer
data at the maximum DMA rate of the system, while disks are typically limited by the rate that
the data passes under the disk head.

Software packages simulating RAM disks operate by allocating a fixed partition of the sys-
tem memory. The software then provides a device driver interface similar to the one described for
hardware RAM disks, except that it uses memory-to-memory copy instead of DMA to move the
data between the RAM disk and the system buffers, or it maps the contents of the RAM disk into
the system buffers. Becausethe memory used by the RAM disk is not available for other pur-
poses, software RAM-disk solutions are used primarily for machines with limited addressing
capabilities such as PC’s that do not have an effective way of using the extra memory anyway.

1



Most software RAM disks lose their contents when the system is powered down or
rebooted. Thecontents can be saved by using battery backed-up memory, by storing critical
filesystem data structures in the filesystem, and by running a consistency check program after
each reboot.These conditions increase the hardware cost and potentially slow down the speed of
the disk. Thus, RAM-disk filesystems are not typically designed to survive power failures;
because of their volatility, their usefulness is limited to transient or easily recreated information
such as might be found in/tmp. Their primary benefit is that they hav ehigher throughput than
disk based filesystems.[Smith1981a] This improved throughput is particularly useful for utilities
that make heavy use of temporary files, such as compilers.On fast processors, nearly half of the
elapsed time for a compilation is spent waiting for synchronous operations required for file cre-
ation and deletion.The use of the memory-based filesystem nearly eliminates this waiting time.

Using dedicated memory to exclusively support a RAM disk is a poor use of resources.The
overall throughput of the system can be improved by using the memory where it is getting the
highest access rate.These needs may shift between supporting process virtual address spaces and
caching frequently used disk blocks.If the memory is dedicated to the filesystem, it is better used
in a buffer cache.The buffer cache permits faster access to the data because it requires only a sin-
gle memory-to-memory copy from the kernel to the user process.The use of memory is used in a
RAM-disk configuration may require two memory-to-memory copies, one from the RAM disk to
the buffer cache, then another copy from the buffer cache to the user process.

The new work being presented in this paper is building a prototype RAM-disk filesystem in
pageable memory instead of dedicated memory. The goal is to provide the speed benefits of a
RAM disk without paying the performance penalty inherent in dedicating part of the physical
memory on the machine to the RAM disk.By building the filesystem in pageable memory, it
competes with other processes for the available memory. When memory runs short, the paging
system pushes its least-recently-used pages to backing store.Being pageable also allows the
filesystem to be much larger than would be practical if it were limited by the amount of physical
memory that could be dedicated to that purpose.We typically operate our/tmp with 30 to 60
megabytes of space which is larger than the amount of memory on the machine.This configura-
tion allows small files to be accessed quickly, while still allowing /tmp to be used for big files,
although at a speed more typical of normal, disk-based filesystems.

An alternative to building a memory-based filesystem would be to have a filesystem that
never did operations synchronously and never flushed its dirty buffers to disk. However, we
believe that such a filesystem would either use a disproportionately large percentage of the buffer
cache space, to the detriment of other filesystems, or would require the paging system to flush its
dirty pages.Waiting for other filesystems to push dirty pages subjects them to delays while wait-
ing for the pages to be written.We await the results of others trying this approach.[Ohta1990a]

Implementation

The current implementation took less time to write than did this paper. It consists of 560
lines of kernel code (1.7K text + data) and some minor modifications to the program that builds
disk based filesystems,newfs. A condensed version of the kernel code for the memory-based
filesystem are reproduced in Appendix 1.

A fi lesystem is created by invoking the modifiednewfs, with an option telling it to create a
memory-based filesystem.It allocates a section of virtual address space of the requested size and
builds a filesystem in the memory instead of on a disk partition.When built, it does amountsys-
tem call specifying a filesystem type ofMFS (Memory File System).The auxiliary data parame-
ter to the mount call specifies a pointer to the base of the memory in which it has built the filesys-
tem. (Theauxiliary data parameter used by the local filesystem,ufs, specifies the block device
containing the filesystem.)

2



The mount system call allocates and initializes a mount table entry and then calls the
filesystem-specific mount routine.The filesystem-specific routine is responsible for doing the
mount and initializing the filesystem-specific portion of the mount table entry. The memory-
based filesystem-specific mount routine,mfs_mount(), is shown in Appendix 1. It allocates a
block-device vnode to represent the memory disk device. In the private area of this vnode it
stores the base address of the filesystem and the process identifier of thenewfs process for later
reference when doing I/O.It also initializes an I/O list that it uses to record outstanding I/O
requests. Itcan then call theufsfilesystem mount routine, passing the special block-device vnode
that it has created instead of the usual disk block-device vnode.The mount proceeds just as any
other local mount, except that requests to read from the block device are vectored through
mfs_strategy() (described below) instead of the usualspec_strategy() block device I/O function.
When the mount is completed,mfs_mount() does not return as most other filesystem mount func-
tions do; instead it sleeps in the kernel awaiting I/O requests.Each time an I/O request is posted
for the filesystem, a wakeup is issued for the correspondingnewfsprocess. Whenaw akened, the
process checks for requests on its buffer list. A read request is serviced by copying data from the
section of thenewfsaddress space corresponding to the requested disk block to the kernel buffer.
Similarly a write request is serviced by copying data to the section of thenewfsaddress space cor-
responding to the requested disk block from the kernel buffer. When all the requests have been
serviced, thenewfsprocess returns to sleep to await more requests.

Once mounted, all operations on files in the memory-based filesystem are handled by theufs
filesystem code until they get to the point where the filesystem needs to do I/O on the device.
Here, the filesystem encounters the second piece of the memory-based filesystem.Instead of call-
ing the special-device strategy routine, it calls the memory-based strategy routine,mfs_strategy().
Usually, the request is serviced by linking the buffer onto the I/O list for the memory-based
filesystem vnode and sending a wakeup to thenewfs process. Thiswakeup results in a context-
switch to thenewfs process, which does a copyin or copyout as described above. The strategy
routine must be careful to check whether the I/O request is coming from thenewfsprocess itself,
however. Such requests happen during mount and unmount operations, when the kernel is read-
ing and writing the superblock.Here,mfs_strategy() must do the I/O itself to avoid deadlock.

The final piece of kernel code to support the memory-based filesystem is the close routine.
After the filesystem has been successfully unmounted, the device close routine is called.For a
memory-based filesystem, the device close routine ismfs_close(). This routine flushes any pend-
ing I/O requests, then sets the I/O list head to a special value that is recognized by the I/O servic-
ing loop inmfs_mount() as an indication that the filesystem is unmounted.Themfs_mount() rou-
tine exits, in turn causing thenewfsprocess to exit, resulting in the filesystem vanishing in a cloud
of dirty pages.

The paging of the filesystem does not require any additional code beyond that already in the
kernel to support virtual memory. Thenewfsprocess competes with other processes on an equal
basis for the machine’s available memory. Data pages of the filesystem that have not yet been
used are zero-fill-on-demand pages that do not occupy memory, although they currently allocate
space in backing store.As long as memory is plentiful, the entire contents of the filesystem
remain memory resident.When memory runs short, the oldest pages ofnewfs will be pushed to
backing store as part of the normal paging activity. The pages that are pushed usually hold the
contents of files that have been created in the memory-based filesystem but have not been recently
accessed (or have been deleted).[Leffler1989a]

Performance

The performance of the current memory-based filesystem is determined by the memory-to-
memory copy speed of the processor. Empirically we find that the throughput is about 45% of

3



this memory-to-memory copy speed. Thebasic set of steps for each block written is:

1) memory-to-memorycopy from the user process doing the write to a kernel buffer

2) context-switch to thenewfsprocess

3) memory-to-memorycopy from the kernel buffer to thenewfsaddress space

4) context switch back to the writing process

Thus each write requires at least two memory-to-memory copies accounting for about 90% of the
CPU time. Theremaining 10% is consumed in the context switches and the filesystem allocation
and block location code.The actual context switch count is really only about half of the worst
case outlined above because read-ahead and write-behind allow multiple blocks to be handled
with each context switch.

On the six-MIPS CCIPower 6/32 machine, the raw reading and writing speed is only about
twice that of a regular disk-based filesystem.However, for processes that create and delete many
files, the speedup is considerably greater. The reason for the speedup is that the filesystem must
do two synchronous operations to create a file, first writing the allocated inode to disk, then creat-
ing the directory entry. Deleting a file similarly requires at least two synchronous operations.
Here, the low latency of the memory-based filesystem is noticeable compared to the disk-based
filesystem, as a synchronous operation can be done with just two context switches instead of
incurring the disk latency.

Future Work

The most obvious shortcoming of the current implementation is that filesystem blocks are
copied twice, once between thenewfs process’ address space and the kernel buffer cache, and
once between the kernel buffer and the requesting process.These copies are done in different
process contexts, necessitating two context switches per group of I/O requests.These problems
arise because of the current inability of the kernel to do page-in operations for an address space
other than that of the currently-running process, and the current inconvenience of mapping pro-
cess-owned pages into the kernel buffer cache.Both of these problems are expected to be solved
in the next version of the virtual memory system, and thus we chose not to address them in the
current implementation.With the new version of the virtual memory system, we expect to use
any part of physical memory as part of the buffer cache, even though it will not be entirely
addressable at once within the kernel. In that system, the implementation of a memory-based
filesystem that avoids the double copy and context switches will be much easier.

Ideally part of the kernel’s address space would reside in pageable memory. Once such a
facility is available it would be most efficient to build a memory-based filesystem within the ker-
nel. Onepotential problem with such a scheme is that many kernels are limited to a small address
space (usually a few meg abytes). Thisrestriction limits the size of memory-based filesystem that
such a machine can support.On such a machine, the kernel can describe a memory-based filesys-
tem that is larger than its address space and use a ‘‘window’’ to map the larger filesystem address
space into its limited address space.The window would maintain a cache of recently accessed
pages. Theproblem with this scheme is that if the working set of active pages is greater than the
size of the window, then much time is spent remapping pages and invalidating translation buffers.
Alternatively, a separate address space could be constructed for each memory-based filesystem as
in the current implementation, and the memory-resident pages of that address space could be
mapped exactly as other cached pages are accessed.

The current system uses the existing local filesystem structures and code to implement the
memory-based filesystem.The major advantages of this approach are the sharing of code and the
simplicity of the approach.There are several disadvantages, however. One is that the size of the
filesystem is fixed at mount time.This means that a fixed number of inodes (files) and data

4



blocks can be supported.Currently, this approach requires enough swap space for the entire
filesystem, and prevents expansion and contraction of the filesystem on demand.The current
design also prevents the filesystem from taking advantage of the memory-resident character of the
filesystem. Itwould be interesting to explore other filesystem implementations that would be less
expensive to execute and that would make better use of the space.For example, the current
filesystem structure is optimized for magnetic disks.It includes replicated control structures,
‘‘ cylinder groups’’ w ith separate allocation maps and control structures, and data structures that
optimize rotational layout of files.None of this is useful in a memory-based filesystem (at least
when the backing store for the filesystem is dynamically allocated and not contiguous on a single
disk type). On the other hand, directories could be implemented using dynamically-allocated
memory organized as linked lists or trees rather than as files stored in ‘‘disk’’ blocks. Allocation
and location of pages for file data might use virtual memory primitives and data structures rather
than direct and indirect blocks.A reimplementation along these lines will be considered when the
virtual memory system in the current system has been replaced.

References

Leffler1989a.
S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman,The Design and Imple-
mentation of the 4.3BSD UNIX Operating System,Addison-Wesley, Reading, MA (1989).

Ohta1990a.
Masataka Ohta and Hiroshi Tezuka, ‘‘A Fast /tmp File System by Async Mount Option,’’
USENIXAssociation Conference Proceedings, p. ???−??? (June 1990).

Smith1981a.
A. J. Smith, ‘‘Bibliography on file and I/O system optimizations and related topics,’’ Oper-
ating Systems Review 14(4), p. 39−54 (October 1981).

White1980a.
R. M. White, ‘‘Disk Storage Technology,’’ Scientific American243(2), p. 138−148 (August
1980).

5



Appendix A - Implementation Details

/*
* This structure defines the control data for the memory
* based file system.
*/
struct mfsnode {

struct vnode*mfs_vnode; /*vnode associated with this mfsnode */
caddr_t mfs_baseoff; /* base of file system in memory */
long mfs_size; /* size of memory file system */
pid_t mfs_pid; /* supporting process pid */
struct buf *mfs_buflist; /* list of I/O requests */

};

/*
* Convert between mfsnode pointers and vnode pointers
*/
#define VTOMFS(vp) ((structmfsnode *)(vp)->v_data)
#define MFSTOV(mfsp) ((mfsp)->mfs_vnode)
#define MFS_EXIT(struct buf *)-1

/*
* A rguments to mount MFS
*/
struct mfs_args {

char *name; /* name to export for statfs */
caddr_t base; /* base address of file system in memory */
u_long size; /* size of file system */

};

6



/*
* M ount an MFS filesystem.
*/
mfs_mount(mp, path, data)

struct mount *mp;
char *path;
caddr_t data;

{
struct vnode *devvp;
struct mfsnode *mfsp;
struct buf *bp;
struct mfs_args args;

/*
* Create a block device to represent the disk.
*/
devvp = getnewvnode(VT_MFS, VBLK, &mfs_vnodeops);
mfsp = VTOMFS(devvp);
/*
* Sav ebase address of the filesystem from the supporting process.
*/
copyin(data, &args, (sizeof mfs_args));
mfsp->mfs_baseoff = args.base;
mfsp->mfs_size = args.size;
/*
* Record the process identifier of the supporting process.
*/
mfsp->mfs_pid = u.u_procp->p_pid;
/*
* M ount the filesystem.
*/
mfsp->mfs_buflist = NULL;
mountfs(devvp, mp);
/*
* L oop processing I/O requests.
*/
while (mfsp->mfs_buflist != MFS_EXIT) {

while (mfsp->mfs_buflist != NULL) {
bp = mfsp->mfs_buflist;
mfsp->mfs_buflist = bp->av_forw;
offset = mfsp->mfs_baseoff + (bp->b_blkno * DEV_BSIZE);
if (bp->b_flags & B_READ)

copyin(offset, bp->b_un.b_addr, bp->b_bcount);
else /* write_request */

copyout(bp->b_un.b_addr, offset, bp->b_bcount);
biodone(bp);

}
sleep((caddr_t)devvp, PWAIT);

}
}

7



/*
* I f the MFS process requests the I/O then we must do it directly.
* Otherwise put the request on the list and request the MFS process
* to be run.
*/
mfs_strategy(bp)

struct buf *bp;
{

struct vnode *devvp;
struct mfsnode *mfsp;
off_t offset;

devvp = bp->b_vp;
mfsp = VTOMFS(devvp);
if (mfsp->mfs_pid == u.u_procp->p_pid) {

offset = mfsp->mfs_baseoff + (bp->b_blkno * DEV_BSIZE);
if (bp->b_flags & B_READ)

copyin(offset, bp->b_un.b_addr, bp->b_bcount);
else /* write_request */

copyout(bp->b_un.b_addr, offset, bp->b_bcount);
biodone(bp);

} else {
bp->av_forw = mfsp->mfs_buflist;
mfsp->mfs_buflist = bp;
wakeup((caddr_t)bp->b_vp);

}
}

/*
* The close routine is called by unmount after the filesystem
* has been successfully unmounted.
*/
mfs_close(devvp)

struct vnode *devvp;
{

struct mfsnode *mfsp = VTOMFS(vp);
struct buf *bp;

/*
* Finish any pending I/O requests.
*/
while (bp = mfsp->mfs_buflist) {

mfsp->mfs_buflist = bp->av_forw;
mfs_doio(bp, mfsp->mfs_baseoff);
wakeup((caddr_t)bp);

}
/*
* Send a request to the filesystem server to exit.
*/
mfsp->mfs_buflist = MFS_EXIT;
wakeup((caddr_t)vp);

}

8


